exhaus ng energy and ash from small, aneutronic, magne c fusion

19
Exhaus’ng energy and ash from small, aneutronic, magne’c fusion reactors S.A. Cohen, M. ChuCheong, A. Creely, A. Glasser, M. Khodak, E. Meier, C. Myers, T. Rognlien, A. Se<ow and D. Welch ICC/EPR Workshop, February 2013 DT burning: one neutral fusion product, n, exhausts 80% of power uniformly in 10 7 s. D 3 He burning: H and α fusion products are charged and confined. Will the power and parTcle control (PPC) problems – ash accumulaTon and divertor power load worsen with aneutronic fuels? 1

Upload: others

Post on 11-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exhaus ng energy and ash from small, aneutronic, magne c fusion

Exhaus'ng  energy  and  ash  from  small,  aneutronic,  magne'c  fusion  reactors  

S.A.  Cohen,  M.  Chu-­‐Cheong,  A.  Creely,  A.  Glasser,  M.  Khodak,  E.  Meier,  C.  Myers,  T.  Rognlien,  A.  Se<ow  and  D.  Welch  

ICC/EPR  Workshop,  February  2013  

D-­‐T  burning:  one  neutral  fusion  product,  n,    exhausts  80%  of  power  uniformly  in    10-­‐7  s.  

D-­‐3He  burning:  H  and  α  fusion  products    are  charged  and  confined.    

Will  the  power  and  parTcle  control  (PPC)problems  –  ash  accumulaTon  and  divertor  power  load  -­‐  worsen  with  aneutronic  fuels?  

1  

Page 2: Exhaus ng energy and ash from small, aneutronic, magne c fusion

FRC  recipe  for  solving  PPC  problems  in  aneutronic  fusion  

In  a  small  (30-­‐cm  radius)  ceramic  magneTc  pot    

Add  •  10-­‐5  Mole          D/s                  •  10-­‐5  Mole  3He/s          Bake  at  high  temperature  (80  keV).  Vigorously  sTr  mixture  (MHz).  While  cooking,  frost  with                            0.01  Mole/s    hydrogen/helium.  Enjoy  1-­‐20  MW  fusion  power    

2  

Page 3: Exhaus ng energy and ash from small, aneutronic, magne c fusion

1.  The  SOL  of  a  small  FRC  will  be  cold  because  of  open-­‐field-­‐line  losses.  

2.  Make  the  SOL  broad  and  dense  by  supplying  gas  at  one  end  and  exhausTng  it  at  the  other.  

3.  Because  the  FRC  is  small,  the  orbits  of  fusion  products  (FPs)  will  pass  through  the  SOL.  FPs  will  slow  down  there,  by  modified  classical  processes,  and  stop  there.  This  is  non-­‐local  heat  and  parTcle  transport.  

4.  Power  losses  from  the  plasma  core  include  radiaTon  to  the  walls  and  heat  deposited  in  the  SOL,  the  lacer  transported  to  divertor  chambers.  

5.  Maintain  the  core  plasma  temperature  by  RF  heaTng.  

The  logic:  Use  the  FRC’s  SOL*  

3  *Scrape-­‐off  layer  

Page 4: Exhaus ng energy and ash from small, aneutronic, magne c fusion

1-­‐20  MW  D-­‐3He  FRC  reactor      

Embodiment  of  logic  

Benefits  of  being  small  •  Surface-­‐to-­‐volume  raTo    ~  1/r    – Maximum  P/A  ~  2  MW/m2    

•  FPs  pass  through  SOL  •  Stability  is  easier  

Myers  

Variable    aperture    size  

4  

Page 5: Exhaus ng energy and ash from small, aneutronic, magne c fusion

SOL  parameters:  1D  UEDGE  simulaTons  

1.  The  SOL  of  a  small  FRC  will  be  cold    

Chu-­‐Cheong,  Meier,  Rognlien  

Gas  box  and  gas  feed  Electron  heaTng                  region  

2  m  

Absorbing  boundary  

For  Pfusion  =  20  MW,            Prad  =  0,                      and  BNozzle  =  2  BFRC                                            Maximum  Pz/A  =  100  MW/m2    

Plasma  0.2  m  

5  

Page 6: Exhaus ng energy and ash from small, aneutronic, magne c fusion

1.  The  SOL  of  a  small  FRC  will  be  cold    

Chu-­‐Cheong,  Meier,  Rognlien  6  

Page 7: Exhaus ng energy and ash from small, aneutronic, magne c fusion

1.  Power  flow  in  a  cold  SOL  (10  MW  case)  

7  

Page 8: Exhaus ng energy and ash from small, aneutronic, magne c fusion

1.  Oumlow  through  the  absorbing  boundary    must  be  consistent  with  the  gas  input  LSP  simulaTons  of  oumlow  from  open  end  of  FRC  SOL  

Se<ow,  Khodak,  Welch  

Higher  density    simulaTons    in  progress.  

8  

Page 9: Exhaus ng energy and ash from small, aneutronic, magne c fusion

2.  Make  the  SOL  broad  and  dense  by    supplying  gas  at  one  end  

At  high  gas-­‐box  neutral  pressure,  the  plasma  demagneTzes  and  spreads  radially.  RadiaTon  and  charge  exchange  hit  its  walls.          The  gas-­‐box  aperture  can  be  opened  to  create  a  broader  SOL.    Mass  augmentaTon  is  essenTal  for  spacecran  propulsion  applicaTons  and  heats  exhaust  heat  from  the  FRC’s  core.  

9  

Page 10: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3a.  Because  the  FRC  is  small,  the  FP  orbits                      will  pass  through  the  SOL.    

Fusion ! products! s !

3He ! 7.48!T! 3.39!p! 3.38!

4He! 3.14!

Glasser  

Where  we    want  to  be  

10  

Page 11: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3b.  FPs  will  slow  down  &  stop  in  the  SOL  

Classical  slowing  down  (STx)  

In  FRC  SOL  Wcrit  ~  1  keV  ts  ~  4  x  10-­‐4  s  τ  ~  3.2  ts  ~  1.3  ms  

BUT  11  

Page 12: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3b.  FPs  will  slow  down  &  stop  in  the  SOL  

CondiTons  in  the  FRC  SOL  differ  from  those  ordinarily  used  to  calculate  dW/dx    

vFP  ⊥ B  ρe  <  λD                                      

(Ωce/ωpe  >1  )  vFP  >  vth,e  

These  are  expected  to  reduce  the  slowing-­‐down  rate,    thus  the  non-­‐local  heaTng  of  the  SOL  plasma.  

12  

Page 13: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3b.  FPs  will  slow  down  &  stop  in  the  SOL  

LSP  simulaTons  in              2-­‐  and  3-­‐D  14.7  MeV  H+  

Background  protons  

Electron  cloud  trails  H+  

PotenTal  gradient    slows  down  H+  

SimulaTon  Technique:  Explicit  EM  (2D)  Implicit  EM  (3D)    Periodic  box    3λD  each  side,    External  B  field      

Creely:  2-­‐D   13  

Page 14: Exhaus ng energy and ash from small, aneutronic, magne c fusion

–  ArTficial  ion,  p+8    –  v  =  0.01c  (47  keV)  –  V  (θ  =26°)    to  B  –  np=1014  cm-­‐3    –  Te  =  100  eV    –  Bx  =  0,  10  T  –  λD  =  7.4  µm    –  re  =  2.4  µm  –  24  eV/ns  (Li/

Petrasso:  standard)  

3b.  FPs  will  slow  down  in  the  SOL  

24  eV/ns  

Welch:  3D  

4  days/ns  with  32  processors  Longer  simulaTons  in  progress  

Creely:  2-­‐D,  14.7  MeV  p+10  Slowing  down    Tme  (ms)  Energy  conserv  (%)  Run  Tme  (ms)  

3  eV/ns  

14  

Page 15: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3b.  FPs  will  slow  down  &  stop  in  the  SOL  

Chu-­‐Cheong  

150  keV  

15  

Page 16: Exhaus ng energy and ash from small, aneutronic, magne c fusion

3b.  Net  effect  on  τ

τ*FP  ~  8  x  10  x  τ ~  100  ms    

Decreased    Slowing-­‐down  rate  

FracTon  of  orbit    in  SOL  

16  

Page 17: Exhaus ng energy and ash from small, aneutronic, magne c fusion

B  on  separatrix  

Ripple  

Will  the  150  keV  FPs  thermalize  before  escaping?  

Myers  

The  PFRC  SOL  has  a  mirror-­‐machine-­‐like  geometry  

Full,  end-­‐to-­‐end,  kineTc  simulaTons  of  the  SOL  are  necessary.  

17  

Page 18: Exhaus ng energy and ash from small, aneutronic, magne c fusion

4.  SOL  heat  is  eventually  transported  to  divertor  chambers  

Field  expansion  in  a  divertor  can  readily  lower  the  peak  heat  flux  in  a  20  MW  reactor  to  <  2  MW/m2.  

!145-­‐ms  duraTon  PFRC-­‐2  discharge,  made  possible  by  Hi-­‐T  superconducTng  flux  conservers,  gas  puffing  and  odd  parity  RMF.  

Line-­‐averaged  electron  density  

15-­‐ms  gas  puff  

Current  PFRC-­‐2  device  OperaTng  at  15  kW  

20  ms/div  

Density  from  pre-­‐fill  

RMFo  heaTng  off  

18  

Page 19: Exhaus ng energy and ash from small, aneutronic, magne c fusion

Summary:  Using  the  SOL  well  •  Aneutronic  reacTons  can  greatly  alleviate  materials  problems  but  then  special  methods  are  needed  to  avoid  PPC  problems.  

•  Small  FRCs  can  reduce  PPC  problems.  •  There  is  NEW PHYSICS  in  small  FRCs  and  their  SOLs.  

 Non-­‐local  FRC  SOL  heaTng  by  FPs       Mass  augmentaTon  for  effecTve  SOL  cooling  and  control      Rapid  loss  of  fusion  products  to  the  SOL  avoids  ash  build  up.  

•  Control  of  the  SOL  can  provide  plasma  parameters  suitable  for                  Spacecran  propulsion      Materials  tesTng      Power  plant  

Acknowledgements:  This  work  was  supported,  in  part,  by  US  DOE  Contract  Number  DE-­‐AC02-­‐09CH11466.  We  thank  E.  Feibush,  C.  Brunkhorst  and  B.  Berlinger  for  technical  support.   19