f. a. cern/ep 1 analogue circuits techniques april 16th, 2002 f. anghinolfi cern...

74
F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th , 2002 F. ANGHINOLFI CERN [email protected] Part I

Upload: charles-martin

Post on 31-Dec-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 1

ANALOGUE CIRCUITS

TECHNIQUES

April 16th , 2002F. ANGHINOLFI

CERN

[email protected]

Part I

Page 2: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 2

Outline

• 1- Introduction to analogue circuit• 2- Active elements in Integrated Circuit• 3- The bipolar transistor

From “active” components available in modern IC

technologies, to the examples of amplifiers design

used for High Energy Physics applications

Page 3: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 3

Outline

• 4- Basic of amplifier• 5- Differential amplifier• 6- OTA• 7- Two-stage differential amplifier• 8- Other amplifiers circuits• 9- Cascode circuits• 10- Charge Preamplifier• 11- Transimpedance Preamplifier• 12- Preamplifiers conclusions

Page 4: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 4

1- Introduction to analogue circuit

We will NOT talk about :

• A lot of different circuit configurations used for applications in HEP, or outside of HEP (broadband telecommunications, HF, audio, etc …)

• A lot of parameters which may widely influence a final circuit design (like DC operating point, offsets, internal noise sources, sensitivities to external sources, components non-uniformities, etc …)

We will MAINLY talk about :

• Some major aspects of linear amplifier design : building blocks, amplifier stability, amplifier gain, signal bandwidth

• Two examples of signal amplifiers circuits developed for detector front-end

Page 5: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 5

1- Introduction to analogue circuit

REFERENCES:

books

IC technology “Physics in Semiconductor Devices”S. M. Sze, Wiley

Amplifier design “Analog Integrated Circuits”Paul. R. Gray, Robert. G. Meyer, Wiley

http

http://www.prenhall.com/howe3/microelectronics/

Detector Amplifierdesign

“Low-Noise Wide-band Amplifiers in Bipolar and CMOS technologies”Z. Y. Chang, Willy M.C. Sansen, Kluwer Academic Publishers

Page 6: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 6

1- Introduction to analogue circuit

Id

Gnd

Vdd

R

Vin

Vout

Id

Gnd

Vdd

Vin

VoutN

P

Vin=Gnd (0) or Vdd (1)Vout = Vdd(1) or Gnd(0)

NON LINEAR SYSTEM

Digital circuit

Analog circuit

Vout=f(Vin)Vin and Vout can take any value

between Vdd and Gnd

LINEAR SYSTEM

Page 7: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 7

1- Introduction to analogue circuit

Digital circuit

Analog circuit

Highly non linear

High noise immunity*

Immune to power supply variations*

Carries only one bit of information

Highly linear

Sensitive to noise (… pickup, crosstalk …)

Sensitive to power supplies

Carries n bits of information **

* = up to certain limits ! ** = function of max. signal range versus noise level

threshold

threshold

Page 8: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 8

2- Active Components in Integrated Circuit

MOS TRANSISTOR BIPOLAR TRANSISTOR

Surface effect conduction under the control of the gate potential

Volume effect conduction under the control of the junctions potential

IE

Ic

IB

npn

Id

NVg

Page 9: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 9

2- Active Components in Integrated Circuit

MOS TRANSISTOR BIPOLAR TRANSISTOR

TBE UVIsIc /exp. 20 .. VtVgsL

WKId

q

TkUT

Ko=f(mobility, gate capacitance, T, …)

Vt=f(dopant, gate capacitance, fixed charges, …)

W/L=transistor aspect ratioOnly “fundamental” quantities

(k= Boltzman constant, T= Temp., q= electron charge)

Page 10: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 10

3- The Bipolar Transistor

FIRST SOLID STATE TRANSISTOR(1947)

BARDEEN, BRATTAIN AND SHOCKLEY

Page 11: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 11

3- The Bipolar Transistor

A pn-junction in Silicon is the abutment of two Si volumes with free carriers of opposite polarities

• Majority carriers diffuse from regions of high to regions of low concentration

• An electric potential is created, which counteracts the diffusion current (drift current)

• In equilibrium there is no net flow of carriers in the diode

P N

Holes (+) Electrons (-)

Depletion region

p-n junction

Page 12: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 12

3- The Bipolar Transistor

CathodeAnode

n+

p-substrate

Al SiO2

Cathode

Anode

n+

p

+ ++ +

--- -

+

-

Diffusione

h

h

e

Drift

Depletion region

p-n junction

Page 13: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 13

3- The Bipolar Transistor

• Under zero bias there is a built-in potential across the junction

• The built-in potential is:

2ln

0inDNA

NTU

K300 @ mV 26

q

TkUT

ni 15 1010. cm for silicon @ 300 K-3

p-n junction

Page 14: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 14

3- The Bipolar Transistor

• For V>T (forward bias)

• For V<0 (reversed bias)

-0.2 0 0.2 0.4 0.6 0.810-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Bias voltage (V)

Dio

de c

urre

nt (

A/m

2)

Ideal

Reverse biasleakage current

TUVsF eII /

I IR s

p-n junction

Page 15: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 15

3- The Bipolar Transistor

Base-EmitterJunction is forward biased

Collector-BaseJunction is reverse biased

Barrier is lowered : more electrons (min. carriers) diffuse to the base, may reach the opposite junction, and contribute to the current of the reverse_biased BC junction

E

B

Cn p n

Minority carriers (electrons diffusion into the base)

No Bias

B-E maj. carriers flow (holes)

Bias applied

Page 16: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 16

3- The Bipolar Transistor

0 + ++Base-Emitter

Junction is forward biasedCollector-Base

Junction is reverse biased

n p n

E

B

Cn p n

e

he

h

h

e

Page 17: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 17

3- The Bipolar Transistor

Conduction mechanism in a bipolar transistor is made of the MINORITY CARRIERS flowing through the base region

Currents are flowing through semiconductors junctions, within the crystalline structure. Not a surface effect.

Page 18: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 18

3- The Bipolar Transistor

E

B

Cn p n

A B

No Bias

Forward biased Base-EmitterJunction

Higher « reverse » current in reverse

biasedCollector-Base

Junction

Bias applied

Page 19: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 19

3- The Bipolar Transistor

• Currents in junctions A and B are almost equal.

• B-E junction (A) is forward biased (low impedance)

• C-E junction (B) is reverse biased (high impedance)

Why is bipolar effect an « amplifying » device ?

The collector node being high impedance (current source). It can be loaded with large resistors Rhigh

The output power is Rhigh.I2

The emitter node is low impedance. The power at emitter node is Rlow.I2

The output power (at collector) is higher than the input power (at emitter)

Page 20: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 20

3- The Bipolar Transistor

Minority carriers concentration at x=0

Np0 is the intrinsec minority carrier concentration in the base and

K is the boltzmann constantq the electron chargeT is temperature

= 26mV at 300K

T

BEpp U

Vnn exp0 0

q

kTUT

q

kTUT

(diffusion carrier density equation)

Page 21: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 21

3- The Bipolar Transistor

The collector current is the result of the minority carrier concentration in the base crossing the B-E junction due to the electrial field direction

A is cross section of the emitterDn is the diffusion constant for electrons (the minority carriers in NPN device)

With the equation of np(0)

np0 is the intrinsec minority carrier concentration in the base

B

pn W

nqADIc

0

T

BE

B

pn

U

V

W

nqADIc exp0

Page 22: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 22

3- The Bipolar Transistor

Both IC and IB depend on the same term :

The ratio Ic/Ib is called « forward current gain » :

T

BE

D

i

P

P

B

pBB U

V

N

n

L

qADnqAWI exp

2

1 20

T

BE

U

Vexp

D

i

P

P

B

pB

B

pn

Nn

LqADn

qAW

W

nqAD

20

0

21

The base current IB is the result of two current (holes in case of NPN) contributions (namely diffusion current in emitter and recombination current within the base):

Page 23: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 23

3- The Bipolar Transistor

, the current gain between collector and base :

By maximizing NA/ND ratio,and minimizing WB, the base width, it is possible to reach values of =50-200

IE

Ic

IB

npn

Transconductance :

D

A

p

B

N

P

BN

B

NN

LW

DD

DW

2

21

1

TBE UVIsIc /exp.

BIIc

BBE IIIcI )1(

TBE

UIcV

Ic/

Page 24: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 24

3- The Bipolar Transistor

Exp. Increase

Ic vs. VCE Characterisitc

Ic

IE

IB

npnVCE

TBE UVIsIc /exp.

TBE

UIcV

Ic/gm

vbe

ic

Zogm.vbe

(Vbe)

(Ic)

Zi

Small signal model

(note : in all transparencies, explicit “-” sign is ignored)

Page 25: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 25

Reminder : The MOS Transistor

Power 2 Increase

Id vs. Vds Characteristics

vgs

id

Zogm.vgs

(Vgs)

(Id)

Zi

Small signal model

Id

NVgs

20 .. VtVgsL

WKId

dod I

L

WK

Vgs

I..2gm

Page 26: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 26

Linear models for Bipolar or MOS Transistor

v

i

Zogm.v

(V)

(I)

Zi

Small signal model

For most linear applications, both MOS or bipolar are represented by similar model elements

Values inside the model are different :

Bipolar MOS

Zi Low R High C

Zo High R High R

gm Max. Process dependent

Page 27: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 27

4- Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

The simplest amplification circuit

Vbe

co IRVccV .

UtVbesc eII /.

The collector of the npn transistor behaves as a current source : delivery of current “Ic” from a high impedance node

The voltage gain is given by Vo variation vs. Vbe variation

Vo

Page 28: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 28

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

The voltage gain is given by Vo variation vs. Vbe variation

co IRVccV . co IRV .

UtVbesc eII /.

Ut

IeI

UtVbe

I cUtVbes

c /..

1Vo

Page 29: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 29

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

The voltage gain is given by Vo variation vs. Vbe variation

Ut

I

Vbe

I cc

Is called the transconductance ‘gm’

Ut

IR

Vbe

V co .

R.gmVbe

Vo

Vo

Page 30: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 30

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

R.gmVbe

Vo

Typical values :

Ut

Icgm

CdemVqkTUt .25@26

mAIc 1

KohmsR 1

mS5.38gm

5.83Vbe

Vo

Vo

Page 31: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 31

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

npn

vbe

ic

Can be represented by a “small-signal model”

vbe

ic

Rogm.vbe

(Vbe)

(Ic)

Ri

Ri, Ro represent the input and output impedances of the non-idealtransistor

Vo

Page 32: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 32

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

Z

Vbe

“small-signal model”

vbe voRo//ZGm.vbe

(Vbe) (Vo)Ri

Ri, Ro represent the input and output impedances of the non-idealtransistor

Vo

Page 33: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 33

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

vbe vo

Ro

Gm.vbe

(Vbe) (Vo)Ri

Vo

A very simple Gain-Bandwidth calculation model

C

R C

Usually Ro (output impedance of transistor) is much higher than R. The output stage has one single pole created by the resistive load (which defines gain) and the capacitive load.

)

sC

1R

sC

1R.

( . gmv

v

i

0

Page 34: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 34

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

Vo

C

The circuit gain at low frequency is : gm.R (as expected)

The circuit transfer function has one pole at =RC

The circuit bandwidth limit (Gain >1) is at :

)sRC1

1R.( . gm

v

v

i

0

C . gm-1c

Page 35: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 35

4 - Basic of amplifier

Ic

IE

IB npn

Gnd

Vcc

R

Vbe

Vo

C

C . gm-1c

Gm.R1

Gm.R2

1/(log scale)

Gain (vo/vi) dB

1/R1.C 1/R2.C0

1/c

The maximum bandwidth of gain circuit with one pole is given by the input device transconductance and capacitive load.

Example : gm = 10-2, C=1pF, c=100ps, fc=1.6GHz

Page 36: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 36

4 - Basic of amplifier

The simplest amplification circuit with a MOS transistor instead of a bipolar one.

dddo IRVV .

20 .. VtVgsL

WKId

The drain of the MOS transistor behaves as a current source : delivery of current “Id” from a high impedance node

The voltage gain is given by Vo variation vs. Vgs variation

Id

Gnd

Vdd

R

Vgs

Vo

Page 37: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 37

4 - Basic of amplifier

The voltage gain is given by Vo variation vs. Vgs variation

do IRV .

VgsIL

WKI dod ...2

20 .. VtVgsL

WKId

Id

Gnd

Vdd

R

Vgs

Vo“gm” transconductance of MOS device

Page 38: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 38

4 - Basic of amplifier

The voltage gain is given by Vo variation vs. Vgs variation

R.gmVgs

Vo

Id

Gnd

Vdd

R

Vgs

Vo

do IL

WK ..2gm

Page 39: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 39

4 - Basic of amplifier

R.gmVgs

Vo

Typical values for modern MOS technology:

mAId 1

KohmsR 1

mS8.7gm

8.7Vgs

Vo

Id

Gnd

Vdd

R

Vgs

Vo

dod I

L

WK

Vgs

I..2

260 /10.150 VAK 100

L

W

Page 40: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 40

4 - Basic of amplifier

Id

Gnd

Vdd

R=rds

Vgs

Vo

The resistor load can be replaced by a transistor working as a current source.

The high output impedance (drain of PMOS) is used as the load.

VARIANT WITH “ACTIVE LOAD”

Vbias

N

P

Small signal model

vgs

ids

rdsgm.vgs

Transconductance factor

Output Impedance

P

vgs=0

vds

Page 41: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 41

4 - Basic of amplifier

VARIANT WITH “ACTIVE LOAD”

vgs

ids

rdsgm.vgs

Transconductance factor

Output Impedance

D

S

Vds

Ids

ids/vds is small - Equivalent output resistance is high (usually 50K to 1Mohms)

Page 42: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 42

4 - Basic of amplifier

Id

Gnd

Vdd

Vgs

Vo

VARIANT WITH “ACTIVE LOAD”

Vbias

N

P

vgs rdsNgm.vgs

Transconductance factor

Output Impedance

rdsP

R=rdsP

gm.rdsG rdsN//rdsPrds

rds is usually large (>50K-1M ohms). Gain G reaches ~100 (40dB)

and

Page 43: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 43

4 - Basic of amplifier

Id

Gnd

Vdd

R

Vgs

Vo

• Output is sensitive to Vdd/Gnd fluctuation (poor Power Supply Rejection)

• Output DC is related to input DC levels (no Common Mode Rejection)

SINGLE-ENDED STRUCTURE

Page 44: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 44

5- Differential Amplifier

Gnd

Vdd

Vi2

Id1

R

Id2

R

2*Id

Vi1

Vo1 Vo2

Vc

Because of the weaknesses of the single-ended structure (common-mode and power supply sensitivity), the differential amplifier is usually a preferred structure

Page 45: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 45

5 - Differential Amplifier

From MOS transistor equations :

Formulate :

Vcm 2Vid Vi1

Vcm 2Vid- Vi2

Gnd

Vdd

Vi2

Id1

R

Id2

R

2*Id

Vi1

Vo1 Vo2

Vc

Vid is the differential signal at inputVcm the input signal common modeVc the voltage to transistor source

2Vt)-VcVcm2Vid(.L

Wk0. Id1

2Vt)-VcVcm2Vid(-.L

Wk0. Id2

Page 46: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 46

5 - Differential Amplifier

Small signal Formulation, diff. Input variation :

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

Vid is the differential signal at inputVcm the input signal common modeVc the voltage to transistor source

2VidVt).-Vc-(Vcm.L

Wk0. .2id1

2VidVt).-Vc-(Vcm.L

W2.k0.- id2

id1)-R(id2Vo1Vo2ΔVo

Vt).Vid-Vc-Vcm.(L

W2.R.k0. ΔVo

Differential Gain :

Page 47: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 47

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

Vid is the differential signal at inputVcm the input signal common modeVc the voltage to transistor source LWko.

IdVt)-Vc-Vcm(

Vid..IdL

Wk0.2.R. ΔVo

.IdL

Wk0.2. gm

Is the input transistorstransconductance

We end up with the differential gain expressed as :

R.gmG

Page 48: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 48

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

Vid is the differential signal at inputVcm the input signal common modeVc the voltage to transistor source

Small signal Formulation, Common Mode Input variation :

Common Mode Gain :

)v-Vt).(v-Vc-(Vcm.L

Wk0. .2id1 ccm

)v-Vt).(v-Vc-(Vcm.L

Wk0. .2id2 ccm

If the tail current source is perfect (very high Z) :

0id2id1 0id2 and 0id1

Vo outputs are insensitive to common mode input

Page 49: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 49

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vid is the differential signal at inputVcm the input signal common modeVc the voltage to transistor source

Common Mode Gain :

If the tail current source has impedance Rss

Rss

2gmRss1

R.gm

v

v

cm

o

This is the common mode gain, which is much less than the differential gain, approx. by the factor R/(2Rss).

The ratio of the differential gain to the common mode gain, is called the Common Mode Rejection Ratio (CMRR). In our case :

2gmRssCMRR (CMRR easily reaches 1000 (60db))

Page 50: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 50

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

By similar reasoning, it can be shown that the differential structure can provide :

• High Common Mode Rejection

• High Power Supply Rejection

The other features are :

• Differential gain formulation as for single-ended

• Constant power consumption

Page 51: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 51

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

Drawback: Noise increase by factor 2

Id

Gnd

Vdd

R

Vgs

Vo

When noise level is critical, as in case of small detector signals, the single-ended option is the preferred choice.

It is at the cost of higher sensitivity to common-mode and power supply noise.

Page 52: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 52

• Limited “open loop” gain

• Open-loop Gain, DC point and Output Impedance are correlated by R

• “one-pole” system assumes stability

5 - Differential Amplifier

Gnd

Vdd

Vi+

Id1

R

Id2

R

2*Id

Vi-Vo1 Vo2

Vc

Typical Example :

R.gmG

10KR

10gm 3

!10G

Page 53: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 53

• The resistive load “R” is replaced by an active device (transistor) of transconductance gm2

•The amplifier is only made of complementary transistors (Pmos, Nmos).

• “MOS-only” circuit makes it compatible with most standard digital process.

6 - Active Load ; OTA

Gnd

Vdd

Vi+

rds2

2*Id

Vi-Vo1 Vo2

Vc

gm1.rdsG

gm1,rds1

VbiasVbias

rds1//rds2rds

100G

Page 54: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 54

In this configuration, the current in the output branch (ido) is the difference between the two currents variations in the two input devices :

6 - Active Load ; OTA

Gnd

Vdd

Vi-

id1

2*Id

Vi+Vo

Vc

id1

Current MirrorID = Ko.W/L.(Vgs-Vt)2

)gm1.(viid1 )gm1.(viid2

)vigm1.(ido vi being the differential input voltage)

id2id0

Thus the output voltage variation vo is given by

viRout.gm1.Rout.ido vo

rds2

gm1,rds1

Page 55: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 55

This amplifier configuration is the typical circuit of amplification stages in CMOS technology

• It provides differential inputs to single-ended output

• It has high “DC” gain (opamp) as it is shown in next transparencies

• “one-pole” system (stable)

6 - Active Load ; OTA

Gnd

Vdd

Vi-

2*Id

Vi+Vo

Vc

id1

Current Mirror

id2id0

A-

+

rout.gm1G

What is rout ?

id1rds2

gm1,rds1

Page 56: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 56

6 - Active Load ; OTA

Gnd

Vdd

Vi-

2*Id

Vi+Vo

Vc

id1

Current Mirror

id2id0

rout.gm1G

routgm1.vi

ids

vi

The output impedance is the equivalent impedance seen from the output node, i.e. :

routrds1//rds2

The output impedance is usually high (50K to 500K), thus one-stage gain is high (gm=1mS, rout= 500K - G=500 !)

rout calculation

id1rds2

gm1,rds1

Page 57: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 57

6 - Active Load ; OTA

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1

Current Mirror

id2id0

rout.gm1GDC

routgm1.vivi

This amplifier behaves as an opamp. Large gm gives high DC gain. Main pole is fixed by the output (rout.CL )

time constant.

Gm1.rout

1/(log scale)

Gain dB

1/rout.CL

01/c

CL

CL

Unity Gain BWat gm-1.C

Page 58: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 58

6 - Active Load ; OTA

Gnd

Vdd

Vi-

id1

2*Id

Vi+Vo

Vc

id1

Current Mirror

id2id0

Drawback of this circuit : its limited open-loop DC gain G . If used with a feedback gain , the output impedance is given as :

N.A. : G=500, =0.1 - Zout = 10K ohms

It is not suitable for resistive load (50 to 1Kohms range).

.G

1.routZout OL

It fits well for application with pure capacitive load, where low output impedance or large current are not required (many examples in switched capacitor circuits, SC filters).

Page 59: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 59

7 - Two Stage Differential Amplifier

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1 id2

Add single-ended second stage

gm1

gm2

Io

2nd stage can draw a large current (gm2 large)

2.1GGDC G

gm1.rout1G1 gm2.rout2G2

N.A : gm1 = 0.5mS gm2 = 3mS rout1 = 1M rout2= 200K

= GDC=30000 (90 dB)

Output impedance. : G=30000, =0.1 - Zout = 66 ohms

Page 60: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 60

7 - Two Stage Differential Amplifier

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1 id2

There are two poles

gm1

gm2

Io

First pole : rout1.CL1

Second pole : rout2. CL2

G(dB)

1/(log scale)1/R1.CL1 1/R2.CL2

0

-20dB/dec

INSTABILITY

CL2

CL1

Due to very high gain, the gain at the two pole is above 0dB

(closed loop gain)

Page 61: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 61

7 - Two Stage Differential Amplifier

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1 id2

Miller Capacitance Cf

gm1

gm2

Io

The Cf capacitance is seen by first stage as load of value (Miller effect)

First pole : rout1.CM

Second pole : rout2. CL2

G(dB)

1/(log scale)1/R1.CM 1/R2.CL2

0

CL2

CL1

(closed loop gain)

Cf

Cfgm2.rout2.CM

The 2nd pole is below 0dB

STABILITY

(without Cf)

Page 62: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 62

7 - Two Stage Differential Amplifier

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1 id2

gm1

gm2

Io

Cf

This circuit has the characteristics to behave as a “good” operational amplifier

High Input Impedance (Capacitive only)

High DC Gain (70-90dB)

Low output impedance

N.A. : G=30000, =0.1 - Zout = 66 ohms

Widely used circuit. Lot of variations exist (improved output stage, Gain enhancement etc …)

Stability should always be considered carefully(also depends on feedback and load)

Page 63: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 63

7 - Two Stage Differential Amplifier

Gnd

Vdd

Vi-

id1

2*Id

Vi+

Vo

Vc

id1 id2

gm1

gm2

Io

Cf

We did not considered other parameters which have equally large influence on the amplifier design aspects :

In the preceding discussion we considered only one (main) aspect of the amplifier design (gain and stability)

• DC operating point

• Noise figure & dynamic range (S/N ratio)

• Mismatch & Offsets

• Slew rate, large signal behavior

• Power budget

Page 64: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 64

7 - Two Stage Differential Amplifier

• DC operating point : The condition in which each transistor is biased to satisfy its “small signal model”

• Noise figure & dynamic range (S/N ratio) see figure

• Mismatch & Offsets : how technological or geometrical discrepancies between two identical components affect DC or AC characteristics

• Slew rate, large signal behavior : absolute limits given by DC conditions

• Power budget : increasing speed (BW) usually means increasing current (gm ~ funct(I))

Max signal swing, limits by DC op. conditions

Noise levelnoise sources

Page 65: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 65

8 - Other amplifier circuits

Id

Gnd

Vdd

Vgs

Vo

• High Input Impedance

• Voltage gain

• High ouput impedance

Common Source

Vbias

rout.gm1GDC

routrds1//rds2

Rinrds2

rds1gm1

Page 66: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 66

8 - Other amplifier circuits

Id

Gnd

Vdd

Vbias1Vo

• Low Input Impedance

• Voltage gain

• Unity current gain

• High ouput impedance

Common Gate

Vbias2

rout.n.gm1GDC

routrds1//rds2

1(n.gm1)Rin

Vin

(n is a factor specific to the technology, between 1 and 1.5)

rds2

rds1gm1

Page 67: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 67

8 - Other amplifier circuits

Gnd

Vdd

Vbias1Vo

• High Input Impedance

• (close to) Unity Voltage gain

• “low” output impedance

Common Drain(Source Follower)

Vin

gm21rout

Rinrds2gm2

rds1

Page 68: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 68

9 – Cascode circuit

Gnd

Vdd

Vgs

Vo=gm1.rout

Vbiasrds2

rds1gm1

Gnd

Vdd

Vgs

Vbiasrds2

rds1gm1

Vcasrdscgmc

Vo=gm1.rout

Cp

Miller effect

CPC

Low impedance node (1/gmc)CP

Single ended, without cascode Single ended, with cascode

The cascode element provides isolation of input to output

Page 69: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 69

9 – Cascode circuit

Gnd

Vdd

Vgs

Vbiasrds2

Vcasrdscgmc,

CPC

(1/gmc)CP

rds1gm1,

Impedance seen from output node toward Gnd is : rds1.(1+gmc.rdsc)

Voltage gain is given as :

G=gm1.rout

With rout=rds2//rds1.(1+gmc.rdsc)

As gmc.rdsc is large (50 to 100)

gm1.rds2GDC

Page 70: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 70

9 – Cascode circuit

Gnd

Vdd

Vgs

Vbiasrds2

Vcasrdsc1gmc1,

CPC

(1/gmc)CP

rds1gm1,

Impedance seen from output node toward Gnd is : rds1.(1+gmc1.rdsc1)

With rout = rds2(1+gmc2.rdsc2) //rds1.(1+gmc1.rdsc1)

DC gain can be very large in one stage (>60db)

gm1.routGDC

Impedance seen from output node toward Vdd is : rds2.(1+gmc2.rdsc2)

rdsc2gm2c,

Page 71: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 71

9 – Cascode circuit

Impedance seen from output node is rds3//rds1.(1+gmc.rdsc)

rout=rds3//rds1.(1+gmc.rdsc)

gm1.routGDC

The folded cascode circuit

Gnd

Vdd

Vgs

VbiasPrds2

rdscgmc,

(1/gmc)

rds1gm1,

VbiasN

Vcas

Out

rds3

Page 72: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 72

9 – Cascode circuit

The folded cascode circuit

Gnd

Vdd

Vgs

VbiasPrds2

rdscgmc,

(1/gmc)

rds1gm1,

VbiasN

Vcas

Out

This circuit arrangement has virtually many advantages :

• High DC gain

• One pole system (2nd pole is at very high frequencies). Stability improves if capacitive load is increasing.

• DC operating points at input and outputs are similar

One drawback :

• Limited output voltage swing

rds3

Page 73: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 73

9 – Cascode circuit

The folded cascode circuit

Gnd

Vdd

Vgs

VbiasPrds2

rdscgmc,

(1/gmc)

rds1gm1,

VbiasN

Vcas

Out

This circuit is the basic one used for charge preamplifier design in

detector readout

gm1.routGDC rout=rds3//rds1.(1+gmc.rdsc)

Gm1.rout

1/(log scale)

Gain dB

1/rout.CL

01/c

Unity Gain BWat gm-1.C

rds3

Page 74: F. A. CERN/EP 1 ANALOGUE CIRCUITS TECHNIQUES April 16th, 2002 F. ANGHINOLFI CERN Francis.Anghinolfi@cern.ch Part I

F. A. CERN/EP 74

End of First Part

What we have presented:

The Bipolar device as an amplifying component

Basic amplifiers schemas (Bipolar or MOS components)

General purpose two stage amplifier

Differential vs. Single-Ended

What we will do in 2nd part:

Look at two detector signal preamplifier configurations(charge sensitive amplifier and transimpedance amplifier)