fe simulation of cutting processes

Upload: george-maliaris

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Fe Simulation of Cutting Processes

    1/92

     © WZL/Fraunhofer IPT

    Finite element simulation of cutting

    processes

    Simulation Techniques in Manufacturing Technology

    Lecture 8

    Laboratory for Machine Tools and Production Engineering

    Chair of Manufacturing Technology

    Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Dr. h.c. F. Klocke

  • 8/19/2019 Fe Simulation of Cutting Processes

    2/92

    Seite 2 © WZL/Fraunhofer IPT

    Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation 2

    Introduction 1

    Outline

  • 8/19/2019 Fe Simulation of Cutting Processes

    3/92

    Seite 3 © WZL/Fraunhofer IPT

    Influencing factors on the cutting process

    Workpiece material

    structure

    texture

    mechanicalproperties

    hardness

    residual stresses

    Cutting zone

    chip forming

    mechanisms

    cooling lubricant

    cutting parameters

    contactconditions

    e.g.: friction, wearheat transfer

    Tool

    cutting material

    coating

    geometry

    tool holder

    Machine

    machine design

    drive system

    clamping device

    Bildeines

    Prozesses

    M

  • 8/19/2019 Fe Simulation of Cutting Processes

    4/92

    Seite 4 © WZL/Fraunhofer IPT

    Cutting process in comparison to other processes

    Source: Jaspers

    Process Strain  Strain rate / s-1 Thomolog 

    Extrusion 2 – 5 10-1  – 10-2 0.16 – 0.7

    Forging /

    Rolling0.1 – 0.5 10 – 10+3 0.16 – 0.7

    Sheet metalforming

    0.1 – 0.5 10 – 10+2 0.16 – 0.7

    Cutting 1 – 5 10+3  – 10+6 0.16 – 0.9

    Cutting process

    Extreme conditions in the cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    5/92

    Seite 5 © WZL/Fraunhofer IPT

    Outline

    Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

  • 8/19/2019 Fe Simulation of Cutting Processes

    6/92

    Seite 6 © WZL/Fraunhofer IPT

    Requirements to the FE cutting simulation

    Reproduction of the macro/ micro geometry of the tools and kinematic of the cuttingprocess

    Modelling of the thermo mechanical material behavior for the entire temperature andstrain rate range

    Implementation of damage approaches, texture microstructure and phase transformation

    Simulation of chip form (remeshing routine, material separation, etc.)

    Consideration of friction, wear and coating

    Modelling of heat generation and transfer (conduction, convection, radiation)

    Consideration of the influence of cooling lubricant

    Utilization of the Lagrangian solving method (instationary cutting processes)

    Generation of a finely structured FE mesh and adaptive remeshing (very high element

    deformation because of higher gradients of deformation, temperature and tension)  Appropriate computation time (explicit time integration, parallelization, etc.)

  • 8/19/2019 Fe Simulation of Cutting Processes

    7/92

    Seite 7 © WZL/Fraunhofer IPT

    Cutting simulation: Input- und output parameters

    Tool

    StrainTension

    Temperature

    Cutting forcesWear

    Chip formation

    TemperatureTension

    DeformationRate of deformation

    Chip typeChip flowChip crack Component

    Strain

    TemperaturesDeformation

    Burr formationDistortionFuture: Residual stresses

    Surface quality, e.g.: roughnesschanges in shape,Measurement and position

    Component / tool

    GeometryMaterial dataContact conditionsBoundary conditionsCutting conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    8/92

    Seite 8 © WZL/Fraunhofer IPT

    Outline

    Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

  • 8/19/2019 Fe Simulation of Cutting Processes

    9/92

    Seite 9 © WZL/Fraunhofer IPT

    Macro- und micro tool geometry

    Major clearance angle: a = 10°Twist angle: d = 35°

    Cutting material: HW-K20Grain size: DK = 0.5 – 0.7 µm

    Construction dimensions DIN 6539Type: N

    Diameter: d = 1 mmDrill-point angle: s = 118°

    Querschneide 

    Freifläche

    Hauptschneide  a 

    chisel edge 

    flank face

    major cutting edge  a 

  • 8/19/2019 Fe Simulation of Cutting Processes

    10/92

    Seite 10 © WZL/Fraunhofer IPT

    Definition of element type

  • 8/19/2019 Fe Simulation of Cutting Processes

    11/92

    Seite 11 © WZL/Fraunhofer IPT

    Creation of tool models close to reality

    Macrogeometry

    4 mm

    Drilling tool FEM-modelDetermination of the tool geometry

    Microgeometry

    6 µm6 µm

    Real tool  CAD-model 

  • 8/19/2019 Fe Simulation of Cutting Processes

    12/92

    Seite 12 © WZL/Fraunhofer IPT

    Zusammenfassung und Ausblick 9

    Outline

    Zusammenfassung und Ausblick Zusammenfassung und Ausblick Zusammenfassung und Ausblick Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

  • 8/19/2019 Fe Simulation of Cutting Processes

    13/92

    Seite 13 © WZL/Fraunhofer IPT

    Thermo-mechanical behavior of material

    i iB u

  • 8/19/2019 Fe Simulation of Cutting Processes

    14/92

    Seite 14 © WZL/Fraunhofer IPT

    Thermo-mechanical behavior of material

    Quelle: Diss-Abouridoaune

    ( , , )T  s s     

    200

    250

    300

    350

    400

    450

    0 0.1 0.2 0.3 0.4

     AA6063-T6

    d

     /dt=10-3

    s-1

     & T=20°C

     , -

     

     ,   M   P  a

    300

    350

    400

    450

    10-3

    10-1

    101

    103

     AA6063-T6

    =0.1 & T=20°C

    d

     /dt , s-1

    0

    150

    300

    450

    0 100 200 300 400 500

     AA6063-T6

    =0.1 & d

     /dt=1s-1

    T , °C

    StrainRateHardening StrainHardening    Thermal Softening 

    Source: Diss- Abouridouane

  • 8/19/2019 Fe Simulation of Cutting Processes

    15/92

    Seite 15 © WZL/Fraunhofer IPT

    Empirical models: e.g. Johnson-Cook-Modell

    Micro mechanical models: e.g. enhanced Macherauch-Vöhringer-Kocks-model

    Semi-empirical models: e.g. Zerilli-Armstrong-model for bcc-materials

    Constitutive material modelling for the FE cutting simulation

    Source: Diss-Abouridouane

    n -1/2G 1 2 3 4 5σ = Δσ +C exp -C T +C Tln( ) +C +C L  

    Initial densityof dislocations Dislocation jam

    Influence of temperatureand strain rate

    Influence of grain size

    m

    n r 0

    m r 

    T T(A B ) (1 Cln( / )) (1 )

    T T

    s  

    Strain hardening Strain rate sensitivity Thermal softening

    1/ p1/ q

    * 0a 0

    0

    kT1 ·ln

    G

    s s s  Athermal processes Damping processThermal activated processes

  • 8/19/2019 Fe Simulation of Cutting Processes

    16/92

    Seite 16 © WZL/Fraunhofer IPT

    Determination of High speed flow curves

    Source: LFW

    Split-Hopkinson-Pressure-Bar

    AusgangsstabEingangsstab

    Lager 

    Lager 

    Joch  Projektil

    Rohr 

    Zugprobe

    Deckel mit

    Luftanschluss

    Pressluftbehälter mitSchnellöffnungsventil

    AusgangsstabEingangsstab

    Lager 

    Lager 

    Joch  Projektil

    Rohr 

    Zugprobe

    Deckel mit

    Luftanschluss

    Pressluftbehälter mitSchnellöffnungsventil

    Split-Hopkinson-Tension-Bar

    Strain rate: 500 s-1  – 10000 s-1

    Temperature range: 93 K – 1273 K

    Projectile speed: 2,5 m/s – 50 m/s

    Projectile mass: m = 3,15 kg

    GewedaProf. El-Magd

    Joke Projectile Input rodTensile specimen

    Output rod

    Tube Cover with airconnection

     Air cylinder withquick release valve

    Lager    Lager Probe

    Temperier-

    kammer AusgangsstabEingangsstab

    Rohr 

    Preßluftbehälter 

    Projektil

    Auffangbehälter Collection bagSample

    Input rod Output rod

    Tube

    Projectile

     Air cylinder

    Temperaturechamber

    Bearing

    BearingBearing

    Bearing

  • 8/19/2019 Fe Simulation of Cutting Processes

    17/92

    Seite 17 © WZL/Fraunhofer IPT

    Material law for high strain rate deformation

    Source: Diss-Brodmann

      dt  B K a B K 

    k n

    n

    ad   f      

       

     

    )(1

    400

    500

    600

    700

    800

    0 0.2 0.4 0.6 0.8

    d / dt =5010 s

    -1

    4889 s-1

    4350 s-1

    4294 s

    -1

    3450 s-1

    3439 s-1

    2558 s-1

    2529 s-1

    0.001 s-1

    o : r

    K = 960 MPaB = 0.031n = 0.182 / K = 6.25·10

    -6s

     A A7075 T7351Druckversuche

      w  a

       h  r  e

       S  p  a  n  n  u  n  g ,

       M    P

      a

    True plastic strain, -

    Lines: CalculationSymbols: experiments

    Pressure tests

       T  r  u  e   S

       t  r  e  s  s ,

       M   P   A

  • 8/19/2019 Fe Simulation of Cutting Processes

    18/92

    Seite 18 © WZL/Fraunhofer IPT

    Outline

    Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

  • 8/19/2019 Fe Simulation of Cutting Processes

    19/92

    Seite 19 © WZL/Fraunhofer IPT

    Failure mechanisms

    Source: Diss-Abouridouane

    Loading type

    Shear stress Tensile stress

    TiAl6V4

    20 µm 20 µm

    Shear lokalisation model

    (Imperfections theory)

    Pore growth model

    (Hancock-Mackenzie)

  • 8/19/2019 Fe Simulation of Cutting Processes

    20/92

    Seite 20 © WZL/Fraunhofer IPT

    Damage modelling for the FE cutting simulation (ductile fracture)

    Macro mechanical failure models

     – Equivalent stress/ strain model: Dσ  = σv,f   / Dε = εv,f  

     – Gosh-Model: DGosh

     = (1+σ2

    /σ1

    ) σ1

    2

     –  Ayada-Model: dD = (σm/σv) dεv 

    Micro mechanical failure models (Pore growth models)

     – Hancock-Mackenzie-Modell

     – Gurson-Tveergard-Needleman-Model

     – Johnson-Cook-Model

    Source: Diss-Abouridouane

    mf 1 2 3 4 5

    v 0 m

    σ   ε Tε = D + D exp -D 1+ D ln 1+ Dσ ε T

         

     

    mf n

    v

    σ3ε = ε + α exp -

    2 σ

     

    2

    2V m1 1

    V,M V,M

    σ 3σ0 = + 2fq cosh - 1+ q f  

    σ 2σ

     

    0s 

     E

    εf

  • 8/19/2019 Fe Simulation of Cutting Processes

    21/92

    Seite 21 © WZL/Fraunhofer IPT

    Failure limit at tensile stress (r: Notch radius)

    Source: Diss-Abouridouane

    0

    0.5

    1.0

    1.5

    0 0.5 1.0 1.5 2.0 2.5

    glattr = 1.2 mmr = 0.8 mmr = 0.4 mmr = 0.02 mm

    TiAl6V4,  = 200°Cdynamisch

     = 0.09+3.54*exp(-2.61*sm

    /sv

    )

    0

    0.5

    1.0

    1.5

    0 0.5 1.0 1.5 2.0 2.5

    glattr = 1.2 mmr = 0.8 mm

    r = 0.4 mmr = 0.02 mm

    TiAl6V4,  = 200°Cquasistatisch

    f  = 0.09+5.2*exp(-2.35*s

    m/s

    v)

      Mehrachsigkeit sm

    /sv

     

       l  o   k  a   l  e  p   l  a  s   t   i  s  c   h  e   B  r  u  c   h  -   V  e  r  g   l  e   i  c   h  s   d  e   h  n

      u  n  g          f

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.5 1.0 1.5 2.0 2.5

    glattr = 1.2 mmr = 0.8 mmr = 0.4 mmr = 0.02 mm

    TiAl6V4,  = 20°Cquasistatisch

    f  = 0.05+2.89*exp(-2.35*s

    m/s

    v)

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.5 1.0 1.5 2.0 2.5

    glattr = 1.2 mmr = 0.8 mmr = 0.4 mmr = 0.02 mm

    TiAl6V4,  = 20°Cdynamisch

    f  = 0.05+2.33*exp(-2.49*s

    m/s

    v)

       L  o  c  a

       l   p

       l  a  s

       t   i  c

       f  a   i   l  u

      r  e  -  e  q  u

       i  v  a

       l  e  n

       t  s   t  r  e

      s  s        ε

       f

    Multiaxiality

    dynamic

    dynamicquasi-static

    quasi-static

  • 8/19/2019 Fe Simulation of Cutting Processes

    22/92

    Seite 22 © WZL/Fraunhofer IPT

    Criteria for chip formation

    Geometrical separationcriterion

    Separation whenthe cutting edge falls below acritical distance dcr  to thenext workpiece node

    Without a specificseparation criterion

    Separation throughcontinuous remeshing forductile material behavior

    Physical separation criterion

    Separation while exceedingan defined, maximumequivalent stress or atpredefined maximumtensions

    Werkzeug

    vc

     As

    Bs

    Cs

    DsEs

    Hs,w  Gs,w   Fw   Ew   Dw   Cw   Bw

    X   X

    Schnittebene

    Fs

    I

    IKR

    Trenn-kriterium

    Werkzeug

    vc

     As

    Bs

    Cs

    DsEs

    Hs,w  Gs,w   Fw   Ew   Dw   Cw   Bw

    X   X

    Schnittebene

    Fs

    I

    IKR

    Trenn-kriterium

     

    Werkzeug

     As

    Bs

    Cs

    Ds

    Es

    Hs,w   Gs,w   Fs,w   Ew   Dw   Cw   Bw

    X   X

    dcr 

    dSchnittebene

    vc

    Span

    Werkzeug

     As

    Bs

    Cs

    Ds

    Es

    Hs,w   Gs,w   Fs,w   Ew   Dw   Cw   Bw

    X   X

    dcr 

    dSchnittebene

    vc

    Span

     

    Distorted gridtopology

    New networkedgrid topology

    Tool Tool

    Tool

    Separationcriterion

    Tool

    Chip

    Sectional plane

  • 8/19/2019 Fe Simulation of Cutting Processes

    23/92

    Seite 23 © WZL/Fraunhofer IPT

    Chip separation - without chip separation criterion by remeshing

    Old Mesh

    Elements are highly distorted

    New Mesh

    Remeshing leads to better mesh

    Span Werkzeug a) b)Chip Tool 

    New Mesh

    Microstructure-based 3D modeling for micro cutting AISI 1045

  • 8/19/2019 Fe Simulation of Cutting Processes

    24/92

    Seite 24 © WZL/Fraunhofer IPT

    0

    300

    600

    900

    1200

    0 0.5 1.0 1.5 2

    True plastic strain , , -

       T  r  u

      e  s   t  r  e  s  s  

       M   P  a

    CompressionTension

    Ø 0.1x0.1 mm

    Shear 

    0.1x0.1x0.1 mmQuasi-static 

    FE model

    Experiment

    Tension stress

    Compression stress

    Shear stress

    Concept of the Representative Volume Element (RVE)

    Macrostructure

    Microstructure

    RVE

    Representativeness check of the RVE Capture of all significant microstructuralinhomogeneities 

    Pearlite

    Cross section Longitudinal section

    Two-phase 3D FE model(0.1 x 0.1 x 0.1 mm)

    Ferrite

  • 8/19/2019 Fe Simulation of Cutting Processes

    25/92

    Seite 25 © WZL/Fraunhofer IPT

    Microstructure-based 3D FE model: Validation

    50

    40

    30

    20

    10

    N22%

    3% 19%7%

       M   i  x   t  u  r  e  m  o

       d  e   l

    d = 1 mm, vc = 35 m/min, f = 12 µm

    Test

    Nmm

       I  s  o

       t  r  o  p

       i  c  m  o

       d  e   l

       I  s  o

       t  r  o  p

       i  c  m  o

       d  e   l

       M   i  x   t  u  r  e  m  o

       d  e

       l

    Test

    00

    4

    8

    12

    16

    20Feed force

    TorqueChip

    Drill

    Workpiece

    Microstructure

    Chip form

    Holes

    Workpiece

    Drill

    FerritePearlite

    Two-phase FE model formicro drilling in

    ferritic-pearlitic carbon steel C45N 

  • 8/19/2019 Fe Simulation of Cutting Processes

    26/92

    Seite 26 © WZL/Fraunhofer IPT

    Influence on the formation of residual stresses

    The complete coupling of the various parameters influencing the formation of residualstresses has not been done

    Source: Preckel

    Metallurgical

    state

    Thermal

    state

    MechanicalState

    Thermally-induced phasetransformation

    Heat gain

    Residual stresses

    Input parameters for thermo-mechanical-metallurgic simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    27/92

    Seite 27 © WZL/Fraunhofer IPT

    (residual stresses)

    Microstructure, initial state of texture

    Time dependent thermo-mechanical state of stress

    Mathematical approach for the diffusion controlled transformation kinetics: Advanced Johnson-Mehl-Avrami-Kolmogrow-model, 1940

    Mathematical approach for the phase transformation without diffusionKoistenen-Marburger-relation, 1959

    TTT/TTA-diagram for not isotherm conditions (high strain rate)

    Thermal material properties, depending on temperature (cp, l r …) 

    Mechanical material properties, depending on temperature (E, u a ...)

    Elasto-viscoplastic material law

    Consideration of grain orientation, texture, micro damages, inclusions, etc.

    Description of the damage behavior on high strain rates Tool wear model 

    O

  • 8/19/2019 Fe Simulation of Cutting Processes

    28/92

    Seite 28 © WZL/Fraunhofer IPT

    Outline

    Summary and Outlook9

    Applications of the FE-cutting-simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

    Friction model for FE cutting simulation

    Th l l d t th k i d t l t t

  • 8/19/2019 Fe Simulation of Cutting Processes

    29/92

    Seite 29 © WZL/Fraunhofer IPT

    Thermal load at the workpiece and tool contact zone

    1 Primary shear zone2 Secondary shear zone at rake face

    3 Jam and separation zone4 Secondary shear zone at flank face5 Run-up deformation zone

    Structure in the workpiece

    Cutting edge

    Tool

    Tool flankCutting surface

    Shear edge

    Structure in the chip

    2

    vc 

    1

    5

    3

    4

    600

    700

    650

    600

    400450500

    300 310

    380 ºC13080

    50030

    Workpiece

    chip

    tool

    Material: steelElastic limit: kf = 850 N/mm

    2 Cutting material: HW-P20Cutting velocity: v

    c

    = 60 m/minChip thickness: h = 0,32 mmRake angle: o = 10º 

    Distribution of temperature in the contact

    zone(according to Kronenberg

    Friction model for FE cutting simulationD f ti t th k i d t l t t

  • 8/19/2019 Fe Simulation of Cutting Processes

    30/92

    Seite 30 © WZL/Fraunhofer IPT

    Deformation at the workpiece and tool contact zone

    Turning tool

    Shear zone

    0,1 mm

    Material: C53E

    Cutting material: HW-P30Cutting velocity.: vc = 100 m/minChip section: ap x f = 2 x 0,315 mm

    Cutting edge1 Primary shear zone2 Secondary shear zone at rake face

    3 Jam and separation zone4 Secondary shear zone at flank face5 Run-up deformation zone

    Structure in the workpiece

    Cutting edge

    Tool

    Tool flankCutting surface

    Shear edge

    Structure inthe chip

    2

    vc 

    1

    5

    3

    4

    Friction model for FE cutting simulationM h i l t t th k i d t l t t

  • 8/19/2019 Fe Simulation of Cutting Processes

    31/92

    Seite 31 © WZL/Fraunhofer IPT

    Mechanical stress at the workpiece and tool contact zone

     

     

     

    ,  

    Normal stress:

    Shear stress:

    Tool

     According to Oxley and Hatton

    Contact zone

    1 Primary shear zone2 Secondary shear zone at rake face

    3 Jam and separation zone4 Secondary shear zone at the flank face5 Run-up deformation zone

    Structure in the workpiece

    Cutting edge

    Tool

    Tool flankCutting surface

    Shear edge

    Structurein the chip

    2

    vc 

    1

    5

    3

    4

    Friction model for FE cutting simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    32/92

    Seite 32 © WZL/Fraunhofer IPT

    k m R    

     N  R   s     

    Friction model for FE cutting simulation

    Coulomb friction model :

    Shear friction model:

    with

    Continuous passover from dynamic friction(Coulomb) to static friction (shear):

    Z.B.: Usui-model

    τR  – shear stress from friction

    s N   – normal stress

    k    – yield stress in shear according to Mises

    k f    – yield stress according to Misesµ, m   – friction coefficients

    Coulomb friction

    Shear friction

    reality

    Orowan / Özel

    UsiuShaw /Wanheim and Bay

    reality

     N s 

     N s 

     R 

     R 

    3

      f  k k  

     = 1 − exp(−

     )  

    Static frictionDynamic friction

    Wear model for FE cutting simulationDifferent types of wear at the cutting blade and wear mechanisms

  • 8/19/2019 Fe Simulation of Cutting Processes

    33/92

    Seite 33 © WZL/Fraunhofer IPT

    Different types of wear at the cutting blade and wear mechanisms

    Sliding mechanisms Not-gliding mechanisms

     Abrasion Adhesion Delamination Diffusion electrochemical Oxidation

    Cutting

    edge

    Edge chippage

    Crater wear

    Flank abrasion

    Oxidation notch

    Flank wear

    Crater wear

    Built-up edge

    Tool

    Flank

    Cutting-surface

    Workpiece

    Chip

    Wear model for FE cutting simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    34/92

    Seite 34 © WZL/Fraunhofer IPT

    Wear model for FE cutting simulation

    Tool life acc. to Taylor: Tool life acc. to Hasting:

    B

     AT 

     

    c   C v T   

    T = tool lifeu  = temperature

    k, A, B = constantCv = T für vc = 1 m/min

    Empirical tool wearmodels

    Physical tool wearmodels

    Tool wear modelling

    Differentialwear modelsTool life equations

    Model acc. to Usui: Model acc. to Takeyama:Model acc. to Archard:

    S F K 

    dt 

    dV 

    3

      )T

    C(

    1chn

    2

    eCvσdt

    dV      R 

    eDv Gdt 

    dV c 

    dV/dt: wear-volume-rate

    H: hardnessF: mechanical loadS: cutting length

    K, C1, C2, G, D: constant

    sn: normal stressVch:  chip sliding speedu: temperature

     Abrasion + Diffusion Adhesion

     Adhesion / Abrasion

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    35/92

    Seite 35 © WZL/Fraunhofer IPT

    Boundary Conditions

    Inter Object Conditions Environment Object ConditionsObject Conditions

    Tool

    Workpiece

    2D FEM Cutting Model

    Object boundary conditions

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    36/92

    Seite 36 © WZL/Fraunhofer IPT

    Boundary Conditions

    Inter Object Conditions Environment Object ConditionsObject Conditions

    Friction Heat Transfer

    MovementTool

    =

    Object 1

    Workpiece = Object 2

    2D FEM Cutting Model

    Object boundary conditions

    Boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    37/92

    Seite 37 © WZL/Fraunhofer IPT

    Boundary Conditions

    Object Conditions

    Friction  Heat Transfer

    Movement

    Workpiece = Object 2

    2D FEM Cutting Model

    FR 

    FN 

    Self Contact (Chip vs. Workpiece Surface)

    FR: Friction Force

    FN: Normal Force

    Boundary conditions

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    38/92

    Seite 38 © WZL/Fraunhofer IPT

    Boundary Conditions

    Object Conditions

    Friction Heat Transfer

    Movement

    Cutting

    speed vc in

    x-direction

    x

    y

    Tool is fixed in x- and y-direction!

    Tool

    Workpiece

    The workpiece is moving in

    x-direction with the prescribed

    velocity vc. It is fixed in y-direction

    Object boundary conditions

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    39/92

    Seite 39 © WZL/Fraunhofer IPT

    Boundary Conditions

    Object Conditions

    Friction Heat Transfer

    Movement 

    Tool

    Workpiece

    Heat Transfer

    Object boundary conditions

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    40/92

    Seite 40 © WZL/Fraunhofer IPT

    Boundary Conditions

    Inter Object Conditions Environment Object Conditions

    Friction Heat Transfer

    Object Conditions

    Tool

    Heat TransferFR

    FN

    j y

    FN

    FN

    Object boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    41/92

    Seite 41 © WZL/Fraunhofer IPT

    Boundary Conditions

    Inter Object Conditions Environment Object Conditions 

    Heat Transfer

    Object Conditions

    Heat Convection Heat Emissivity 

    Tool

    Heat Radiation

    Heat Convection

    Heat exchange withenvironment

    j y

    Outline

  • 8/19/2019 Fe Simulation of Cutting Processes

    42/92

    Seite 42 © WZL/Fraunhofer IPT

    Summary and Outlook9

    Applications of the FE-cutting-simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

    FEM software solution for FEM simulation of the cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    43/92

    Seite 43 © WZL/Fraunhofer IPT

    g

    MSC.Marc

    Criteria for the evaluation of FE software

  • 8/19/2019 Fe Simulation of Cutting Processes

    44/92

    Seite 44 © WZL/Fraunhofer IPT

    Source: SIMULIA, ANSYS, LSTC, TWS, SFTC, COMSOL

    Criteria

    Programm ABAQUS ANSYS/ LS-DYNA AdvantEdge DEFORM COMSOL

    Creation of geometries Creation of geometriesand import of CAD data Import of CAD data Creation of simplegeometries andimport of CAD data

    Creation of simplegeometries andimport of CAD data

    Creation of simplegeometries and importof CAD data

    Material catalogue No, has to be defined Yes, expandable Yes, wide Yes, new catalogueimportable

    yes

    Element type Every type Every type tetrahedron,rectangle

    tetrahedron, rectangle Every type

    Time integration Implicit / Explicit Implicit / Explicit Explicit Implicit Implicit

    Remeshing routine none none yes yes yes

    use general general cuttingprocess Deforming process general

    Influence on simulation

    computation

    High, by Python Possible, by Fortran no High, by Fortran High, by Matlab

    parallelisation possible possible possible possible possible

    Usage at the WZL Eigenfrequency analysis,elast. Tool behavior,elasto-plastic componentbehavior

    no no Cutting simulation Thermo-elasticdeformation

    Outline

  • 8/19/2019 Fe Simulation of Cutting Processes

    45/92

    Seite 45 © WZL/Fraunhofer IPT

    Summary and Outlook9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Introduction 1

    Applications of the FE cutting simulation at WZL

  • 8/19/2019 Fe Simulation of Cutting Processes

    46/92

    Seite 46 © WZL/Fraunhofer IPT

    Research focus at the WZL:

    Process optimization

    Material modelling

    Drilling Milling

    2D, e.g. Planing

    Turning

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    47/92

    Seite 47 © WZL/Fraunhofer IPT

    Cutting speed: vc = 3000 m/min

    Feed: f = 0.25 mm

    vc 

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    48/92

    Seite 48 © WZL/Fraunhofer IPT

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    49/92

    Seite 49 © WZL/Fraunhofer IPT

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    50/92

    Seite 50 © WZL/Fraunhofer IPT

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    51/92

    Seite 51 © WZL/Fraunhofer IPT

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    52/92

    Seite 52 © WZL/Fraunhofer IPT

    Simulation of the high speed cutting process

  • 8/19/2019 Fe Simulation of Cutting Processes

    53/92

    Seite 53 © WZL/Fraunhofer IPT

    Comparison of different thermal properties of the tools

  • 8/19/2019 Fe Simulation of Cutting Processes

    54/92

    Seite 54 © WZL/Fraunhofer IPT

    Orthogonal turning 2D (vc = 300 m/min, f = 0,1 mm, C45E)

    Ceramic-InsertThermal conductivity l = 35 W/mK 

    WC-InsertThermal conductivity l = 105 W/mK

    Tmax = 650°C Tmax = 550°C

    3 6TiN 570

    Temperature distribution in dependency of the coating andits thickness

  • 8/19/2019 Fe Simulation of Cutting Processes

    55/92

    Seite 55 © WZL/Fraunhofer IPT

    533

    3 µm 6 µm

    TiN Al2O3

    TiN

    6 µm 0

    510

    520

    530

    540

    550

    560

    570

       C  a

       l  c  u

       l  a   t  e   d   t  e  m  p  e  r  a

       t  u

      r  e  a

       t   t   h  e

      c   h   i  p   b  o

       t   t  o  m

       s   i   d  e

       T   S  p

       /   °   C

    Heat conductivity:HW: 100 W/(mK)TiN: 26,7 W/(mK)

     Al2O3: 7,5 W/(mK)

    Material: C45E+NTensile strength: Rm = 610 N/mm²

    557

    539

    509

    539

    Heat capacity:HW: 3,5 J/(cm³K)TiN: 3,2 J/(cm³K)

     Al2O3: 3,5 J/(cm³K)

    Cutting Material: HW-K10/20

    TiN3 µm

    TiN6 µm

    HW TiN6 µm

     Al2O36 µm

    CoatingThickness

    Tsp

    FE-Based calibration process for tool wear model

  • 8/19/2019 Fe Simulation of Cutting Processes

    56/92

    Seite 56 © WZL/Fraunhofer IPT

    . - - -

     

    vc = 250 m/min vc = 200 m/min vc = 150 m/min

    Cutting time t

       T  o  o

       l  -  w  e  a  r

       V   B

    Wear curve

    C2

    lg C1

    1/T

         l    g   {  w     /             (

      n     V   S

                 )   }

     

         l    g   {  w     /             (

      n     V   S

                 )   }

     

    Regression analysis FE-analysis

    Temperature

    Normal-

    tension

    Sliding speed

    dW/dt

    Machining experiments

    Determination of thespecific materialparameters C1 and C2

    )T

    C(

    1chn

    2

    eCvσdt

    dW  

    t = 1 mint = 4 min

    t = 6 mint = 10 min

    Modeling

    2D FE model for tool wear simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    57/92

    Seite 57 © WZL/Fraunhofer IPT

       V

      e  r  s  c   h   l  e   i   ß   V   B   [  m  m   ]

     

    Tool life

    Phase 3: Methodology for moving the nodes at the rake face

  • 8/19/2019 Fe Simulation of Cutting Processes

    58/92

    Seite 58 © WZL/Fraunhofer IPT

    node square element

    Rake

    Tool

    Tool

    Workpiece vc 

    Chipvc 

    Phase 3: Methodology for moving the nodes at the flank face

  • 8/19/2019 Fe Simulation of Cutting Processes

    59/92

    Seite 59 © WZL/Fraunhofer IPT

    nDn A nB nC

     A B C D

    nDn A nB nC= = =Workpiece

    Flank

    node square element

    Tool5 µm

    Verification of the tool wear simulation for the flank wearvc = 150 m/min, f = 0.06 mm, ap = 1 mm, dry

  • 8/19/2019 Fe Simulation of Cutting Processes

    60/92

    Seite 60 © WZL/Fraunhofer IPT

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0 5 10 15 20 25 30 35

     

    Experiment

    Simulation

       F

       l  a  n   k  w  e  a  r  w   i   d   t   h

       V   B   [  m  m   ]

    Cutting time t [min]

    eff = -26°

     0 = 7°Time:

    5 min

    Tool

    Time:

    15 min

    Time:

    25 min

    Time:

    35 min

    93 µm

    Setup of a 3D FE model

  • 8/19/2019 Fe Simulation of Cutting Processes

    61/92

    Seite 61 © WZL/Fraunhofer IPT

    15°

    7,5°

    15°

    Setup of a 3D FE model - specification of the tool holder

  • 8/19/2019 Fe Simulation of Cutting Processes

    62/92

    Seite 62 © WZL/Fraunhofer IPT

    Z

    YX

    RotZ=6°

    Rotx=-6°

    Tool ho lder:

    Kennametal

    ID: PCLNL252M12 F4 NG27

    Rake ang le 0  = -6° 

    Relief ang le 0  = 6° 

     Tool in cl inat ion ang le ls  = -6° 

    Tool c utt ing edge angler  = 95° 

    Setup of a 3D FE model - Tool position

  • 8/19/2019 Fe Simulation of Cutting Processes

    63/92

    Seite 63 © WZL/Fraunhofer IPT

    f  

    a p 

    r workpiece

    r tool

    r tool = r workpiece

    Setup of a 3D FE model - Mesh of the workpiece

  • 8/19/2019 Fe Simulation of Cutting Processes

    64/92

    Seite 64 © WZL/Fraunhofer IPT

    3D simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    65/92

    Seite 65 © WZL/Fraunhofer IPT

    Workpiece: AISI 1045

    Tool: K10

    vc = 300 m/minf = 0,1 mm

    Cutting Force Fc 

    Temperature

    3D FE model - Post processing

  • 8/19/2019 Fe Simulation of Cutting Processes

    66/92

    Seite 66 © WZL/Fraunhofer IPT

    Temperature (°C)

    For better visualization

    the tool is hidden

    3D FE model - Post processing

  • 8/19/2019 Fe Simulation of Cutting Processes

    67/92

    Seite 67 © WZL/Fraunhofer IPT

    Temperature (°C)

    For better visualization

    the tool is hidden

    3D FE model - Post processing

  • 8/19/2019 Fe Simulation of Cutting Processes

    68/92

    Seite 68 © WZL/Fraunhofer IPT

    Strain distribution

    For better visualization

    the tool is cut

    Strain

    3D FE model - Post processing

  • 8/19/2019 Fe Simulation of Cutting Processes

    69/92

    Seite 69 © WZL/Fraunhofer IPT

    Strain Ratedistribution

    For better visualizationthe tool is cut

    Strain Rate

    Models of cutting inserts

  • 8/19/2019 Fe Simulation of Cutting Processes

    70/92

    Seite 70 © WZL/Fraunhofer IPT

    Roughing geometry

    CNMG120408RN

    Finishing geometry

    CNMG120408FN

    Simulation of the chip flow

    Material:Chip breaker FNChip b reaker RN

  • 8/19/2019 Fe Simulation of Cutting Processes

    71/92

    Seite 71 © WZL/Fraunhofer IPT

    Material: 

    C45E+N

    Cutting material:

    HC P25Insert: 

    CNMG120408

    Insert geometry:

    Cutting velocity.:vc = 300 m/min

    Feed:

    f = 0,1 mm

    Depth of cut:

    ap = 1 mm

    Dry cutting 

    a0   0   lS   r 6° -6 ° 95°-6°

    90°

    a0   0   lS   r 6° -6 ° 95°-6°

    90°

    Simulation of the chip flow

    Chip breaker FNChip b reaker RNMaterial:

  • 8/19/2019 Fe Simulation of Cutting Processes

    72/92

    Seite 72 © WZL/Fraunhofer IPT

    a0   0   lS   r 6° -6 ° 95°-6°

    90°

    a0   0   lS   r 6° -6 ° 95°-6°

    90°

    Material: 

    C45E+N

    Cutting material:

    HC P25Insert: 

    CNMG120408

    Insert geometry:

    Cutting velocity.:vc = 300 m/min

    Feed:

    f = 0,1 mm

    Depth of cut:

    ap = 1 mm

    Dry cutting 

    Comparison of simulation and real chip flow

    CNMG120408

  • 8/19/2019 Fe Simulation of Cutting Processes

    73/92

    Seite 73 © WZL/Fraunhofer IPT

    Chip breaker NF

    HC-P15

    r  = 95° 

    n = -6° 

    ls = -6° 

    C45E+N

    ap = 1,9 mm

    f = 0,25 mm

    vc = 200 m/min

    dry

    vc 

    vf  

    Drilling: Modelling of size effects

    Task: 

  • 8/19/2019 Fe Simulation of Cutting Processes

    74/92

    Seite 74 © WZL/Fraunhofer IPT

    Development of a consistent 3D computation model based on the FE method

    for scaling the drilling process in consideration of size effects

    Reibung

    Werkstück

    Bohrwerkzeug

    PlastischeVerformung

    Stofftrennung

    Reibung

    n

    drill

    FrictionFriction

    Workpiece

    Separation of materialPlasticdeformation

    Previous results: 3D FE computation model for d = 1  – 10 mm 

    Material modeling Measuring the drill geometry FE boundary conditions

  • 8/19/2019 Fe Simulation of Cutting Processes

    75/92

    Seite 75 © WZL/Fraunhofer IPT

    Tool FEM-Model)T,,(   ss  

    Strain hardening

    Plasticity

    Damping mechanism

    Relaxation

    Dynamic strain ageing

    Temperature influence

    Loss of cohesion

    Failure mechanism

    Cutting parameters

    Tool: rigid / elastic

    Friction law

    Heat transfer

    Element size

    Number of elements

    Remeshing strategy

    Degree of freedom

    FE-Simulation of the drilling process with d = 1 mm (DEFORM 3D)

    Machining conditions

    Workpiece material: C45E+N

  • 8/19/2019 Fe Simulation of Cutting Processes

    76/92

    Seite 76 © WZL/Fraunhofer IPT

    Tool:rigidnumber of elements: 90 000

    Workpiece:visco-plastic (LFW-material law),temperatur fixed at boundary nodesnumber of elements: 100 000

    Contact:

    coulomb friction ( =0,2)heat transfer (conduction & convection)

    Computing time and drilling depth:2000 h; 0.18 mm (70% of the major cutting edge)

    Boundary Conditions

    Workpiece material: C45E+NTool material: HW-K20Cutting speed: 35 m/minFeed: 0.012 mm/UFeed velocity: 133 mm/minCooling lubricant: none

    Verification of the chip formation

    Experimental chip formation Chip formation in the simulation

  • 8/19/2019 Fe Simulation of Cutting Processes

    77/92

    Seite 77 © WZL/Fraunhofer IPT

    Workpiece material: C45E+N

    Cutting tool material: HW K20 

    Cutting speed:

    Feed:

    vc = 35 m/min

    f = 0.012 mm

    Model validation: Scaling effect of the chisel edge length

    6

    6

    32 Workpiece:

  • 8/19/2019 Fe Simulation of Cutting Processes

    78/92

    Seite 78 © WZL/Fraunhofer IPT

    0

    1

    2

    3

    4

    5

    1 2 3 4 5 6 7 8 9 10

     

    kf,max

     = 2 * Fz,max

     / (d * f )

    Bohrerdurchmesser d [mm]

      s  p  e  z   i   f   i  s  c   h  e   V  o  r  s  c   h  u   b   k  r  a   f   t   k   f ,  m  a  x

       [   k

       N   /  m  m

       2   ]

    0

    1

    2

    3

    4

    5

    1 2 3 4 5 6 7 8 9 10

     

    kf,max

     = 2 * Fz,max

     / (d * f )

    Bohrerdurchmesser d [mm]

      s  p  e  z   i   f   i  s  c   h  e   V  o  r  s  c   h  u   b   k  r  a   f   t   k   f ,  m  a  x

       [   k

       N   /  m  m

       2   ]

    Experiment

    20

    22

    24

    26

    28

    30

    1 2 3 4 5 6 7 8 9 10

    Durchmesser d [mm]

       V  e  r   h   ä   l   t  n   i  s

       (   d   Q

       /   d   )   [   %   ]

    Feed:f = 0,012 * d

    Cutting speed:vc = 35 m/min

    Corner radius:r n = 4 µm

    Cutting tool material:

    HW-K20

    Workpiece:C45E+N

    Cooling:None

    Simulation

    Diameter d [mm]

       S  p  e  c

       i   f   i  c   f  e  e   d

       f  o  r  c  e

       k   f ,  m  a  x

       [   k   N   /  m  m

       2   ]

    Drill diameter d [mm]

    Model validation: Temperature at the main cutting edge (center)

    400

  • 8/19/2019 Fe Simulation of Cutting Processes

    79/92

    Seite 79 © WZL/Fraunhofer IPT

    Cutting speed: vc = 35 m/min Workpiece: C45E+N

    Feed: f = 0,012 * d Cutting tool material:HW-K20Coolant: None Rounding: r n = 4 µm

    d = 3 mm

    0

    100

    200

    300

    1 3 8 10

    Diameter d [mm]

       T  e  m  p  e  r  a

       t  u  r  e  a

       t   t   h

      e

      m  a

       j  o  r  c  u

       t   t   i  n  g  e

       d  g  e   T

       [   °   C   ]

    Experiment

    Simulation

    Modelling of the face milling process

    Materials and cutting parameters:

  • 8/19/2019 Fe Simulation of Cutting Processes

    80/92

    Seite 80 © WZL/Fraunhofer IPT

    Work material:  Quenched and tempered AISI 1045 (normalized)

    Tool material:  Coated WC

    Cutting parameters:

     –  No. of teeth: z = 4

     –  Diameter: D = 32 mm

     – Engagement angle: φ A  – φE = 180°

     –  Feed: f = 0.5 mm

     –  Feed per tooth: f Z = 0.125 mm

     –  Depth of cut: ap = 0.8 mm

     –  Tool leading angle: κr  = 90°

     –  Tool inclination angle: λ = -5°

     –  No. of rev.: n = 2250 min-1 

      

     p a 

     z  

    Workpiece 

    Tool 

    r  

     f  

     f  v 

    Modelling of the face milling process

    A i l d di l k l

  • 8/19/2019 Fe Simulation of Cutting Processes

    81/92

    Seite 81 © WZL/Fraunhofer IPT

    Axial and radial rake angle:

     Axial rake angle γaxial = 9° 

    Radial rake angle γradial = 5° 

    γaxial 

     

    r  tool = r  Workpiece

    Depth of cut ap

    Feed f

    Modelling of the face milling process

  • 8/19/2019 Fe Simulation of Cutting Processes

    82/92

    Seite 82 © WZL/Fraunhofer IPT

    f  

    a p 

    r  Workpiece 

    r  Tool 

    tool  Workpiece 

    View

    Feed f

    Workpiece geometry

    1. Simplified

    Finding the best workpiece geometry

  • 8/19/2019 Fe Simulation of Cutting Processes

    83/92

    Seite 83 © WZL/Fraunhofer IPT

    1 2

    p

    workpiece

    geometry

    2. Simplified work-

    piece geometry

    3. Simplified work-

    piece geometry

    Simulation results for the 1. simplified workpiece model

    Rough elements within thework piece

  • 8/19/2019 Fe Simulation of Cutting Processes

    84/92

    Seite 84 © WZL/Fraunhofer IPT

    back

    Simulation of chip formationnot accurate enough

    Final workpiece geometry

    Left Right

    Simulation results for the 3. simplified workpiece model

  • 8/19/2019 Fe Simulation of Cutting Processes

    85/92

    Seite 85 © WZL/Fraunhofer IPT

    Left Right

    Chip formation for the left

    side of the work piece:

    Results for the face milling operation

  • 8/19/2019 Fe Simulation of Cutting Processes

    86/92

    Seite 86 © WZL/Fraunhofer IPT

    p

    at the beginning very thin

    chips are produced chip curling starts for higher

    undeformed chip thickness

    ExperimentSimulation

    Verification of the FE model

  • 8/19/2019 Fe Simulation of Cutting Processes

    87/92

    Seite 87 © WZL/Fraunhofer IPT

     .

    Full agreement

    FE based sensitivity analysis

    Heat capacityVaried inputparameters:

    Goal outputparameters:

    Cutting force Fc

    P i f F

  • 8/19/2019 Fe Simulation of Cutting Processes

    88/92

    Seite 88 © WZL/Fraunhofer IPT

    Thermalconductivity

    Heatcapacity

    Flowstress

    Cutting force

    Feed force

    Passive force

    Temperature

    FrictionToolmicro-geometry

    Thermal conductivity

    Flow stress

    Friction coefficient

    Tool micro-geometry

    pa a ete s pa a ete s Passive force Fp

    Feed force Ff

    Temperature T

    Influence

    low

    medium

    high

    Legend

    Outline

    Introduction 1

  • 8/19/2019 Fe Simulation of Cutting Processes

    89/92

    Seite 89 © WZL/Fraunhofer IPT

    Summary and Outlook 9

    Applications of the FE cutting simulation at the WZL 8

    Criteria for the evaluation of FE software 7

    Friction and wear models for the FE cutting simulation6

    Damage models for the FE cutting simulation and multiphase simulation 5

    Constitutive material laws for the FE cutting simulation4

    CAD modelling for the FE cutting simulation3

    Requirements of the FE cutting simulation2

    Cutting

    simulation

    Fixed input

    parametert i l t

    Benchmark-Analysis

    Cutting parameter 1

    Outlook:

    Benchmark-Analysis to choose the best tool geometry

  • 8/19/2019 Fe Simulation of Cutting Processes

    90/92

    Seite 90 © WZL/Fraunhofer IPT

    #

    Determination of thethermomechanical

    loadspectrum, chipflow, chip form

    Q,

    T,Fi, 

    material parameter,friction coefficients

    +

    Temp Wear Stress Chipflow

    Tool A + - ++ -

    Tool B - -- o +

    Tool C ++ ++ + +

     A B CTool

       F   l  a  n

       k  w  e  a  r

       V   B

    Cutting parameter 1

    Cutting parameter 2

    Optimised

    tool-

    and

    tool carrier-

    geometry

    Tool+

     A B C

    Cutting parameter

    vc1, ap1, f 1

    1vc2, ap1, f 1

    2

    Coating+

    TiN TiAlN AlO2

    Summary

    Machining process: System of complex physically coherent operations

  • 8/19/2019 Fe Simulation of Cutting Processes

    91/92

    Seite 91 © WZL/Fraunhofer IPT

     A holistic and comprehensive simulation of the machining has not been achieved with

    conventional empirical or analytical approaches

    FEM is a promising method for the holistic simulation of machining – High flexibility

     – Implementation of various models that describe the aspects of machining

     – Complete reproduction of the machining process

    The FE cutting Simulation gives good results under the following boundary conditions: – Realistic reproduction of the tools macro/ micro geometry

     –  Adequate modeling of the thermo mechanical material behavior

     – Exact capturing of the boundary conditions (friction, heat transfer, wear , cooling lubricant, damage,micro structure, etc.)

    Questions

    What are the ranges of temperature, strain and strain rate in cutting operations?

    What is the range of strain rate that can be realized by the Split Hopkinson Bar Test?

  • 8/19/2019 Fe Simulation of Cutting Processes

    92/92

    Seite 92 © WZL/Fraunhofer IPT

    What is the range of strain rate, that can be realized by the Split-Hopkinson-Bar-Test?

    Name two friction models. What are the advantages and the disadvantgeas of thesemodels?

    How is the strain rate effecting the flow stress curve of a material?

    What are the demands on a temperature measurement setup which allows the evaluation

    of simulation results?

    Explain the difference between the orthogonal cutting process and the longitudinal cuttingprocess!

    Explain the difference between a plastic and an elastic-plastic flow stress curve!