f.dinamik1&2.blok 12&13.2012

Upload: muhammad-randi-akbar

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    1/35

    PHARMACODYNAMICS

    Sutomo Tanzil

    Dept.of Pharmacology, Faculty of

    Medicine, Sriwijaya University.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    2/35

    Targets for drug action

    A drug is a chemical that affects a physiologicalfunction in a specific way

    target proteins: -enzymes, -carriers, -ionchannels, -receptors.

    Specificity is reciprocal : individual classes of drugbind only to certain targets, and individual targetsrecognise only certain classes of drug.

    No drugs are completely specific in their actions.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    3/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    4/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    5/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    6/35

    Drug-receptor interaction

    affinity

    efficacy (intrinsic activity)

    agonist / full agonist (e.g.adrenalin)

    antagonist (e.g. propranolol)

    partial agonist (e.g.acebutolol)

    spare receptors Inverse agonists (eg.famotidine,

    losartan, metoprolol, risperidone)

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    7/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    8/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    9/35

    Agonists, antagonists and efficacy

    Drugs acting on receptors may be ago-nists or antagonists

    Agonists initiate changes in cell function,producing effects of various types;

    Antagonists bind to receptors withoutinitiating such changes.

    Agonist potency depends on two parame-ters : affinity (i.e.tendency to bind to

    receptors) and efficacy (i.e.ability toinitiate changes that lead to effects. For antagonists, efficacy is zero

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    10/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    11/35

    Drug antagonism

    chemical antagonism

    pharmacokinetic antagonism

    competitive antagonism

    non-competitive antagonism

    physiological antagonism

    Examples ?

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    12/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    13/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    14/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    15/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    16/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    17/35

    Effectors controlled by G-proteins

    1) the adenylate cyclase/cAMP system

    2) the phospholipase C/inositol phosphate system

    3) phospholipase A :the formation of AA &eicosanoids

    4) ion channels: e.g. K+ and Ca++ channels, thusaffecting membrane excitability, transmitterrelease, contractility, etc.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    18/35

    Adenylate cyclase(AC) /cAMP system

    AC catalyses the formation of theintracellular messenger cAMP

    cAMP activates various protein kina-ses, which control cell function inmany different ways by causingphosphorylation of various

    enzymes, carriers & other proteins.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    19/35

    Phospholipase C/ inositoltriphosphate

    (IP3)/diacylglycerol (DAG) system

    Catalyses the formation of two intracellularmessengers, IP3 and DAG, from membranephospholipid

    IP3 acts to increase free cytosolic Ca++ by

    releasing Ca++ from intracellular compartments Increased free Ca++ initiates many events,

    including contraction, secretion, enzymeactivation and membrane hyperpolarisation

    DAG activates protein kinase C, which controls

    many cellular functions by phosphorylating avariety of proteins.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    20/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    21/35

    Types of ADRs

    Type A (augmented) ADRs : are ADRsthat are related to the main pharmaco-logical action of the drug.

    postural hypotension (prazosin) bleeding (warfarin)

    sedation (diazepam)

    cardiac dysrhytmia (digoxin).

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    22/35

    Types of ADRs

    Type B (bizarre) ADRs, unrelated to themain pharmacological action of the drug

    liver damage(paracetamol poisoning) tinnitus(aspirin) ototoxicity (streptomycin) teratogenicity( thallidomide ) agranulocytosis (carbimazole) anaphylactic shock (penicilline) aplastic anaemia (chloramphenicol)

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    23/35

    General mechanisms of cell damage

    and cell death

    Drug-induced cell damage/death isusually caused by reactive metabolites ofthe drug, involving non-covalent and/orcovalent interactions w/ target molecules.Cell death is often caused by apoptosisrather than acute necrosis.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    24/35

    Non-covalent interactions

    Lipid peroxidation that produces freeradicals.

    Generation of cytotoxic oxygen radicals

    Reactions causing depletion ofglutathione, resulting in oxidative stress

    Modification of sulfhydryl groups on keyenzymes (eg. Ca++-ATPases, glutathionedisulfide reductase) and structuralproteins

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    25/35

    Covalent interactions

    Adduct formation between themetabolite of paracetamol (NAPBQI: N-acetyl-p-benzoquinone imine)and cellular macromolecules.

    Covalent binding to protein canproduce an immunogen;binding to

    DNA can cause carcinogenesis andteratogenesis.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    26/35

    Apoptosis (1)

    programmed cell death, essential inembryogenesis and tissue homeostasis

    brought about principally by a cascade ofproteases the caspases.

    2 main pathways to activation:the death receptorpathway and the mitochondrial pathway.

    The death receptor pathway involve stimulation ofmembers of the TNF receptor family; and themain initiator caspases is caspase 8.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    27/35

    Apoptosis (2)

    The mitochondrial pathway:activated byDNA damage, which results intranscription of gene p53. The p53

    protein activates a subpathway thatresults in release of cytochrome c frommitochondrion, which complexes w/protein Apaf-1(apoptotic-activating

    protease factor-1) and together theyactivate initiator caspase 9.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    28/35

    Apoptosis (3)

    In undamaged cells, survival factors (cytokines,hormones, cell-to-cell contact factors)continuously activate anti-apoptotic mechanisms.Withdrawal of survival factor stimulation causes

    cell death through the mitochondrial pathway. The effector caspases (eg. Caspase 3) start a

    pathway that results in cleavage of cellconstituents: DNA, cytoskeletal components,enzymes, etc. This reduces the cell to a cluster ofmembrane-bound entities that are eventuallyphagocytosed by macrophages.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    29/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    30/35

    Hepatotoxicity

    Hepatocytes are exposed to reactive metabolitesof drugs as these are formed by P450 enzymes.

    Liver damage can be produced by generalmechanisms of cell injury (eg. Liver damage by

    paracetamol) Some drugs (eg. Chlorpromazine, androgens) can

    cause reversible cholestatic jaundice

    Cirrhosis hepatis (long-term low-dosemethotrexate)

    Immunological mechanisms (eg. Halothane)

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    31/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    32/35

    Nephrotoxicity

    In heart or liver diseases,NSAIDs reduce renal perfusion

    In patients w/ bilateral renalartery stenosis: acute renalfailure occurs on starting anACEI drug.

    NSAIDs can also cause anallergic interstitial nephritis.

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    33/35

    Nephrotoxicity

    Analgesic nephropathy is a renaldamage that is associated withprolonged and massive overuse of

    analgesics(eg.NSAIDs, paracetamol) Higer doses of captopril,can cause

    proteinuria. This is the result ofglomerular injury, which is also

    caused by other drugs that containa sulfhydryl group(eg.penicillamine)

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    34/35

  • 7/30/2019 f.dinamik1&2.Blok 12&13.2012

    35/35

    References and Further Reading

    Brunton,L.L.; et al.(2006). Goodman &Gilmans The Pharmacological Basis ofTherapeutics, 11th Ed.,McGraw-HillMedical Publishing Division, USA.

    Katzung,B.G.(2007).Basic&ClinicalPharmacology,10th Ed., McGraw-Hill,USA.

    Rang & Dale (2003). Pharmacology, 5thEd.,Churchill Livingstone, London, UK.

    Staf Pengajar Dep.Farmakologi FK Unsri(2008). Kumpulan Kuliah Farmakologi,Edisi 2, EGC,Jakarta.