exploringtheimpactofroadtrafficimpedanceandbuilt ... ·...

14
SSS 10 Proceedings of the 10th International Space Syntax Symposium R Chaturvedi & K S Rajan Exploring the impact of road traffic impedance and built environment for vulnerability mapping of evacuation areas – Case study of Hyderabad city 64:1 064 Exploring the impact of road traffic impedance and built environment for vulnerability mapping of evacuation areas Case study of Hyderabad city Rajesh Chaturvedi Lab for Spatial Informatics, International Institute of Information Technology, Hyderabad, India [email protected] K S Rajan Lab for Spatial Informatics, International Institute of Information Technology, Hyderabad, India [email protected] Abstract This study identifies spaces vulnerable to a disaster in terms of impedance offered to evacuation. Evacuation for spaces is evidently dependent on combination of several spatial and demographic features. In order to develop an evacuation model or prioritize regions for special attention during calamity, it is necessary to understand interactions and interdependencies of numerous factors. In this study, we address vulnerability issue in terms of potential difficulties in evacuating a region from a spatial perspective. Arrangement of builtup areas and interactions of neighborhoods are studied based on topological as well as metric distances between them. We couple building to building (point to point) accessibility considering metric distances & their respective onground areas with space syntax based axial analysis on urban streets. The approach creates multi dimensional feature vector on top of buildings layer. Feature vectors consist of building onground areas, their reach, betweenness, and local integration & choice values of segments adjacent to which they are located for a metric radius of 500 meters and topological radius R10. Further, we use bivariate Local Indicators of Spatial Association (LISA) to identify the clusters and conclusively carry out knowledge based denomination of the areas in terms of their vulnerability. The study reveals that road segments offering highest traffic impedance for planned grid like arrangements are parallel, of equal length and in close vicinity of each other whereas for non – grid wards are rather scattered. The clusters of buildings located on roads with lower accessibility are significantly less in number as well as smaller sized for grid like symmetries compared to non – grid arrangements. The evaluation of areas from vulnerability perspective carried out in this study can form the basis of a generalized decision support system – framework to identify, rank and prioritize both the current and future space planning and emergency response. Keywords Disaster vulnerability, evacuation, buildingsnetwork topology, clustering.

Upload: others

Post on 24-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:1  

064

Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas    Case  study  of  Hyderabad  city  

 Rajesh  Chaturvedi  Lab  for  Spatial  Informatics,  International  Institute  of  Information  Technology,  Hyderabad,  India  [email protected]    K  S  Rajan  Lab  for  Spatial  Informatics,  International  Institute  of  Information  Technology,  Hyderabad,  India    [email protected]    

Abstract  

This   study   identifies   spaces   vulnerable   to   a   disaster   in   terms   of   impedance   offered   to   evacuation.  Evacuation   for   spaces   is   evidently   dependent   on   combination   of   several   spatial   and   demographic  features.   In   order   to   develop   an   evacuation   model   or   prioritize   regions   for   special   attention   during  calamity,   it   is   necessary   to  understand   interactions  and   interdependencies  of   numerous   factors.   In   this  study,  we  address  vulnerability  issue  in  terms  of  potential  difficulties  in  evacuating  a  region  from  a  spatial  perspective.   Arrangement   of   built-­‐up   areas   and   interactions   of   neighborhoods   are   studied   based   on  topological  as  well  as  metric  distances  between  them.    

We  couple  building  to  building  (point  to  point)  accessibility  considering  metric  distances  &  their  respective  on-­‐ground  areas  with   space   syntax   based  axial   analysis   on   urban   streets.   The   approach   creates  multi-­‐dimensional  feature  vector  on  top  of  buildings  layer.  Feature  vectors  consist  of  building  on-­‐ground  areas,  their  reach,  betweenness,  and  local  integration  &  choice  values  of  segments  adjacent  to  which  they  are  located   for   a  metric   radius   of   500  meters   and   topological   radius   R10.   Further,   we   use   bivariate   Local  Indicators  of  Spatial  Association  (LISA)  to  identify  the  clusters  and  conclusively  carry  out  knowledge  based  denomination  of  the  areas  in  terms  of  their  vulnerability.  

The   study   reveals   that   road   segments   offering   highest   traffic   impedance   for   planned   grid     like  arrangements   are   parallel,   of   equal   length   and   in   close   vicinity   of   each   other   whereas   for   non   –   grid  wards   are   rather   scattered.   The   clusters   of   buildings   located   on   roads   with   lower   accessibility   are  significantly   less   in   number   as   well   as   smaller   sized   for   grid   like   symmetries   compared   to   non   –   grid  arrangements.    

The  evaluation  of  areas   from  vulnerability  perspective   carried  out   in   this   study  can   form   the  basis  of  a  generalized   decision   support   system   –   framework   to   identify,   rank   and   prioritize   both   the   current   and  future  space  planning  and  emergency  response.  

Keywords  

Disaster  vulnerability,  evacuation,  buildings-­‐network  topology,  clustering.  

Page 2: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:2  

1.  Introduction  

Metropolitan   cities,   such   as   Hyderabad,   are   usually   crowded   and   have   very   dense   urban   cores.   Any  natural   or   man-­‐made   haphazard   can   cause   chaos   and   confusion   in   such   large   accumulation   of  populations.  The  situation  worsens  if  the  chaotic  area  is  not  evacuated  at  the  earliest  and  can  lead  to  a  disaster.   Deficiency   of   planning   and   inadequacy   of   services   may   actually   lead   to   aggravation   of   the  disaster.     Disasters   can   occur   during   processions,   sporting   event   egress   and   ingress,   riots,   weather,  religious   events,   entertainment   events   (Fruin,   1993).   Few   other   disasters   in   built   environment   can   be  fire,   collapse   of   buildings   and   settlements,   flooding   or   waterlogging.   All   forms   of   such   disasters   have  pervasive   effects   on   crowds   in   terms   of   panic.   The   first   activity   to   be   carried   out   is   to   evacuate   the  affected   area   as   soon   as   possible.   In   this   paper,   we   have   conducted   an   extensive   study   for   city   of  Hyderabad   in   order   to   identify   areas  where   efficiency   of   services   needs   to   be   better   as   compared   to  others  as  they  are  more  risk  prone  from  the  perspective  of  the  built  environment  and  their   interaction  with  neighborhoods.   In  order   to  map   such  vulnerable   sites  we  have   considered   two  major   forces   that  offer  impedance  to  evacuation,  the  first  is  high  road  traffic  density  and  the  second  is  complex  geometries  of  built   environment  with  high  density  of  buildings  and   relatively  poor   connectivity   to  neighborhoods.  This   study  assesses  areas  based  on   the  extent  of  vulnerability  at  a   systemic   level,  while  analysis   is  not  conducted  on  a  micro  level  where  each  individual  entity  of  the  system  is  studied  separately.  Also,  speeds  of  evacuation  and  planning/  routing  paths  in  the  event  of  calamity  are  out  of  the  scope  of  this  study.    

2.  Background  

General  Observations  

Emergency   evacuation   is   a   challenging   situation.   The   two   forms   of   hindrances   for   safe   exits   from   the  emergency   location   or   easy   access   of   emergency   response   service   to   the   target   area   are   dense   road  traffic  and  complex  built  environments.  Accumulations  of  vehicles  on  roads  becomes  a  bottleneck  for  the  passage  whereas  dense  complex  built  environment  with  significantly  low  integration  values  slows  down  the  pace  of  evacuation  as  there  are  more  number  of  turns  for  very  short  distances  as  compared  to  long  straight  roads.  Both  of  the  stated  factors  cause  slower  egress  rates.  Predicting  traffic  at  roads  at  different  times  of  day  is  an  ambiguous  job  as  different  models  may  suggest  same  road  segments  to  be  loaded  with  different  volumes  of  traffic  at  the  same  time  of  the  day.  Glickman  (1986)  and  Stern  (1990),  in  the  past,  have   suggested   considerable   discrepancies   possible   between   daytime   and   nighttime   population  distributions,  and  thus  major  difficulty  in  obtaining  or  calculating  the  information.    It  has  been  suggested  by   Southworth   (1991)   that   it   is   rather   easier   to   plan   night   time   evacuation   using   census   records   but  planning  an  efficient  evacuation  plan  and  predicting  road  traffic  during  the  day  time  remains  tricky.  This  study   tries   to   identify   most   vulnerable   areas   from   a   spatial   perspective   and   utilizes   arrangement   of  structures  in  built  environment  to  predict  busiest  roads  during  the  daytimes  as  well  as  poorly  connected  dense  areas.    

 Simulations  for  disaster  planning  

Initially,   simulation   remained   a   preferred   choice   for   evacuation   planning.   One   of   the   earliest   of   such  simulations  was  MASSVAC,  which  has  capability  to  simulate  highway  networks  and  find  efficient  routes  from  impact  area  to  a  safe  spots  in  the  event  of  natural  disasters  (Hobeika,  1985).  Further  improvements  in  MASSVAC  led  to  integration  of  a  user  equilibrium  assignment  algorithm  to  it  (Hobeika  and  Changkyun,  1998).   Another   simulation   in   the   series   was   TEVACS,   developed   to   analyze   large-­‐scale   evacuation  specifically  for  large  cities  in  Taiwan  (Han,  1990).      

 

 

Page 3: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:3  

Vulnerability  analysis  based  on  neighborhoods    

Considerable   amount   of  work  was   being   done   in  modeling   evacuation  which  was   directed   on   various  geographical   scales   like   cities   or   buildings   as   large   and   small   areas   respectively,   however,   Cova   and  Church  (1997)  thought  to  analyze  evacuation  challenges  at  the  neighborhood  scale  and  were  the  first  to  study   interaction   of   built   environments.   Church   and   Cova   (2000)   suggested   methods   to   identify  neighborhoods  that  might  be  particularly  vulnerable  to  evacuation  difficulty  and  also  explained  ways  to  develop  maps   of   potential   evacuation  difficulty,   their   theories  were  majorly   based  on  demand   to   exit  capacities  in  any  network.  Based  on  points  put  forth  by  Church  and  Cova,  an  application  of  a  micro-­‐scale  traffic   simulation   model   to   a   neighborhood   to   estimate   the   extent   to   which   a   possible   evacuation  problem  exists  was  presented  by  Church  and  Sexton  (2002).    

 

Space  syntax  and  disaster  mitigation  

Space  syntax  theory  has  been  utilized  to  identify  vulnerability  indicators  in  several  urban  settings.  Space  syntax   suggests   that  magnitude   of   losses   from   a   disaster   is   largely   dependent   on   urban   layouts.   The  theory  has    been  used    to  a  great  extent  to    analyze,    understand,    explain    and    predict    some    of    the    social    phenomena    related    to    different    kinds    and    phases    of    disasters.  A  number  of  studies  have  been  conducted   at   local   scales   focusing   on   the   relationship   between   the   constructions,   vehicles,   and  pedestrians.   These   studies   explain   how   the   constructions   enable   or   prevent   free   movement   or  evacuation   in   different   scenarios.   Various   general   and   specific   situations   have   been   addressed   viz.  evacuations  of  hospitals  (Alper  et  al.,  2005),  evacuation  from  high-­‐standing  buildings  (Choi  et  al.,  2007),  and  evacuation  in  scenarios  of  natural  disasters  such  as  earthquakes  or  tsunamis  (Firat  and  Kubat,  2012,  Fakhrurrazi  and  van  Nes,  2012).    

 

Limitations  of  space  syntax  methodology    

Integration  is  the  focus  of  space  syntax  analysis.  Integration  values  at  global  and  different  local  scales  are  of  great   importance   in  understanding  how  urban   systems   function  because   it  has  been  observed  over  the  years  in  several  cities  across  the  globe  that  how  much  movement  passes  down  each  unit  (axial  line)  is  highly   influenced   by   integration   value   (Hillier,   1996).   It   has   also   been   conveyed   that   integration   R3   is  used  in  investigating  pedestrian  movements,  and  R10  is  often  used  to  vehicular  movements  (Jones  and  Fanek,   1997).   However,   even   after   having   established   very   strong   foothold   for   urban   analysis,   space  syntax   analysis   suffers   few   inconsistencies   as   explained   by   Ratti   (2004).   Space   syntax   is   entirely  dependent  on   topological   representation  and  discards  all  metric   information.  Hillier   (1999)  claims   that  the  existence  of  pervasive  regularities  in  urban  systems  ensures  that  the  axial  map  does  not  ignore  the  geometric  properties  of  space  but  internalizes  them;  this  argument  is  not  very  convincing  to  avoid  metric  information   in   identifying   hotspots   of   vulnerability.   Another   inconsistency   stated   by   Ratti   (2004)   is  buildings   don’t   come   into   picture   at   all   in   space   syntax   analysis.   According   to   space   syntax   analysis,  structurally   similar   areas   (without   considering   information   like   volumetric   capacities   of   buildings)   will  have   similar   natural   movement   patterns   (Hillier   et   al.,   1993),   however,   this   study   assumes   that   two  similar  arrangements  may  have  different  movement  patterns  based  on  the  volumetric  capacities  of  the  buildings   in   the   area,   and   unlike   Hillier   (1993)   do   not   assume   that   that   urban   attractors   are   a   mere  consequence  of  configuration.  

3.  Objective  

The  objective  is  to  generate  two  kinds  of  building  vulnerability  maps  for  each  local  municipal  corporate  ward  –  one   representing  buildings  adjacent   to   roads  with  high   traffic  densities  and  other   representing  

Page 4: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:4  

clusters   of   buildings  which   appear   in   high   density   construction   belts  which   are   poorly   accessible.   This  study,   like   Church   and   Cova   (2000),   suggests   methodology   to   identify   areas   with   higher   vulnerability  based  on  neighborhood  interactions,  such  that  any  small  disturbance  may  become  severe  and  take  form  of   a   disaster   as   there   exist   potential   difficulties   in   easily   evacuating   such   places.   As   discussed   in  limitations   section   above,   considering   buildings   as   well   as   metric   distances   is   very   necessary   for  identifying  areas  at  higher  risk,  this  study  combines  both  space  syntax  and  urban  network  methodologies  in  accessing  the  vulnerabilities  of  an  area.    

4.  Data  and  Preprocessing  

The   city   of   Hyderabad   is   divided   in   18   Circles.   Further,   circles   are   subdivided   in   corporate   wards  amounting  to  a  total  of  160.  We  carry  out  localized  analysis  on  buildings,  road  centerlines  and  axial  lines  ward-­‐wise  and  identify  risk  prone  areas  in  each  ward.  The  GIS  data  was  provided  by  Greater  Hyderabad  Municipal   Corporation   (GHMC).   The   vector   data   layers   included   for   this   study   are   Corporate   Ward  Boundaries,  Building  Footprints,  Road  Polygons,  and  Road  Centerlines.  The  data   is  preprocessed   in   the  first  step.  Each  corporate  ward   is  analyzed  separately.   In  order  to  negate  the  edge  effects   in  any  form,  we   make   a   buffer   of   500   meters   around   each   corporate   ward   boundary   and   carry   out   analysis   on  buildings  and  road  segments  lying  within  the  newly  created  boundaries.  The  preprocessing  also  includes  conversion   of   road   polygon   shapes   to   polylines   and   further   simplifying   the   polylines   using   modified  Douglas-­‐Peucker  algorithm  (built-­‐in  QGIS)  with  a  tolerance  limit  of  0.02  for  angular  deviation  in  order  to  reduce  the  computation  overhead  and  hence  minimize  the  time  taken  to  generate  results.  

Proposed  Methodology  

 

   

Polylines  generated   in  preprocessing  are  used  as  visible   spaces  and   thus  utilized   to  generate  axial   line  map   for   each   ward   (Turner   et   al.,   2005   and   Varoudis,   2012).   The   integration   and   choice   values   are  calculated  for  R10  (Turner  et  al.,  2005  and  Varoudis,  2012)  because  roads  segments  with  relatively  higher  integration   and   choice   values   at   R10   are   assumed   to   hold  more   traffic   than   others   (Jones   and   Fanek,  

 Source  Layer  with  line  features  

Data  Preprocessing  

Calculate   reach   and   betweenness   on   buildings  layer  at  radius  –  500m  for  each  ward  separately  

Spatial   Join   for   space   syntax   based   building  characterization  

Network  dataset  generation  from  centerlines  

Axial  line  map  generation  from  Polylines  

Calculate  integration  and  choice  at  R10  for  each  ward  separately  

Impedance   offered   by   road   traffic   using  intersection  of  highest  choice  and  highest  betweenness  segments  

Vulnerability  Map  (At  Ward  Scale)  

Impedance   offered   by   built   environment  using  BiLISA  for  cluster  identification  

Target  Layer  with  point  features  

Page 5: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:5  

1997).  As  mentioned   in  the   limitations  section  above,  topological  relationships  alone  do  not  guarantee  identification  of  most  busiest   roads,   therefore,   apart   from   the   study  of  axial   line  network   connections  consisting   of   arcs   and   nodes,   this   analysis   also   features   buildings   that   are   used   as   the   spatial   units   of  analysis   for   all   measures.   The   buildings   can   be   weighted   according   to   their   particular   characteristics.  Voluminous,   populated,   buildings   can  have   a  proportionately   stronger   effect   on   analysis   observations,  thus  showing  dominance  of  specified  measure  to  weigh  them.  This  study  uses  base  areas  of  the  buildings  to  weigh  them.  The  buildings  polygons  are  represented  by  their  respective  centroid  point  features  for  all  centrality   analysis,   ensuring   that   each   centroid   lies   within   the   polygon   boundary   of   the   building   it  represents.   Network   dataset   are   generated   from   actual   road   centerlines   to   carry   out   urban   network  analysis  on  building  features.  This  study  assumes  500  meters  to  be  a  minimum  safe  distance  to  move  to  from  an   impact  area  and  an  emergency  response  service  to  be  available   in  a  neighborhood  with  equal  radius,   hence   reach   and   betweenness   values   are   calculated   for   a   radius   of   500   meters   (Sevtsuk   and  Mekonnen,  2012).    

In  order  to  study  results  generated  from  space  syntax  analysis  and  urban  network  analysis  together,  the  two  layers  -­‐  lines  from  space  syntax  analysis  and  points  from  urban  network  analysis  are  spatially  joined  on  the  basis  of  location  such  that  a  building  point  inherits  integration  and  choice  attributes  of  the  axial  line   closest   to   it.   This   helps   in   characterizing   buildings   based   on   space   syntax   parameters.   This   study  assumes  shortest  paths  are  the  attractors  for  the  natural  movements  of  pedestrians  as  well  as  vehicles.  However,  the  two  analyses  hint  at  different  paths  being  chosen  as  space  syntax  suggests  more  integrated  and   topologically   shorter  paths   are  highly  preferred  whereas   spatial   network   theory   suggests   shortest  paths   in  terms  of  metric  distances  are  the  busiest  ones.  The  next  step   in  this  study   is  to  extract  out  all  such  paths  that  overlap  in  terms  of  being  accessed  most  for  R10  space  syntax  analysis  as  well  as  for  500  meters  urban  network  analysis.  The  intersection  of  highest  values  of  choice  and  betweenness  serve  the  purpose.  The  two  values  are  normalized  and  then  interpolated  together,  maximum  of  which  signifies  the  most  risk  prone  roads  in  terms  of  impedance  offered  to  evacuation  by  day  traffic.  Next,  the  impedance  offered  by  built  environment   is  governed  by  high  density  and  high  reach  of  buildings,  with  significantly  lower  integration  values.  An  emergency  response  service  has  to  operate  at  speeds  largely  deviated  and  significantly   lower   as   compared   with   maximum   possible   speeds   as   there   are   turns   for   very   short  distances   travelled.   The   three   attributes   that   come   into   picture   to   identify   such   risk   prone   zones   are  density,  reach,  and  integration  values.  The  clusters  of  all  such  regions  are  extracted  using  bivariate  LISA  (local  indicators  of  spatial  autocorrelation)  (Anselin,  1995  and  Anselin  et  al.,  2002).  The  weight  matrix  for  cluster   identification  through  LISA  is  prepared  by  k-­‐nearest  neighbor  method  and  value  of  k   is  taken  to  be  10.  

4.  Literature  

Space  Syntax  (Hillier  and  Hanson,  1984)  In   pace   syntax   analysis,   each  unit   is   called   an   axial   line   that   can  be  defined   as   the   longest   line  drawn  through  an  arbitrary  point  in  the  spatial  configuration.  The  close  accessibility  notion  can  be  detailed  out  through  a  depth  wise   connection  analysis   using  mean-­‐depth  analysis,  which   is   the   average  number  of  units  required  to  cross  from  one  unit  to  the  other.      

𝐷 =∑𝑑. 𝑛𝑘 − 1

 Where,  D  =  mean  depth  d  =  depth  n  =  number  of  unit  spaces  at  a  specific  depth    k  =  total  unit  spaces  that  comprise  the  system    

Page 6: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:6  

The  measure  of  mean  depth  is  a  relative  as  to  how  a  particular  unit  is  located  in  the  system;  hence,  the  scale  of  symmetricity   is  defined  with   lowest  and  highest  measures  of  mean  depth  which  are  1  and  k/2  respectively,  where  k  is  the  total  number  of  unit  spaces  of  the  system.      

𝑅𝐴 =2 𝐷 − 1𝑘 − 2

 

Where,  RA  =  Relative  Asymmetry  D  =  mean  depth  k  =  total  unit  spaces  that  comprise  the  system    The   relative   asymmetries   of   two   different   compositions   cannot   be   compared   as   they   are   made   of  unequal   number   of   units.   Therefore,   real   relative   asymmetry   of   a   unit   space   is   the   ratio   between   its  relative  asymmetry  and  a  factor,  commonly  expressed  as  Dk  factor  that  distinguishes  the  systems  based  on  their  sizes.    

𝐷𝑘 =2 𝑘 𝑙𝑜𝑔2

𝑘 + 23 − 1 + 1

𝑘 − 1 𝑘 − 2  

And,    

𝑅𝑅𝐴 =𝑅𝐴𝐷𝑘

 Where,  RA  =  Relative  Asymmetry    RRA  =  Real  Relative  Asymmetry    The  integration  of  a  unit  space  is  reciprocal  of  RRA,  and  it  describes  how  closely  (or  distantly)  the  unit  is  topologically  accessible  from  all  other  units  within  a  given  system  addressing  its  symmetricity  and  size.    Choice  is  a  dynamic  measure  of  the  flow  through  a  space.  A  space  has  a  strong  choice  value  when  many  of  the  shortest  paths,  connecting  all  spaces  to  all  spaces  of  a  system,  passes  through  it.    Urban  Network  Analysis  (Sevtsuk,  2010  and  Sevtsuk  and  Mekonnen,  2012)  Unlike  space  syntax  theories,  urban  network  analysis  depends  on  an  accurate  consideration  of  distance  and  angularity  between  places.    The  reach  measure  calculates  the  number  of  buildings  in  surroundings  of  each  building  reaches  within  a  given  search  radius  on  the  network  such  that  the  reached  buildings  are  at  a  shortest  path  distance  of  at  most  the  given  search  radius.  It  is  defined  as  follows:    

𝑅𝑟 𝑖 = | 𝑗Є  𝐺 − 𝑖 :𝑑 𝑖, 𝑗 ≤ 𝑟 |  Where,  

Rr[i]  =  reach  of  a  building  ‘i’  within  search  radius  ‘r’  d  [i,j]  =  Shortest  path    distance    between    nodes  ‘i’  and    ‘j’  in  graph  G      If  the  nodes  are  weighted,  then  reach  is  defined  as  follows:    

𝑅𝑟 𝑖 =   𝑊 𝑗!  Є  !! ! ,! !,! !!

 

 

Page 7: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:7  

Where,  

Rr[i]  =  reach  of  a  building  ‘i’  within  search  radius  ‘r’  W[j]  =  weight  of  node    The  betweenness  of    a    building    is    defined    as    the    fraction    of    shortest    paths    between    pairs    of  other  buildings  in  the  network  that  pass  by  building    (Freeman,  1977).  The  betweenness  measure  is  defined  as  follows:      

𝐵𝑟 𝑖 =  𝑛𝑗𝑘 𝑖  𝑛𝑗𝑘

𝑊 𝑗  !,!  Є  !! ! ,! !,! !!

 

Where,  

Br[i]  =  betweenness  of  a  building  ‘i’  within  search  radius  ‘r’  njk  [i]  =  number  of  shortest  paths  from  ‘j’  to  ‘k’  that    pass    by  ‘i’  

njk  =  total  number  of  shortest  paths  from  ‘j’  to  ‘k’  

 Bivariate  Moran’s  I  and  BiLISA  (Anselin,  1995  and  Anselin  et  al.,  2002)  The  global  bivariate  Moran’s   I   statistic  calculates  spatial   interdependency  of   two  variables  xk  and  xl   (in  

this  study  reach  and  integration  at  R10)  in  a  same  location.  The  equation  for  autocorrelation  is  given  as  follows:    

𝐼𝑘 𝑙 =𝑧𝑘𝑤𝑧𝑙𝑛

 

Where,  n  =  Number  of  observations  w  =  Row-­‐standardized  spatial  weight  matrix    𝑧𝑘 = 𝑥𝑘 − 𝑥𝑘   /𝜎𝑘      𝑧𝑙 = 𝑥𝑙 − 𝑥𝑙 /𝜎𝑙    The  weight  matrix  defines   the  neighbor   set   for  each  observation  with  non-­‐zero  elements   for  neighbor  and  zero  for  the  others.  The  global  Moran’s  I  fails  to  give  any  concrete  information  for  the  existence  of  clusters  i.e.,  occurrence  of  localized  groups  showing  similar  characteristic  properties.  Local  Indicators  of  Spatial   Association   (LISA)   helps   to   identify   the   type   of   spatial   correlation   and   provides   a   measure   of  association  for  each  spatial  unit.  The  bivariate  LISA  can  be  defined  as  follows:    

𝐼!"! = 𝑧!!∑𝑤!"𝑧!!  

Where,  𝐼!"!   =   Degree   of   linear   association   (positive   or   negative)   between   the   values   for   variable   xk   at   a   given  

location  ‘i’  and  the  average  of  variable  xl  at  neighboring  location  such  as  ‘j’s.    

5.  Results  and  Discussions    

Typical   Indian   cities   have   arrangements   that   are   highly   unstructured,   and   one   can   find   large   diversity  within  short  metric  distances.  Hyderabad  being  no  exception,  has  certain  areas  where  no  grid  like  street  structure  is  observed,  few  others  where  grids  are  very  patchy  and  scattered.  There  are  very  few  wards  

Page 8: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:8  

out   of   the   existing   160  where   entire  ward   is   composed  with   grid   like   structure.  Maximum  number   of  wards  fall  in  the  category  where  partial  grid  –  like  structure  is  observed,  grids  are  rather  patchy.  Majority  of  wards  in  old  city  do  not  have  any  grids  at  all.  It  is  therefore  very  difficult  to  generalize  outcomes  with  study  of  very  few  wards;  each  ward  has  to  be  studied  independently  to  find  risk  prone  areas.  To  display  a  glimpse   of   results,   we   have   chosen   4   structurally   different   wards,   such   that   all   the   three   kinds   of  structural  arrangements  (no  grid,  partial  grid,  no  grid)  mentioned  above  are  dealt  with,  one  forming  the  urban  core  of  the  old  city,  with  very  low  integration  values  for  R10,  two  with  patchy  and  scattered  grid  like  street  networks  with  relatively  higher  integration  for  R10  and  last  one  being  newest  of  all  wards  with  entire  network  constructed  in  form  of  grids  with  very  high  integration  values  for  R10.  

Ward  ID  

Mean  Area  (in  square  meters)  

Mean  Integration  R10  (Axial  Lines)  

Mean  Integration  R10  (Buildings)  

Mean  Choice  R10  

Mean  Reach  500  m  

Mean  Betweenness  500m  

43   98   1.102   1.28   6745   93184   2846866  

67   58   1.051   1.17   13103   40898   2025220  

82   134   1.210   1.30   5209   30223   829135  

127   126   1.322   1.51   13117   20020   499776  

Table  1:  Mean  of  Area  of  Buildings,  Integration  R10  for  axial  lines,  Choice  R10,  Reach  500m,  Betweenness  500m  for  spatially  joined  layer  

 Table   1   gives   the   mean   of   calculated   values   for   chosen   wards.   These   values   do   not   identify   the  vulnerable  areas  specifically  but  give  an  overall  picture  of  the  structure  and  arrangement  of  each  ward.  Mean  area  of  buildings  for  ward  43  is  98  sq.  m.  and  exceptional  high  mean  reach  and  mean  betweenness  values  suggest  that  buildings  with  large  areas  are  closely  packed  and  road  segments  in  terms  of  shortest  metric  distances  between  any  two  buildings  spaced  at  a  maximum  distance  of  500  m  pass  through  them.  A  similar  pattern  can  be  observed  for  poorly  integrated  ward  67  where  mean  area  of  buildings  is  58  sq.  m.   which   is   significantly   lower   as   compared   with   other   wards   but   high   mean   reach   and   high   mean  betweenness  values  suggest  ward  buildings  to  be  closely  packed  and  roads  with  highest  betweenness  to  be  passing  close  to   largest  buildings  of  the  ward.  A  grid   like  symmetry  has   large   impact,   this   is  evident  from  the  fact  that  mean  areas  of  buildings  of  ward  82  and  127  are  134  sq.  m.  and  126  sq.  m.  respectively  but   higher   mean   integration   value   and   relatively   lower   mean   reach   and   mean   betweenness   values  suggest  even  distributions  and  significantly  high  accessibility  which  makes  them  less  vulnerable.  

Figure  1   shows   the   integration  map  of   the   four  wards  mentioned,  ward  67  has  average   integration  of  1.051  and  is  poorly  accessible  locally,  wards  43  and  82  have  relatively  higher  average  integration  values  with   1.102   and   1.210   respectively,   and   ward   127   has   very   high   average   integration   of   1.322.   An  interesting   observation,   when   the   axial   line   layer   is   spatially   joined   with   buildings   layer,   the   mean  integration  of  wards  increase,  as  that  of  ward  43  goes  to  1.28,  for  ward  67  it  goes  to  1.17,  for  ward  82  it  raises  to  1.30,  and  for  ward  127  it  increases  to  1.51.  This  observation  conclusively  shows  that  roads  with  higher   integration  also  have   larger  number  of  buildings  across   them  as  compared   to   lower   integration  roads.  We  shall  later  see  the  impact  of  grids  like  network  on  how  the  traffic  could  be  managed  efficiently  in  the  event  of  a  disaster.  

With  a  symmetric  grid  like  structure,  all  axial  lines  have  nearly  same  choice  value  for  R10  as  it  is  clearly  observable   in   Figure   2,  whereas   in   a   non-­‐grid   environment,   preference   of   few   streets   to   be   taken   by  vehicles  or  pedestrians  is  higher  than  other  in  terms  of  topologically  shortest  distance.    

Figure  3  and  4  respectively  display  the  reach  and  betweenness  calculated  for  buildings  for  a  radius  of  500  meters.  Reach  is  analogous  to  density  map  shown  in  Figure  5.  However  the  differences  arise  due  to  the  weighing  of   reach  with  respect   to  base  areas  of   the  buildings,  hence  relatively   less  dense  areas  having  

Page 9: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:9  

significantly  larger  buildings  in  close  proximity  would  have  proportionately  larger  reach  values  as  seen  in  case   of   wards   67,   82   and   127   with   patches   of   high   reach.   Figure   6   shows   BiLISA   cluster   map   that  identifies  buildings  with  lower  integration  and  higher  reach  which  are  most  risk  prone,  they  are  displayed  with   Low-­‐High   label.   The   other   labels   High-­‐High   (high   integration   and   high   choice),   High-­‐Low   (high  integration   and   low   choice)   and   Low-­‐Low   (low   integration   and   low   choice)   are   in   decreasing   order   of  impedance  offered  to  evacuation.  Figure  7,  8,  9  and  10  are  conditional  maps  (for  wards  43,  67,  82  and  127  respectively)  with  integration  values  on  X-­‐axis  and  betweenness  values  on  Y-­‐axis  with  choice  as  the  theme  of  the  map.  The  labels  represent  quartile  ranges  based  on  25th  percentile,  50th  percentile  and  75th  percentile.   The   upper   outlier   in   top   right  map   (enclosed   in   red   cubical   box),   for   each  ward,   gives   the  intersection   of   buildings   occurring   on   roads   with   both   high   choice   and   high   betweenness   which   is  supposed  to  cause  maximum  hindrance  to  evacuation.    

 

 

   

Page 10: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:10  

 

     

Page 11: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:11  

   

Page 12: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:12  

   In   a   grid   like   network,   since   all   the   segments   have   almost   equal   choice   and   betweenness   values,  therefore  the  identified  roads  that  are  assumed  to  carry  highest   load  of  traffic  during  the  day  time  are  parallel  to  each  other,  this  denominates  all  such  wards  (or  areas  in  wards)  to  be  safe  as  there  are  equally  comfortable  alternate  passages,  with  similar  attractors,  available  for  the  egress,  as  in  the  case  of  ward  82  and   127   (Figure   9   and   10   respectively).   Hence   a   grid   like   network   is   less   vulnerable   in   terms   of  impedance  offered  by  road  traffic.    In  a  distorted  grid  and  non-­‐grid  networks,  the  impedance  offered  by  buildings  would  be  highest  as  they  are  always  poorly  connected  and  swift  vehicular  movement  is  always  hampered,  as  in  the  case  of  43  and  67  (Figure  6),  as  we  can  observe  large  and  frequent  clusters  of  high  density,  high  reach  and  low  integration.    

6.  Conclusions  and  Future  Work  

Through  this  comprehensive  study,  we  identified  all  such  areas  in  the  city  where  a  disastrous  event  can  cause   panic   due   to   difficulties   in   swift   evacuation   process   and   impact   of   disaster   can   be   higher.   This  study   thus   generates   insights   for   interaction   of   neighborhoods   in   order   to   identify   areas   with   high  vulnerability.        

We  conclude  that  symmetry  plays  a  major  role  in  traffic  behavior  and  interaction  of  neighborhoods,  the  parts  of  city  which  are  oriented  in  a  grid  like  structure  have  parallel  and  equal   length  (both  in  terms  of  choice   R10   and   betweenness   500   m)   road   segments   for   which,   the   results   convey   that   impedance  offered  by   traffic  would  be  maximum,   this   fact   suggests   that   such  areas   are   safe  enough  as   there  are  alternate   paths   available   for   rescue   operation   without   a   significant   change   in   topological   and   metric  distances.   Also,   grid   like   structures   have   high   integration   values   which   permits   a   rescue   service   like  ambulance  to  operate  at  high  speeds,  whereas  for  non  –  grid  like  structures,   low  integration  can  cause  slower  access   rates.  The  planned  grid   like  wards  also  have  very  small   clusters   (in  number  as  well  as   in  size)  of  high  density,  high  reach  (500  m)  of  buildings  and  low  integration  (R10),  this  makes  them  safe  in  terms   of   impedance   offered   by   built   environment.   However,   both   of   the   above   discussed   factors   are  exactly   contrary   in   case   of   unplanned   wards   where   grid   –   like   structure   is   either   minimal   or   absent  totally.  Deviating   from  highest  preferred   roads   in   terms  of   choice  and  betweenness   significantly  alters  the  routes  such  that  both  topological  and  metric  distances  increase  and  thus  the  evacuation  time  as  well.  

Page 13: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:13  

Non  grid  –  like  wards  also  have  large  identified  clusters  with  high  density,  high  reach  (500  m)  of  buildings  and  low  integration  (R10)  simultaneously  which  makes  them  more  vulnerable  as  compared  to  others.  

It  is  also  realized  through  this  study  that  the  results  obtained  by  space  syntax  methodologies  and  urban  network   analysis   have   slight   deviations   from   one   another   as   one   runs   on   principle   of   topological  distances  whereas  other  is  governed  by  metric  distances.  Both  are  equally  important  they  concurrently  decide  the  route  that  a  trip  maker  follows.  Apart  from  this,  buildings  form  an  important  part  of  network  and  one  can’t  depend  completely  on  node  –  edge  structure  for  traffic  predictions.  The  study  supports  the  claim  that  more  voluminous  and  larger  number  of  buildings  appear  on  highly  accessible  roads.  

We  have  efficiently  been  able  to  generate  maps  for  individual  municipal  corporate  wards  such  that  one  map   displays   all   buildings   across   roads  which   are   supposed   to   carry  maximum   traffic   load   during   the  daytime  and  other  shows  buildings  present  in  dense  construction  zones  with  relatively  poor  integration.  Both  of   these  cause  hindrance   to  easy  evacuation  process.  However,  we  have   identified  differences   in  occurrence  patterns  for  such  regions  in  grid  like  set-­‐ups  as  opposed  to  non  –  grid  arrangements.  Traffic  densities   are   not   constant   throughout   the   daytime;   hence   a   limitation   of   this   study   is   that   it   doesn’t  consider  the  dynamic  nature  of  changing  crowd  on  the  roads.  This  can  be  done  by  weighing  the  results  with  respect  to  actual  densities  of  traffic  and  identifying  the  peak  times  of  traffic  in  individual  areas.  

Further  works   to   this   study  may   include   identifying   scales  of   symmetry  between  space   syntax  analysis  and  urban  network  analysis,  as  in  this  study,  chosen  topological  distance  and  metric  distance  of  10  turns  and  500  meters  respectively  distance  helps  in  identifying  segments  which  have  both  high  reach  and  high  betweenness   values,   however   that  might  not   the   case   always,   changing   scales   (say  5   turns   and  1   km)  may  actually  have  intersection  set  to  be  almost  empty.  In  this,  study  10  turns  and  500  m  fit  perfectly  but  further  study  can  be  performed  to  identify  scales  of  symmetries  between  the  two  theories.  

Another  future  work  to  this  study  can  be  identification  of  safe  spots  in  the  proximity  of  all  identified  risk  prone  areas  where  emergency  rescue  systems  could  be   installed  or  people  could  be  migrated  to  those  places   if   they  happen  to  be   large  open  spaces.  As  we  have   identified  maximum  obstruction  paths,   this  study  can  also  be  extended  to  locating  minimum  hindrance  paths  which  can  be  used  for  navigating  the  crowds  from  impact  area  to  identified  safe  areas.        

Our   approach   to   identify   risk   prone   areas   can   act   as   decision   support   system   as   where   to   deploy  emergency  response  services,  where  to  construct  new  roads,  where  to  alter  roads  by  widening  them  and  areas  where  no  more  construction  shall  be  possible.    

 

References  

Alper,  U.   ¨Ulken,  G.  and  Edgü,  E.   (2005),   ‘A  Space  Syntax  Model  based   in  evacuation  of  Hospitals’.   In:  van  Nes,  A.  (ed.),  Proceedings  of  the  Fifth  International  Space  Syntax  Symposium,  Delft:  University  of  Technology,  Vol.  2,  p.  161-­‐173.  

Anselin,  L.  (1995).  ‘Local  Indicators  of  Spatial  Association—LISA’.  In:  Geographical  Analysis,  Vol.  27,  p.93–115.  Anselin,   L.,   Ibnu,   S.   and   Youngihn,   K.   (2006),   ‘GeoDa:   An   Introduction   to   Spatial   Data   Analysis’.   In:   Geographical  

Analysis,  Vol.  38  (1),  p.5-­‐22  Choi,  J.  Kim,  M.  and  Choi,  H.    (2007),  ‘Evacuation  efficiency  evaluation  model  based  on  euclidean  distance  with  visual  

depth’.  In:  Kubat,  A.  S.,  Ertekin,  Ö.,  Güney,  Y.  I.  and  Eyübolou,  E.  (eds.),  Proceedings  of  the  Sixth  International  Space  Syntax  Symposium,  Istanbul:  ITU  Faculty  of  Architecture  

Church,  R.  L.  and  Cova  T.  J.  (2000),  ‘Mapping  evacuation  risk  on  transportation  networks  using  a  spatial  optimization  model’.  In:  Transportation  Research  Part  C,  Vol.  8(1-­‐6),  p.321-­‐336.  

Page 14: Exploringtheimpactofroadtrafficimpedanceandbuilt ... · SSS10!Proceedings!of!the10th!International!SpaceSyntax!Symposium! RChaturvedi!&!K!SRajan! Exploring!the!impact!of!road!traffic!impedance!and!built!environment!for

SSS10  Proceedings  of  the  10th  International  Space  Syntax  Symposium    

 

R  Chaturvedi  &  K  S  Rajan  Exploring  the  impact  of  road  traffic  impedance  and  built  environment  for  vulnerability  mapping  of  evacuation  areas  –  Case  study  of  Hyderabad  city    

64:14  

Church,  R.  L.  and  Sexton  R.  M.   (2002),   ‘Modeling  small  area  evacuation:  Can  existing   transportation   infrastructure  impede   public   safety?’   California   Department   of   Transportation,   Testbed   Center   for   Interoperability   Task  Order  3021  Final  Report.  

Cova,   T.   J.,   and   Church,   R.L.   (1997),   ‘Modeling   community   evacuation   vulnerability   using   GIS’.   In:   International  Journal  of  Geographic  Information  Science,  Vol.  11,  p.763-­‐784.  

Fakhrurrazi  and  van  Nes.  A,  (2012),  ‘Space  and  Panic.  The  application  of  Space  Syntax  to  understand  the  relationship  between  mortality  rates  and  spatial  configuration  in  Banda  Aceh  during  the  tsunami  2004’.     In  Greene,  M.,  Reyes,  J.  and  Castro,  A.  (eds.),  Proceedings  of  the  Eighth  International  Space  Syntax  Symposium  Santiago  de  Chile:  PUC  

Firat,   S.   and   Kubat,   A.   S.   (2012),   ‘Syntactic   properties   of   evacuation   and   access   routes   in   earthquake   vulnerable  settlements’.   In  Greene,  M.,   Reyes,   J.   and   Castro,   A.   (eds.),   Proceedings   of   the   Eighth   International   Space  Syntax  Symposium  Santiago  de  Chile:  PUC  

Freeman,   L.   (1977),   ‘A   set   of  measures  of   centrality   based  on  betweenness’.  In:   Sociometry  Vol.   40,   p.35–41,  doi:  10.2307/3033543.  

 Fruin,  J.  J.  (1993),  ‘The  Causes  and  Prevention  of  Crowd  Disasters’.  In:  First  International  Conference  on  Engineering  for  Crowd  Safety,  London,  England,  March  1993    

Glickman,  T.  S.  (1986),  ‘A  methodology  for  estimating  time-­‐of-­‐day  variations  in  the  size  of  a  population  exposed  to  risk’.  In:  Risk  Analysis,  Vol.  6,  p.317-­‐324.  

Hillier,  B.  and  Hanson,  J.  (1984),  The  Social  logic  of  space,  Cambridge  University  Press,  Cambridge.  Hillier,  B.,  Penn,  A.,  Hanson,  J.,  Grajewski,  T.  and  Xu,  J.  (1993,)  ‘Natural  movement:  or,  configuration  and  attraction  in  

urban  pedestrian  movement’.  In:  Environment  and  Planning  B:  Planning  and  Design,  Vol.  20,  p.29  –  66  Hillier,   B.   (1996),   Space   is   the   Machine:   A   Configurational   Theory   of   Architecture,   Cambridge   University   Press,  

Cambridge  Hillier,  B.  (1999),   ‘The  hidden  geometry  of  deformed  grids:  or,  why  space  syntax  works,  when  it   looks  as  though  it  

shouldn't'’.  In:  Environment  and  Planning  B:  Planning  and  Design,  Vol.  26,  p.169  –  191  Hobeika,   A.   G.   and   Changkyun   (1998),   ‘Comparison   of   traffic   assignments   in   evacuation   modeling’.   In:   IEEE  

Transactions  on  Engineering  Management,  Vol.  45(2),  p.192-­‐198.  Hobeika,  A.G.  and  Jamei,  B.  (1985),  ‘MASSVAC:  a  model  for  calculating  evacuation  times  under  natural  disasters’.  In:  

Emergency  Planning,  Simulations  Series,  Vol.  15,  p.23-­‐28.  Jones,  M.  A.  and  Fanek,  M.  F.  (1997),  ‘Crime  in  the  Urban  Environment’.  In:  Major,  M.  D.  and  Amorim,  L.  and  Dufaux,  

D.  (eds.),  Proceedings  of  First  International  Space  Syntax  Symposium,  London:  University  College  London,  pp.  25.1  -­‐  25.11.  

Ratti,  C.   (2004),   ‘Urban  texture  and  space  syntax:  some  inconsistencies’.   In:  Environment  and  Planning  B:  Planning  and  Design,  Vol.  31,  DOI:10.1068/b3019  

Sevtsuk,   A.   (2010),   ‘Path   and  Place:  A   Study  of  Urban  Geometry   and  Retail   Activity   in   Cambridge   and   Somerville,  MA’.  In:  PhD  Dissertation.  Cambridge:  MIT.  

Sevtsuk,  A.  and  Mekonnen,  M.   (2012),   ‘Urban  network  analysis:  a  new  toolbox  for  measuring  city   form   in  ArcGIS’.  In:  Proceedings   of   the   2012   Symposium   on   Simulation   for   Architecture   and   Urban   Design  (SimAUD   '12).  Society  for  Computer  Simulation  International,  San  Diego,  CA,  USA,  Article  18,  10  pages.  

Southworth,   F.   (1991),   ‘Regional   evacuation   modeling:   a   state-­‐of-­‐the-­‐art   review’.   Oak   Ridge   National   Laboratory  ORNL-­‐11740,  Tennessee.  

Stern,  E.  (1988),   ‘Evacuation  intentions  of  parents   in  an  urban  radiological  emergency’.   In:  Urban  Studies,  Vol.    26,  p.191-­‐198.  

Turner,  A.,  Penn,  A.,  Hillier,  B.   (2005),   ‘An  algorithmic  definition  of   the  axial  map’.   In:  Environment  and  Planning  B:  Planning  and  Design,  Vol.    32(3),  p.  425  –  444.  

Varoudis,   T.   (2012),   'depthmapX   Multi-­‐Platform   Spatial   Network   Analysis   Software’,   Version   0.30  OpenSource,  http://varoudis.github.io/depthmapX/