evaluation of nonlinear seismic demands of high-rise rc

67
Evaluation of Nonlinear Seismic Demands of High-rise RC Shear Wall Buildings using the Simplified Analysis Procedures Fawad A. Najam st112966 Asian Institute of Technology (AIT), Thailand. Email: [email protected] Final Comprehensive Examination 9 th October 2017

Upload: others

Post on 13-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evaluation of Nonlinear Seismic Demands of High-rise RC

Evaluation of Nonlinear Seismic Demands of High-rise RC Shear Wall

Buildings using the Simplified Analysis Procedures

Fawad A. Najam

st112966

Asian Institute of Technology (AIT), Thailand.

Email: [email protected]

Final Comprehensive Examination

9th October 2017

Page 2: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 2

Future ground

shaking

Structure

Linear/Nonlinear Analysis Model

Characterization of Seismic

Ground Motions

Estimation of Linear/Nonlinear

Seismic Demands

β€’ Global-level Responses

β€’ Inter-story Responses

β€’ Component-level Responses

The Earthquake Problem

Seismic Waves

Soil

Epicenter

Hypocenter

(Focus)

Fault

AttenuationSeismic waves lengthen and diminish in strength

as they travel away from the ruptured fault.

Site ResponseGround motion can

be amplified by soil

Site

Seismic Waves

Epicenter

Hypocenter

(Focus)

Fault

Soil

Site

Site ResponseGround motion can

be amplified by soil

Attenuation

Page 3: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 3

… … … Simplified Estimation of Seismic Demands

Simplified Structural Models

Simplified Loading

Any combination of simplified approaches

Simplified Seismic Analysis

Procedures

Triangular

Modal Expansion

… … …

… … …

Simplifying the Problem

Page 4: Evaluation of Nonlinear Seismic Demands of High-rise RC

4

Determination of Nonlinear Seismic Demands

Seismic

Loading

Structural

Models

Detailed 3D

Nonlinear Model

Equivalent MDF

Model

Equivalent SDF

Model

Static Single Lateral

Load Vector

Static Multiple Lateral

Load Vectors

Ground Acceleration

Records

Relative Uncertainty

LowHigh

The NSPs

The Multi-mode

Pushover Analysis

Procedures

The Detailed

NLRHA Procedure

Analysis Procedures

Page 5: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 5

Study Objectives

β€’ Real case study buildings (20-, 33-,

and 44-story high)

β€’ Different types and levels of input

ground motions

Conception and theoretical formulation

Application and subsequent validation

Practicality, limitations and sources of uncertainty

β€’ Practical and convenient applicability

β€’ Future improvements

β€’ Modal Decomposition

β€’ Higher-mode Effects

Page 6: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 6

Basic Tool to Achieve Study Objectives – The UMRHA Procedure

β‰…+ +…

Mode 1Mode 2

Mode 3

+

A Detailed 3D Elastic

Structural Model

The Classical Modal

Analysis Procedure

The Uncoupled Modal Response

History Analysis (UMRHA)

Procedure

F

D

F

D

F

D

NLNL NL

A Detailed 3D Inelastic

Structural Model

β‰…

+ + …

Mode 1Mode 2

Mode 3

+

Page 7: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 7

Uncoupled Modal Response

History Analysis (UMRHA)

Three case study high-

rise buildings (20-, 33-,

and 44-story high)

Nonlinear Response History

Analysis (NLRHA)

Analysis Scheme to Achieve the Objectives

Four sets of ground

motions with different

levels and characteristics

Individual Modal Responses

Proposed Simplified Analysis

Procedures

Combined Response

Combined Response

Combined Response

Individual Modal Responses

Page 8: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 8

Case study Buildings

44-story

B3

33-story

B2

20-story

B1

β€’ Located in Bangkok, Thailand

β€’ Heights vary from 20 to 44 stories

β€’ RC slab-column frames carry gravity loads

β€’ RC walls & cores resist lateral loads

β€’ Masonry infill walls extensively used

β€’ Designed for wind loads, but not for seismic

effects

β€’ Possess irregular features commonly found

in typical tall buildings, e.g. podium and non-

symmetrical arrangement of RC walls, etc.

Page 9: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 9

Nonlinear Modeling of Case Study Buildings

MVLEM for RC Walls Lumped Fibers for RC Columns Masonry Infill Wall Model

Linear-elastic frame

element (shear

deformation excluded)

Fiber section

(concrete and

steel fibers)

Linear shear spring

Equivalent concrete strutsLevel m

Level m-1

Rigid Link

Concrete and

Steel fibers

Linear shear

spring

πΈπ‘œ πΈπ‘œ πΈπ‘œ

Stress

Strainνœ€π‘β€² νœ€π‘π‘’

𝑓𝑐′

𝑓𝑑

νœ€π‘‘

Mander Envelope

Perform 3D Envelope

Unloading

Reloading

πΈπ‘œ

Stress

Strainνœ€π‘¦ νœ€π‘’

𝑓𝑒

𝑓𝑦

νœ€π‘ β„Ž

Park Envelope

Perform 3D

π‘‘π‘πΈπ‘œ

π›ΌπΈπ‘œ

Concrete

Steel

Page 10: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

7.5%-damped

Mean Spectrum

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

2.5%-damped

Mean Spectrum

5%-damped

Mean Spectrum

7.5%-damped

Mean

Spectrum

5%-damped

Mean Spectrum

2.5%-damped

Mean Spectrum

7.5%-damped

Mean Spectrum

5%-damped

Mean Spectrum

2.5%-damped

Mean Spectrum

Set 2Set 1

Sp

ectr

al A

cce

lera

tio

n (

g)

Time Period (sec)

Sp

ectr

al A

cce

lera

tio

n (

g)

Time Period (sec)

Time Period (sec)

Time Period (sec)

7.5%-damped

Mean

Spectrum

5%-damped

Mean Spectrum

2.5%-damped

Mean Spectrum

5%-damped Target Response Spectrum

Mean of Matched Ground Motions

Individual Ground Motions

Set 4Set 3

Page 11: Evaluation of Nonlinear Seismic Demands of High-rise RC

Final Comprehensive Examination 11

Determination of Nonlinear Seismic Demands – Background

Page 12: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 12

Nonlinear Static Procedures

β€’ Several EL Procedures (Individual studies)

β€’ Capacity Spectrum Method (CSM) (ATC 40, FEMA 273, FEMA 356)

β€’ FEMA 440 Improved EL Procedure

Equivalent Linearization

β€’ Several expressions for displacement modification (Individual studies)

β€’ Displacement Coefficient Method (ATC 40, FEMA 273, FEMA 356, FEMA 440, ASCE 41-06, ASCE 41-13)

Displacement Modification

Full 3D Nonlinear

MDF Model

𝐹𝑛

𝐹1

.

.

.

Monotonic Pushover

Analysis Procedure

π‘₯π‘Ÿ

𝑉𝑏

Determination of

Pushover Curve

𝑉𝑏

π‘₯π‘Ÿ

Idealization of

Pushover Curve

𝐹

𝐷

An Equivalent

SDF System

The Concept of an β€œEquivalent SDF System”

Page 13: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 13

Capacity Spectrum Method (ATC 40, 1996)

Full 3D Nonlinear MDF Model

β€’ Determine the modal

properties πœ™1, 𝑇, Ξ“ and πΆπ‘š

𝐹𝑛

𝐹1

.

.

.

Monotonic Pushover Analysis

β€’ Monotonically push and get

the 𝑉𝑏1 vs. π‘₯1π‘Ÿ relationship

π‘₯1π‘Ÿ

𝑉𝑏1

𝑉𝑏1Determination of Responses

π‘₯1π‘Ÿ

β€’ Extract the responses from the pushover database at 𝛿𝑃

𝐹𝑛

𝐹1

.

.

.

𝛿𝑃

𝑉𝑏1𝛿𝑃

𝑉𝑏1

Conversion of Pushover Curve

to ADRS Format

π‘₯1π‘Ÿ

𝑆𝐴 =𝑉𝑏 π‘Š πΆπ‘š

𝑆𝐴

𝑆𝐷

𝑆𝐷 =𝑇2

4πœ‹2𝑆𝐴

𝑆𝐷 =π‘₯π‘Ÿ

Ξ“πœ™1π‘Ÿ

Determination of Performance

Point𝑆𝐴

𝑆𝐷

Performance Point

Demand Spectrum

Capacity Spectrum

β€’ The β€œDemand Spectrum” is the reduced

form of 5% damped spectrum

𝛿𝑃

Page 14: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 14

Displacement Coefficient Method (ATC 40, FEMA 273, FEMA 356)

𝛿𝑇 = 𝐢0𝐢1𝐢2𝐢3𝑆𝐴𝑇𝑒2

4πœ‹2𝑔

β€œEffective” periodFor converting spectral

to roof displacement

For converting elastic to

inelastic displacement

To account for the shape

of hysteresis loopsSpectral acceleration at 𝑇𝑒

Target Displacement

To account for dynamic

𝑃 βˆ’ Ξ” effects

Page 15: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 15

Improved NSPs – FEMA 440 (2005)

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Elastic-Perfectly Plastic (EPP)

Fo

rce

Displacement-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Stiffness-Degrading (SD)

Fo

rce

Displacement

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

Nonlinear Elastic (NE)

Fo

rce

Displacement

EPP SD

SSD NE

Strength and Stiffness-Degrading (SSD)

Fo

rce

Displacement

Page 16: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 16

Inelastic-to-elastic Displacement Ratios (IDRs) (FEMA 440, 2005)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3

𝑅𝑦 = 8

𝑅𝑦 = 6

𝑅𝑦 = 4

𝑅𝑦 = 3

𝑅𝑦 = 2

𝑅𝑦 = 1.5

𝐢1,𝐸𝑃𝑃 Site Class C – Mean of 20 Ground Motions

Two Basic Spectral Regions

𝐢1 is on average larger than 1

𝐢1 increases with decreasing 𝑇𝐢1 increases with increasing 𝑅𝑦

𝐢1 is approximately constant with changes in 𝑇𝐢1 doesn’t change much with changes in 𝑅𝑦𝐢1 is on average approximately equal to 1

𝑇 (sec)

Page 17: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 17

ASCE/SEI 41-13 (2013) Nonlinear Static Procedure

Full 3D Nonlinear MDF Model

β€’ Determine the modal

properties πœ™1, 𝑇, Ξ“ and πΆπ‘š

𝐹𝑛

𝐹1

.

.

.

Monotonic Pushover Analysis

β€’ Monotonically push and get

the 𝑉𝑏1 vs. π‘₯1π‘Ÿ relationship

π‘₯1π‘Ÿ

𝑉𝑏1

𝑉𝑏1

Idealization of Pushover Curve

π‘₯1π‘Ÿ

IdealizedActual

β€’ Idealized force-displacement

relationship.

β€’ Determine 𝐾𝑒, 𝑉𝑦 and 𝑅𝑦

Determination of Target

Displacement

β€’ Determine the effective time

period and coefficients

β€’ Target displacement

𝛿𝑇 = πΆπ‘œπΆ1𝐢2𝑆𝐴𝑇𝑒2

4πœ‹2𝑔

𝑇𝑒 = 𝑇𝑖𝐾𝑒𝐾𝑖

𝐢1 = 1 +𝑅𝑦 βˆ’ 1

π‘Žπ‘‡π‘’2

𝐢2 = 1 +1

800

𝑅𝑦 βˆ’ 1

𝑇𝑒

2

𝑉𝑏1Determination of Responses

π‘₯1π‘Ÿ

β€’ Extract the responses from the pushover database at 𝛿𝑇

𝐹𝑛

𝐹1

.

.

.

𝛿𝑇

𝑉𝑏1𝛿𝑇

Page 18: Evaluation of Nonlinear Seismic Demands of High-rise RC

18

Pushover Analysis Procedures

First Modal InertiaSimple (Uniform, Triangular etc.) Multi-mode

Modal Combination of

Loading

Modal Combination of

Response

Consecutive Modal

Pushover (CMP)

Adaptive Modal

Pushover (AMP)

Modal Combination Method (Kalkan and Kunnath, 2004)

Upper-bound Pushover Analysis (Jan et al., 2004)

Multimode Pushover Analysis (Sasaki et al., 1996)

Modal Pushover Analysis (Chopra and Goel, 2002)

Modified Modal Pushover Analysis (Chopra et al., 2004 )

Adaptive Modal Pushover Analysis (Kalkan and Kunnath, 2006)

Optimal Multimode Pushover Analysis (Attard and Fafitis, 2005)

Consecutive Modal Pushover Analysis (Poursha et al., 2009)

Lateral Load Vectors

Modified CMP Analysis (Khoshnoudian and Kiani, 2012)

Generalized Pushover Analysis (Sucuoglu and Gunay, 2010)

Adaptive Pushover Procedure (Antoniou et al., 2002)

A Galaxy of Multi-mode Pushover Analysis

Procedures

Page 19: Evaluation of Nonlinear Seismic Demands of High-rise RC

Final Comprehensive Examination 19

The Uncoupled Modal Response History Analysis Procedure

Page 20: Evaluation of Nonlinear Seismic Demands of High-rise RC

20

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Cyclic Pushover

Monotonic Pushover in Positive Direction

Monotonic Pushover in Negative Direction

Brick walls begin to crack

Shear walls begin to crack

Columns

begin to

Crack

Shear wall’s steel reinforcement

bars begin to yield in tension

Shear wall’s steel bars begin

to yield in compression

Concrete crushing in

shear wall

Column’s bars begin to

yield in compression

Column’s steel bars

begin to yield in tension

Normalized Base

Shear (𝑉𝑏1/π‘Š)

Roof Drift (π‘₯π‘–π‘Ÿ/𝐻)

The Cyclic Behavior of

Case Study Buildings

44-story case study building in

Strong Direction

Page 21: Evaluation of Nonlinear Seismic Demands of High-rise RC

21

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.035 -0.015 0.005 0.025

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

19-story Building

Mode 133-story Building

Mode 1

44-story Building

Mode 1

Normalized Base Shear ( )

Roof Drift ( ) Roof Drift ( ) Roof Drift ( )

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.03 -0.01 0.01 0.03

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

-0.025 -0.015 -0.005 0.005 0.015 0.025

-0.2

-0.1

0

0.1

0.2

-0.025 -0.015 -0.005 0.005 0.015 0.025

19-story Building

Mode 233-story Building

Mode 2

44-story Building

Mode 2

Normalized Base Shear ( )

Roof Drift ( ) Roof Drift ( ) Roof Drift ( )

19-story Building

Mode 333-story Building

Mode 3

44-story Building

Mode 3

Normalized Base Shear ( )

Roof Drift ( ) Roof Drift ( ) Roof Drift ( )

The Cyclic Behavior of

Case Study Buildings

20

20

20

Page 22: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 22

Idealization of Cyclic Pushover Curves

Energy dissipated by

hysteretic damping

Yield

Cracks

close

πœ”π‘–2

Unloading

starts

𝛽𝐹𝑠𝑦𝑖

Compression

yielding of steel

bars

1

𝐷𝑦𝑖

𝐹𝑠𝑖 𝐿𝑖

𝐷𝑖

2

3

1

4

𝐷𝑒𝑖

𝐹𝑠𝑦𝑖/𝐿𝑖

𝐹𝑠𝑒𝑖/𝐿𝑖

Normalized Base Shear (𝑉𝑏1/π‘Š)

Roof Drift (π‘₯π‘–π‘Ÿ/𝐻)

20-story Building

Mode 1

Cyclic Pushover Curve

Response of an SDF system

under a ground motion

-0.05

-0.03

-0.01

0.01

0.03

0.05

-0.0075 -0.005 -0.0025 0 0.0025 0.005 0.0075

Page 23: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 23

Idealization of Cyclic Pushover Curves

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.015 -0.005 0.005 0.015

Mode 1 (B3)

Normalized Base Shear ( )

Roof Drift Ratio ( )

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Normalized Base Shear ( )

Roof Drift Ratio ( )

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.02 -0.01 0 0.01 0.02

Normalized Base Shear ( )

Roof Drift Ratio ( )

Mode 1 (B2)Mode 1 (B1)

Cyclic pushover

curve

Idealized SDF

system

Ground Motion Set 4

Page 24: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 24

Idealization of Cyclic Pushover Curves

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.004 -0.002 0 0.002 0.004

Mode 2 (B3)

Roof Drift Ratio ( )

-0.12

-0.09

-0.06

-0.03

0

0.03

0.06

0.09

0.12

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Roof Drift Ratio ( )

-0.08

-0.05

-0.02

0.01

0.04

0.07

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Roof Drift Ratio ( )

Mode 2 (B2)Mode 2 (B1)

Cyclic pushover

curve

Idealized SDF

system

Ground Motion Set 4

Page 25: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 25

Idealization of Cyclic Pushover Curves

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.006 -0.004 -0.002 0 0.002 0.004 0.006

Mode 3 (B3)

Roof Drift Ratio ( )

-0.12

-0.09

-0.06

-0.03

0

0.03

0.06

0.09

0.12

-0.003 -0.001 0.001 0.003

Roof Drift Ratio ( )

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.003 -0.001 0.001 0.003

Roof Drift Ratio ( )

Mode 3 (B2)Mode 3 (B1)

Cyclic pushover

curve

Idealized SDF

system

Ground Motion Set 4

Page 26: Evaluation of Nonlinear Seismic Demands of High-rise RC

26

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.005 -0.0025 0 0.0025 0.005

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.004 -0.002 0 0.002 0.004-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.006 -0.004 -0.002 0 0.002 0.004 0.006

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.002 -0.001 0 0.001 0.002

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.01 -0.005 0 0.005 0.01

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.002 -0.001 0 0.001 0.002

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.002 -0.001 0 0.001 0.002-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.002 -0.001 0 0.001 0.002

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.01 -0.005 0 0.005 0.01

Mode 1 (B3) Mode 2 (B3) Mode 3 (B3)

Normalized Base Shear ( )

Roof Drift Ratio ( ) Roof Drift Ratio ( ) Roof Drift Ratio ( )

Normalized Base Shear ( )

Roof Drift Ratio ( ) Roof Drift Ratio ( ) Roof Drift Ratio ( )

Normalized Base Shear ( )

Roof Drift Ratio ( ) Roof Drift Ratio ( ) Roof Drift Ratio ( )

Mode 1 (B2) Mode 2 (B2) Mode 3 (B2)

Mode 1 (B1) Mode 2 (B1) Mode 3 (B1)

Cyclic pushover

curve

Idealized SDF

system

Cyclic pushover

curve

Idealized SDF

system

Cyclic pushover

curve

Idealized SDF

system

Ground Motion Set 1

The Idealization of Cyclic

Pushover Curves

Page 27: Evaluation of Nonlinear Seismic Demands of High-rise RC

27

Modal Decomposition of

Nonlinear Responses

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

Peak Displacement (mm)

Mode 2

Mode 3

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8

Peak Inter-story Drift Ratio (%)

Mode 1

Mode 2

Mode 3

Envelope of

Combined History

Mode 1

Envelope of

Combined History Le

vel N

o.

44-story case study building in

Strong Direction

Ground Motion Set 4

Page 28: Evaluation of Nonlinear Seismic Demands of High-rise RC

28

0

5

10

15

20

25

30

35

40

45

0 15 30 45

Peak Story Shear (x 106 N)

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5

Peak Moment (x 106 KN m)

Mode 2

Mode 1

Mode 3

Envelope of

Combined History

Mode 2

Mode 1

Mode 3

Envelope of

Combined History

Level N

o.

Modal Decomposition of

Nonlinear Responses

44-story case study building in

Strong Direction

Ground Motion Set 4

Page 29: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 29

UMRHA vs. NLRHA

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

Story Shear (x106 N)

Story Shear Envelope

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

Moment (x106 KN m)

Overturning Moment

0

5

10

15

20

25

30

35

40

45

0 200 400 600

No.

of S

tories

Displacement (mm)

Displacement Envelope

UMRHA (Combined3 Modes)

NLRHA

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75 1

IDR (%)

Inter-story Drift Ratio

UMRHA(Combined 3 Modes)

NLRHA

44-story case study building in Strong Direction - Ground Motion Set 4

Page 30: Evaluation of Nonlinear Seismic Demands of High-rise RC

30

Modal Decomposition of

Nonlinear Responses

44-story case study building in

Strong Direction

Ground Motion Set 4

NLRHA

UMRHA (Combined)

Individual Modes

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5

0

5

10

15

20

25

30

35

40

45

0 25 50 75 1000

5

10

15

20

25

30

35

40

45

0 1 2 3

0

5

10

15

20

25

30

35

0 1000 2000 3000

0

5

10

15

20

25

30

35

0 15 30 45 600

5

10

15

20

25

30

35

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

0 500 1000 1500

0

5

10

15

20

0 10 20 30 40 500

5

10

15

20

0 0.2 0.4 0.6 0.8

0

5

10

15

20

0 0.5 1 1.5 2 2.5

B1

B2

B3

Displacement (mm) Inter-story Drift Ratio (%) Story Shear (x 106 N) Moment (x 106 KN m)

Le

ve

l N

o.

Le

ve

l N

o.

Le

ve

l N

o.

Page 31: Evaluation of Nonlinear Seismic Demands of High-rise RC

31

Modal Decomposition of

Nonlinear Responses

44-story case study building in

Strong Direction

Ground Motion Set 4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

-600

-400

-200

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

-150

-100

-50

0

50

100

150

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Ground Acceleration,

Time (sec)

Roof Displacement,

Time (sec)

Roof Displacement,

Time (sec)

Roof Displacement,

Time (sec)

Roof Displacement,

Time (sec)

Mode 1

Mode 2

Mode 3

CombinedUMRHA

NLRHA

Page 32: Evaluation of Nonlinear Seismic Demands of High-rise RC

Final Comprehensive Examination 32

An Extended Displacement Coefficient Method (EDCM)

(or A Simplified Modal Pushover Analysis Procedure)

Page 33: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 33

+π‘΄π“πŸ

𝑉𝑏𝑖

π‘₯π‘–π‘Ÿ

+

π‘΄π“πŸπ‘΄π“πŸ‘

+ …

Mu

lti-

mo

de

Pu

sh

ove

r

An

aly

sis

π‘Ÿπ‘‰ = π‘Ÿπ‘‰,𝑖2

𝛿𝑇𝑖

π‘Ÿπ‘‰,𝑖 π‘₯π‘Ÿ = 𝛿𝑇𝑖2

𝛿𝑇𝑖 = π›€π‘–βˆ†πΉπ‘†βˆ†πΈ

𝑆𝐴,𝑖𝑇𝑒𝑖2

4πœ‹2𝑔

Sim

pli

fie

d M

od

al

Pu

sh

ove

r

An

aly

sis

Pro

ce

du

re

𝑅𝑦,𝑖 =πΆπ‘š,𝑖𝑆𝐴,𝑖

𝑉𝑦,𝑖 π‘Š

𝑷 𝑑 = βˆ’π‘΄π’ π‘₯𝑔 (𝑑)

π‘₯𝑔(𝑑)

=

𝑉𝑏𝑖

π‘₯π‘–π‘Ÿ

𝑉𝑏𝑖𝑦

𝐾𝑖𝛼𝑖𝐾𝑖

Actual

Idealized

βˆ†πΉπ‘†βˆ†πΈ

1

Mode 1Mode 2Mode 3

𝑇

Pick βˆ†πΉπ‘†/βˆ†πΈ ratios

for each mode using

its 𝑅𝑦 and 𝛼

Pushover curve and its

idealization, for each mode

Determine target

displacement (𝛿𝑇𝑖) for each mode

Extract Peak response

for each modeCombine modal

responses

No

nlin

ea

r R

es

po

nse

His

tory

An

aly

sis

(N

LR

HA

)

Page 34: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 34

Determination of Displacement Coefficients

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

Mean of 6 GMs

(𝑅𝑦 = 2, πœ‰π‘– = 0.025)

π‘₯𝐹𝑆π‘₯𝐸

Time Period (sec)

Mean of 6 GMs

(𝑅𝑦 = 8, πœ‰π‘– = 0.025)

π‘₯𝐹𝑆π‘₯𝐸

Time Period (sec)

Mean of 6 GMs

(𝑅𝑦 = 2, πœ‰π‘– = 0.025)

π‘₯𝐸𝑃𝑃π‘₯𝐸

Time Period (sec)

Mean of 6 GMs

(𝑅𝑦 = 8, πœ‰π‘– = 0.025)

π‘₯𝐸𝑃𝑃π‘₯𝐸

Time Period (sec)

Set 1

Set 2

Set 3

Page 35: Evaluation of Nonlinear Seismic Demands of High-rise RC

35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

Mean of 6 GMs

Set 2 ( )

Time Period (sec)

= 2

= 4

= 6= 8

Mean of 6 GMs

Set 1 ( )

Time Period (sec)

Mean of 6 GMs

Set 3 ( )

Time Period (sec)

Mean of 6 GMs

Set 2 ( )

Time Period (sec)

Mean of 6 GMs

Set 1 ( )

Time Period (sec)

Mean of 6 GMs

Set 3 ( )

Time Period (sec)

= 2

= 4

= 6= 8

= 2

= 4

= 6= 8

= 2

= 4

= 6= 8

= 2

= 4

= 6= 8

= 2

= 4

= 6= 8

Determination of

Displacement Coefficients

Effect of 𝑅𝑦

Ground Motion Sets 1, 2 and 3

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

Page 36: Evaluation of Nonlinear Seismic Demands of High-rise RC

36

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

𝑀𝑀5.8 – 6.5, π‘…π‘Ÿπ‘’π‘ = 13 – 30 Km

𝑀𝑀5.8 – 6.5, π‘…π‘Ÿπ‘’π‘ = 30 – 60 Km

𝑀𝑀5.8 – 6.5, π‘…π‘Ÿπ‘’π‘ = 60 – 200 Km

𝑀𝑀6.6 – 6.9, π‘…π‘Ÿπ‘’π‘ = 13 – 30 Km

𝑀𝑀6.6 – 6.9, π‘…π‘Ÿπ‘’π‘ = 30 – 60 Km

𝑀𝑀6.6 – 6.9, π‘…π‘Ÿπ‘’π‘ = 60 – 200 Km

𝑀𝑀7.0 – 8.0, π‘…π‘Ÿπ‘’π‘ = 13 – 30 Km

𝑀𝑀7.0 – 8.0, π‘…π‘Ÿπ‘’π‘ = 30 – 60 Km

𝑀𝑀7.0 – 8.0, π‘…π‘Ÿπ‘’π‘ = 60 – 200 Km

NEHRP site class B

NEHRP site class C

NEHRP site class D

T (sec)

𝑆 𝐴(n

orm

aliz

ed to

PG

A)

𝑆 𝐴(n

orm

aliz

ed to

PG

A)

Additionally Selected

Typical Ground Motions

Determination of

Displacement Coefficients

Page 37: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 37

Determination of Displacement Coefficients

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

π‘₯𝐸𝑃𝑃π‘₯𝐸

π‘₯𝐹𝑆π‘₯𝐸

𝑀𝑀7.0 – 𝑀𝑀8.0, π‘…π‘Ÿπ‘’π‘ = 13 – 30 Km

Mean of 30 GMs (πœ‰π‘– = 0.05)

𝑀𝑀7.0 – 𝑀𝑀8.0, π‘…π‘Ÿπ‘’π‘ = 13 – 30 Km

Mean of 30 GMs (πœ‰π‘– = 0.05)

Time Period (sec)Time Period (sec)

𝑅𝑦 = 2

𝑅𝑦 = 4

𝑅𝑦 = 6

𝑅𝑦 = 8

Page 38: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 38

Determination of Displacement Coefficients

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

𝑀𝑀7.0 – 𝑀𝑀8.0, π‘…π‘Ÿπ‘’π‘ = 60 – 200 Km

Mean of 30 GMs

(𝑅𝑦 = 2, 𝛽 = 0.2, πœ‰ = 0.05)

𝑀𝑀5.8 – 𝑀𝑀6.5, π‘…π‘Ÿπ‘’π‘ = 30 – 60 Km

Mean of 30 GMs

(𝑅𝑦 = 2, 𝛼 = 0.15, πœ‰π‘– = 0.05)

π‘₯𝐹𝑆π‘₯𝐸

π‘₯𝐹𝑆π‘₯𝐸

𝛼 = 0𝛼 = 0.15𝛼 = 0.3𝛼 = 0.5

Time Period (sec)

𝛽 = 0.2𝛽 = 0.4𝛽 = 0.6𝛽 = 0.8𝛽 = 1.0

Time Period (sec)

Page 39: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 39

Displacement Coefficients – Comparison with FEMA 440 (2005), ASCE/SEI 41-13 (2014)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4

Mean of 30 GMs

(𝑅𝑦 = 2, πœ‰π‘– = 0.05)

π‘₯𝐹𝑆π‘₯𝐸

π‘₯𝐸𝑃𝑃π‘₯𝐸

𝐢1 Site Class B

𝐢1 Site Class C

𝐢1 Site Class D

Mean of 30 GMs

(𝑅𝑦 = 2, πœ‰π‘– = 0.05)

𝐢1 Site Class B

𝐢1 Site Class C

𝐢1 Site Class D

FEMA 440 (2005),

ASCE/SEI 41-13 (2014)FEMA 440 (2005),

ASCE/SEI 41-13 (2014)

This Study This Study

Page 40: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 40

The EDCM – Individual Modal Demands – B3 – Ground Motion Sets 1, 2 and 3

0

5

10

15

20

25

30

35

40

45

0 10 20 30

Story Shear (x106 N)

Series3

Series4

0

5

10

15

20

25

30

35

40

45

0 10 20 30

Story Shear (x106 N)

Series3

Series4

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

Story Shear (x106 N)

Series3

Series4

Le

ve

l N

o.

UMRHA

EDCM

Ground Motion Set 1 Ground Motion Set 2 Ground Motion Set 3

UMRHA

EDCM

UMRHA

EDCM

Page 41: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 41

EDCM – Individual Modal Demands – Ground Motion Set 4

0

5

10

15

20

25

30

35

40

45

0 20 40 60

Story Shear (x106 N)

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Peak Story Shear (x106 N)

0

5

10

15

20

25

30

35

0 10 20 30 40

Peak Story Shear (x106 N)

EDCM

UMRHA

B1

EDCM

UMRHA

EDCM

UMRHA

B2 B3

Mode 3

Mode 1

Mode 2

Mode 3

Mode 1

Mode 2

Mode 3

Mode 1

Mode 2

Le

ve

l N

o.

Page 42: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 42

EDCM – Combined Demands – Ground Motion Set 4

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 500

2

4

6

8

10

12

14

16

18

20

0 300 600 900 1200

0

2

4

6

8

10

12

14

16

18

20

0 0.25 0.5 0.75 10

2

4

6

8

10

12

14

16

18

20

0 1 2 3

Peak Displacement (mm) Peak Inter-story Drift Ratio (%) Peak Story Shear (x 106 N) Peak Moment (x 106 KN m)

B1 NLRHA Mean

UMRHA Mean

EDCMLe

ve

l N

o.

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

Page 43: Evaluation of Nonlinear Seismic Demands of High-rise RC

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

35

0 10 20 30 40 50 600

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5

0

5

10

15

20

25

30

35

40

45

0 25 50 75 1000

5

10

15

20

25

30

35

40

45

0 400 800 1200 1600 2000

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3

Peak Displacement (mm) Peak Inter-story Drift Ratio (%) Peak Story Shear (x 106 N) Peak Moment (x 106 KN m)

B2

B3

Le

ve

l N

o.

Le

ve

l N

o.

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

NLRHA Mean

UMRHA Mean

EDCM

Page 44: Evaluation of Nonlinear Seismic Demands of High-rise RC

44

Ground Motion Sets 1, 2 and 3

Performance of EDCM –

Combined Demands

B3

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 500

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

0 200 400 600 8000

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3

NLRHA Mean

UMRHA Mean

EDCM

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5

Displacement (mm) Inter-story Drift Ratio (%) Story Shear (x 106 N) Moment (x 106 KN m)

Page 45: Evaluation of Nonlinear Seismic Demands of High-rise RC

45Final Comprehensive Examination

β€’ The proposed EDCM works

β€’ Requires significantly less computational time and effort compared to the detailed NLRHA procedure

β€’ Can be considered as a convenient analysis option for the seismic performance evaluation of high-rise buildings

Summary

However

Page 46: Evaluation of Nonlinear Seismic Demands of High-rise RC

Final Comprehensive Examination 46

A Modified Response Spectrum Analysis (MRSA) Procedure

Page 47: Evaluation of Nonlinear Seismic Demands of High-rise RC

47

Linear Elastic Model

Determine Modal Properties

𝑇𝑖, πœ™π‘–, 𝛀𝑖

𝑇1𝑇2𝑇3

𝑆𝐴1

𝑆𝐴2

𝑆𝐴3

Sp

ectr

al A

cce

lera

tio

n (𝑆 𝐴

)

Time Period (sec)

𝑉𝑏𝑖 =

𝑛=1

𝑁

𝛀𝑖 . π‘šπ‘› . πœ™π‘–,𝑛 . 𝑆𝐴𝑖

Determine Spectral Acceleration

for each Significant Mode

𝑉𝑏1 𝑉𝑏2 𝑉𝑏3

𝑉𝑒𝑙 = (𝑉𝑏1 )2 + (𝑉𝑏2 )2 + (𝑉𝑏3 )2 + …

Determine Equivalent Elastic Forces

Base S

hear

Roof Displacement

𝑉𝑒𝑙

𝑉𝑖𝑛

Maximum Displacement

during a design earthquake

𝑉𝐷 = 𝑉𝑖𝑛 =𝑉𝑒𝑙𝑅/𝐼

Determine Design Demands

πœ™1 πœ™2 πœ™3

𝑅 = Response Modification Factor

For Initial

Viscous Damping…

N

Stories

Eigen-value Analysis

π•‚βˆ’πœ”2𝕄 Ξ¦ = 𝕆

π‘₯π‘Ÿ

For members not desired

to yield during a design

earthquake

Design Base Shear

𝑉𝐷 = Ω𝑉𝑒𝑙𝑅

π‘₯π‘šπ‘Žπ‘₯π‘Ÿ =

𝐢𝑑π‘₯π‘Ÿ

𝐼

𝐼 = Importance Factor

Ξ© = Structural Over-strength Factor

𝐢𝑑 = Displacement Amplification Factor

The Standard RSA Procedure (ASCE 7-10, IBS 2012, EC 8)

Primary Motivation

Page 48: Evaluation of Nonlinear Seismic Demands of High-rise RC

48Final Comprehensive Examination

Criticisms on the RSA Procedure

Elastic Demands

Some FactorInelastic Demands =

Elastic Demands of That Mode

Same FactorInelastic Demands of Each Mode =

Statistical Combination of Modal Demands

(a)

(b)

(c)

Static Analysis Procedure (or Pseudo-dynamic, to say the least) (d)

Newmark & Hall (1982)

Eibl & Keintzel (1988)

Bertero (1986)

Miranda & Bertero (1994)

ATC 19 (1995)

ATC-34 (1995)

Cuesta & Aschheim (2001)

Priestley & Amaris (2002)

Foutch & Wilcoski (2005)

Sullivan, Priestley & Calvi (2008)

Maniatakis et al. (2013)

.

.

.

Page 49: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 49

β€œRay Clough and I regret we created the approximate response spectrum

method for seismic analysis of structures in 1962.”

β€œβ€¦ allowed engineers to produce meaningless positive numbers of little or

no value.”

β€œDo not be called a Neanderthal man.”

CASE CLOSED

The use of the Response Spectrum Method in Earthquake Engineering

must be terminated.

It is not a dynamic analysis method – The results are not a function of time.

Criticisms on the RSA Procedure

─ Edward L. Wilson

Professor Emeritus (CEE, UC Berkeley)

Page 50: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 50

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

The Problem with R Factor

The elastic forces obtained from the

standard RSA procedure

The RSA elastic forces reduced by 𝑅

The inelastic forces obtained from the

NLRHA procedure

The actual reduction in RSA

elastic forces. The β€œreward”

of making a nonlinear model

The underestimation causing a β€œfalse

sense of safety” due to directly reducing

the RSA elastic forces by 𝑅 factor

Story Shear (x106 N)

Sto

ry L

eve

l

Page 51: Evaluation of Nonlinear Seismic Demands of High-rise RC

51

Nonlinear Structure

π‘‡π‘’π‘ž1, πœ‰π‘’π‘ž1

β‰…

+ + +…

F

DF

D

F

D

Mode 1Mode 2

Mode 3

+ + +…

Mode 1Mode 2

Mode 3

F

D

F

D

F

D

NLNL NL

ELEL

EL

π‘‡π‘’π‘ž2, πœ‰π‘’π‘ž2 π‘‡π‘’π‘ž3, πœ‰π‘’π‘ž3

β‰…

NLRHA

UMRHA

MRSA

The Basic Concept of the

Modified Response

Spectrum Analysis (MRSA)

Page 52: Evaluation of Nonlinear Seismic Demands of High-rise RC

52

𝐹𝑠𝑖(𝐷𝑖 , 𝐷𝑖)/𝐿𝑖

πœ”π‘’π‘ž,𝑖2

πœ”π‘–2

𝐷𝑖,π‘šπ‘Žπ‘₯

Energy Dissipation

by Hysteretic

Damping (πœ‰β„Ž,𝑖)

𝐷𝑖

1

1

πœ‰π‘’π‘ž,𝑖 = ΞΊπœ‰π‘– + πœ‰β„Ž,𝑖

Total Energy Dissipation

by the Equivalent

Viscous Damping (πœ‰π‘’π‘ž,𝑖) πœ”π‘’π‘ž,𝑖2

1

𝐷𝑖,π‘šπ‘Žπ‘₯ 𝐷𝑖

𝐹𝑠𝑖(𝐷𝑖 , 𝐷𝑖)/𝐿𝑖

An Equivalent Linear System

with Elongated Period and

Additional Damping

A nonlinear SDF system with initial

circular natural frequency πœ”π‘–, and with

initial inherent viscous damping πœ‰π‘–

Conversion of a Modal

Nonlinear SDF System in to

a Modal β€œEquivalent Linear”

System

Page 53: Evaluation of Nonlinear Seismic Demands of High-rise RC

53

πœ‰β„Ž,𝑖 =1

4πœ‹

)𝐸𝐷(𝐷𝑖)πΈπ‘ π‘œ(𝐷𝑖

𝐹𝑠𝑖(𝐷𝑖 , 𝐷𝑖)/𝐿𝑖

πΈπ‘ π‘œ(𝐷𝑖)

𝐸𝐷(𝐷𝑖)

πœ”π‘ π‘’π‘,𝑖2

𝐷𝑖,π‘šπ‘Žπ‘₯

Energy Dissipation by

Hysteretic Damping (πœ‰β„Ž,𝑖)

𝐷𝑖

1

Energy dissipated by hysteretic damping

in one force-deformation loop of an actual

nonlinear system

Energy dissipated by an equivalent

amount of viscous damping in one

harmonic cycle of an equivalent linear

system

=

Equal-Energy Assumption

Energy Dissipation by

Equivalent Viscous

Damping (πœ‰πΈπΏ,𝑖)

𝐹𝑠𝑖,π‘šπ‘Žπ‘₯/𝐿𝑖

Determination of Hysteretic

Damping – Equal-energy

Dissipation Rule

Page 54: Evaluation of Nonlinear Seismic Demands of High-rise RC

54

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

33-story (Mode 1)

Roof Drift ratio, π‘₯π‘–π‘Ÿ/𝐻 (%)

𝑇𝑠𝑒𝑐,𝑖/𝑇𝑖

20-story

(Mode 1)

44-story (Mode 1)

33 Story (Mode 2)

Secant Periods from Envelope of Cyclic Pushover Curves

44 Story (Mode 2)

20 Story (Mode 2)

33 Story (Mode 3)

44 Story

(Mode 3)

20 Story (Mode 3)

𝑇𝑠𝑒𝑐,𝑖/𝑇𝑖 vs. Roof Drift Ratio (π‘₯π‘–π‘Ÿ/𝐻)

β€œEquivalent Linear”

Properties

Page 55: Evaluation of Nonlinear Seismic Demands of High-rise RC

55

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

πœ‰β„Ž,𝑖 (%)

33-story

(Mode 1)

20-story

(Mode 1)

44-story

(Mode 1)

20-story (Mode 1) - Each

loop start from initial

unloaded condition

Hysteretic Damping from Area Enclosed by Cyclic Pushover Curves

Roof Drift ratio, π‘₯π‘–π‘Ÿ/𝐻 (%)

(b) πœ‰β„Ž,𝑖 vs. Roof Drift Ratio (π‘₯π‘–π‘Ÿ/𝐻)

β€œEquivalent Linear”

Properties

Page 56: Evaluation of Nonlinear Seismic Demands of High-rise RC

56

𝑇2

𝑆 2

Spectr

al A

ccele

ratio

n (

SA

)

Time Period (sec)

𝑇1

𝑆 1

Spectr

al A

ccele

ratio

n (

SA

)Time Period (sec)

Linear Model

β‰… + + + …

Mode 1Mode 2

Mode 3

F

D

F

D

F

D

𝑇3

𝑆 3

Spectr

al A

ccele

ratio

n (

SA

)

Time Period (sec)

𝑇3,π‘’π‘ž

𝑆 1,π‘’π‘žπ‘† 1,π‘’π‘ž

𝑆 3,π‘’π‘ž

πœ‰1

πœ‰1,π‘’π‘ž

πœ‰2

πœ‰2,π‘’π‘žπœ‰3

πœ‰3,π‘’π‘ž

π‘‡π‘’π‘ž/𝑇𝑖 πœ‰π‘’π‘ž

𝑇3,π‘’π‘ž

𝑇𝑖

𝑇2,π‘’π‘ž

𝑇𝑖

𝑇1,π‘’π‘ž

π‘‡π‘–πœ‰1,π‘’π‘ž

πœ‰2,π‘’π‘ž

πœ‰3,π‘’π‘ž

π‘₯3π‘Ÿ

Initial Viscous Damping

Initial Time Period

π‘‡π‘’π‘ž/𝑇𝑖 vs. π‘₯π‘–π‘Ÿ

and πœ‰π‘’π‘ž vs. π‘₯π‘–π‘Ÿ

Relationships

Mode 1

Mode 2Mode 3

Mode 1

Mode 2Mode 3

𝑇1, πœ™1, 𝛀1, π‘š1 𝑇2, πœ™2, 𝛀2, π‘š2 𝑇3, πœ™3, 𝛀3, π‘š3

Modal Analysis

π‘₯2π‘Ÿ π‘₯1

π‘Ÿ π‘₯π‘Ÿπ‘₯3π‘Ÿ π‘₯2

π‘Ÿ π‘₯1π‘Ÿ π‘₯π‘Ÿ

π‘₯π‘‘π‘Ÿπ‘–π‘Žπ‘™π‘Ÿ = π‘₯𝑖,π‘…π‘œπ‘œπ‘“

π‘Ÿ = πœ™π‘–,π‘…π‘œπ‘œπ‘“ . 𝛀𝑖 . 𝑆𝐷𝑖

𝑆𝐷𝑖 =𝑇𝑖2

4πœ‹2𝑆𝐴𝑖

𝑇1,π‘’π‘žπ‘‡1

𝑆 1

𝑇2,π‘’π‘žπ‘‡2

𝑆 1

𝑆 3

𝑇 (sec) 𝑇 (sec)

The Modified Response

Spectrum Analysis (MRSA)

What is β€œModified”?

Page 57: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 57

The MRSA Procedure – Individual Modal Demands – Ground Motion Set 4

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80

Peak Story Shear (x106 N)

Mode 3

Mode 1

Mode 2

0

5

10

15

20

25

30

35

0 10 20 30 40

Peak Story Shear (x106 N)

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Peak Story Shear (x106 N)

MRSA

UMRHA

Mode 3

Mode 1

Mode 2

Mode 3

Mode 1

Mode 2

Le

ve

l N

o.

B1

MRSA

UMRHA

MRSA

UMRHA

B2 B3

Page 58: Evaluation of Nonlinear Seismic Demands of High-rise RC

58

0

10

20

30

40

0 5 10 15 20

0

10

20

30

40

0 1 2 3 4

0

10

20

30

40

0 5 10 15 20 25

0

10

20

30

40

0 2 4 6 8 10

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 5 10 15 20

No

. o

f S

tories

0

10

20

30

40

0 5 10 15 20

0

10

20

30

40

0 10 20 30 40

0

10

20

30

40

0 5 10 15

No

. o

f S

tories

No

. o

f S

tories NLRHA

MRSA

Standard RSA

(R = 4.5)

Story Shear (x106 N)

Ground

Motion Set 1

Ground

Motion Set 2

Ground

Motion Set 3

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3

Ground Motion Sets 1, 2 and 3

Performance of the MRSA

Procedure – Individual

Modal Demands

B3

Page 59: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 59

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800

No

. o

f S

tori

es

Displacement (mm)

Displacement Envelope

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75 1

IDR (%)

Inter-story Drift Ratio

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

Story Shear (x106 N)

Story Shear Envelope

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

Moment (x106 KN m)

Overturning Moment

Overall Performance of the MRSA Procedure – B3 – Ground Motion Set 1

NLRHA

MRSA

Standard RSA

(Cd = 4, R = 4.5)

Page 60: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 60

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

No

. o

f S

torie

s

Displacement (mm)

Displacement Envelope

0

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25

IDR (%)

Inter-story Drift Ratio

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75 1 1.25

Moment (x106 KN m)

Overturning Moment

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

Story Shear (x106 KN)

Story Shear Envelope

Overall Performance of the MRSA Procedure – B3 – Ground Motion Set 2

NLRHA

MRSA

Standard RSA

(Cd = 4, R = 4.5)

Page 61: Evaluation of Nonlinear Seismic Demands of High-rise RC

Introducing AIT SolutionsFinal Comprehensive Examination 61

0

5

10

15

20

25

30

35

40

45

0 250 500 750

No

. o

f S

torie

s

Displacement (mm)

Displacement Envelope

0

5

10

15

20

25

30

35

40

45

0 0.15 0.3 0.45 0.6 0.75

IDR (%)

Inter-story Drift Ratio

0

5

10

15

20

25

30

35

40

45

0 10 20 30

Story Shear (x106 KN)

Story Shear Envelope

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

Moment (x106 KN m)

Overturning Moment

Overall Performance of the MRSA Procedure – B3 – Ground Motion Set 3

NLRHA

MRSA

Standard RSA

(Cd = 4, R = 4.5)

Page 62: Evaluation of Nonlinear Seismic Demands of High-rise RC

620

5

10

15

20

25

30

35

40

45

0 25 50 75 100

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500

0

5

10

15

20

25

30

35

0 1000 2000

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

0 10 20 30 40 50

0

5

10

15

20

0 0.5 1 1.5

0

5

10

15

20

0 300 600 900 1200

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3

B1

B2

B3

NLRHA

MRSA

Standard RSA

(Cd = 4, R = 4.5)

Standard RSA Γ— Ξ©

Overall Performance of

MRSA

Ground Motion Set 4

Peak Displacement (mm) Peak Inter-story Drift Ratio (%) Peak Story Shear (x 106 N) Peak Moment (x 106 KN m)

Page 63: Evaluation of Nonlinear Seismic Demands of High-rise RC

63

0

5

10

15

20

25

30

35

40

45

-3000 -2000 -1000 0 1000 2000 3000

Moment (x106 N mm)

0

5

10

15

20

25

30

35

40

45

-3000 -2000 -1000 0 1000 2000 3000

Moment (x106 N mm)

No. of S

tories

MM

Ground Motion Set 4

B3

Bending Moments in

Columns

NLRHA Mean

MRSA

Standard RSA

Standard RSA Γ— Ξ©

Page 64: Evaluation of Nonlinear Seismic Demands of High-rise RC

64

0

5

10

15

20

25

30

35

40

45

-50000 -25000 0 25000 50000

Moment (x106 N mm)

0

5

10

15

20

25

30

35

40

45

-20 -10 0 10 20

Shear (x106 N)

No

. o

f S

torie

s

V M

NLRHA Mean

MRSA

Standard RSA

Standard RSA Γ— Ξ©Ground Motion Set 4

B3

Shear Forces and

Bending Moments in

Shear Walls

Page 65: Evaluation of Nonlinear Seismic Demands of High-rise RC

65Final Comprehensive Examination

β€’ The proposed MRSA procedure works

β€’ Requires significantly less computational time and effort compared to the detailed NLRHA procedure

β€’ Simple, conceptually superior, provides mode-by-mode response, clear insight

β€’ Doesn’t require nonlinear modeling

β€’ Can be considered as a convenient analysis and design option

Summary and Conclusions

Page 66: Evaluation of Nonlinear Seismic Demands of High-rise RC

66Final Comprehensive Examination

β€’ The UMRHA procedure

β€’ The case study buildings

β€’ The modal combination rule

β€’ Development of generalized relationships for

β€’ Displacement coefficients – The EDCM

β€’ Equivalent linear properties – The MRSA procedure

Limitations and Further Study

Page 67: Evaluation of Nonlinear Seismic Demands of High-rise RC

Final Comprehensive Examination 67

Thank you for your attention