ethanol adsorption

5
: ~; i: :'%L ELSEVIER PI 1:S0960-8524(98) 00048-0 Bioresource Technology 66 (1998) 75-78 © 1998 Elsevier Scien ce Ltd. All rights reserved Printed in Great Britain 0960-8524/98 $19.00 Short Communication Selection of Adsorbents to be used in an Ethanol Fermentation Process. Adsorption Isotherms and Kinetics Abstract Adsorption equilibrium assays were carried out in order to find adsorbents selective for ethanol to use in a fermentation process. Three hydrophobic adsorbents -- silicalite, ZSM-5 and CMS-5A -- were tested. Results of adsorption equilibrium at 298 K o f ethanol, glucose, fructose and glycerol from aqueous solutions of each single solute are given. Ethanol adsorption isotherms were described by Langmuir-type equations. Some kinetic assays of ethanol adsorption are also presented. The results obtained appear to be useful for practicioners on the fermentation-processes field. © 1998 Elsevier Science Ltd. All rights reserved Key words: ethanol adsorption, CMS-5A, silicalite, ZSM-5. INTRODUCTION In ethanol ferm entation relatively high concentra- tions of ethanol increase the product inhibition effect (Maiorella et al., 1984; Letourneau & Villa, 1987). This limits the amount of ethanol which can be produced per unit of time and volume of fermentor. Several methods to improve the alcohol productivity by reducing the ethanol concentration in the broth have been suggested; such as reduction of the pressure in the reactor (Cysewski & Wilke, 1977; Finn & Ramalingam, 1977), on-line solvent extraction (Miner & Goma, 1982) or selective ethanol adsorption (Milestone & Bibby, 1983; Lee & Wang, 1982; Pitt et al., 1983; Lencki et al., 1983). Continuing our research on ethanolic fermenta- tion (Bravo & Gonzfilez, 1991), we are developing a device for a fermentation process in a fluidized bed bioreactor with immobilized cells of Saccharomyces cerevisiae in calcium-aiginate, together with simulta- neous extraction of the product ethanol by adsorp- tion on to an adsorbent. An initial phase of this study consists of screening possible sorbents. The aim of the present work was to provide results for 75 ethanol adsorption on three different adsorbents as an aid towards the assessment of the potential of that process. We have focused on the hydrophobic adsorbents silicalite, ZSM-5 and CMS-5A because it could be expected that they would show higher selectivity for ethanol than for water and the other components of the fermentation broth. Nevertheless, we have also tested the adsorption characteristics of sugars and glycerol on to the solids in concentration ranges usually found for those components in ethanolic fermentation processes. METHODS Materials Adsorbents Two synthetic silica molecular sieves, silicalite (UOP), ZSM-5 (Mobil Chemical International) and an activated carbon molecular sieve, CMS-5A (Takeda Chemical Industries), were tested as adsor- bents. The size of the pelletized cylindrical solids was: 3 × 1 mm for pellets of ZSM-5, 5 × 1 mm for silicalite and 8 ×4 mm for CMS-5A. Before each run, ZSM-5 and silicalite were regenerated by washing repeatedly with ultrapure boiling water and drying at 200-220°C. CMS-5A was directly used, after washing, as a wet solid, because preliminary tests showed that its adsorption capacity when wet was slightly higher than when dried. Adsorbates Ethanol, glucose, fructose and glycerol were used in concentration ranges large enough to cover all levels which typically appear in fermentation broths. Synthetic solutions in the ranges 0-50% (w/w) for ethanol-water mixtures, 0-2-15% (w/w) for glucose- water solutions, 0-2-8% (w/w) for fructose-water and 0.2-0.7% (w/w) for glycerol-water were prepared. Kinetic and equilibrium experiments The equilibrium adsorption measurements at 25_0"1°C and pH 4.0+0.1 were conducted by immersing in stoppered flasks known masses of adsorbent and solution of initial solute concentra-

Upload: invincible111

Post on 10-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ethanol Adsorption

8/8/2019 Ethanol Adsorption

http://slidepdf.com/reader/full/ethanol-adsorption 1/4

: ~ ; i : : ' % L

ELSEVIERP I 1 : S 0 9 6 0 - 8 5 2 4 ( 9 8 ) 0 0 0 4 8 - 0

Bioresource Technology 66 (1998) 75-78© 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain0960-8524/98 $19.00

S h o r t C o m m u n i c a t i o n

S e l e c t i o n o f A d s o r b e n t s t o b e u s e d i n

a n E t h a n o l F e r m e n t a t i o n P r o c e ss .

A d s o r p t i o n I s o t h e r m s a n d K i n e ti cs

Abstrac t

Adsorption equil ibrium assays were carried out in

order to f in d adsorben ts se lec t ive for e thano l to use in

a ferm enta t ion process . Three hydrophobic adsorben ts

- - s i l i ca l i te , ZSM-5 and CMS-5A - - were tes ted .

Resu l t s o f adsorp t ion equ i l ibr ium a t 298 K o f e thano l ,

g lucose , f ruc tose and g lycero l f rom aqueous so lu t ions

o f each s ingle solute are given. E tha no l adsorption

iso therms were descr ibed by Langmuir - type equa t ions .

Som e k inet ic assays o f e thano l adsorp t ion are al so

presen ted . The resu lt s ob ta ined appear to be use fu l for

pract ic ioners on the fermenta t ion-processes f i e ld .

© 1998 Elsevier Science Ltd. All r ights reserved

Key words: e t h an o l ad s o r p t i o n , C M S - 5 A , s i l i c a l i t e ,

Z S M - 5 .

I N T R O D U C T I O N

I n e t h a n o l f e r m e n t a t i o n r e l a ti v e l y h i g h c o n c e n t r a -

t i o n s o f e t h a n o l i n c r e a s e t h e p r o d u c t i n h i b i t i o n

e f f e c t ( M a i o r e l l a et al . , 1 9 8 4 ; L e t o u r n eau & V i l l a ,

1 98 7) . T h i s l i m i ts t h e a m o u n t o f e t h a n o l w h i c h c a n

b e p r o d u c e d p e r u n i t o f ti m e a n d v o l u m e o f

f e r m e n t o r . S e v e r a l m e t h o d s t o i m p r o v e t h e a l c o h o l

p r o d u c t i v i t y b y r e d u c i n g t h e e t h a n o l c o n c e n t r a t i o ni n t h e b r o t h h a v e b e e n s u g g e s t e d ; s u c h a s r e d u c t i o n

o f t h e p r e s s u r e i n th e r e a c t o r ( C y s e w s k i & W i l k e ,

1 9 7 7 ; F i n n & R am a l i n g am , 1 9 7 7 ) , o n - l i n e s o l v en t

e x t r a c t i o n ( M i n e r & G o m a , 1 9 82 ) o r s e l e c ti v e

e t h a n o l a d s o r p t i o n ( M i l e s t o n e & B i b b y , 1 9 8 3 ; L e e &

Wang , 1982 ; P i t t et al . , 1983; Lenck i et al . , 1983) .

C o n t i n u i n g o u r r e s e a r c h o n e t h a n o l i c f e r m e n t a -

t i o n ( B r av o & G o n z f i l ez , 1 99 1 ), w e a r e d ev e l o p i n g a

d e v i c e f o r a f e r m e n t a t i o n p r o c e s s i n a f l u i d i z e d b e d

b i o r e a c t o r w i t h i m m o b i l i z e d c e l l s o f S a cch a r o m yces

cerevisiae i n c a l c i u m - a i g i n a t e , t o g e t h e r w i t h s i m u l t a -

n e o u s e x t r a c t i o n o f t h e p r o d u c t e t h a n o l b y a d s o r p -

t i o n o n t o a n a d s o r b e n t . A n i n it ia l p h a s e o f t h is

s t u d y co n s i s t s o f s c r een i n g p o s s i b l e s o r b en t s . T h e

a i m o f t h e p r e s e n t w o r k w a s t o p r o v i d e r e s u lt s f o r

75

e t h a n o l a d s o r p t i o n o n t h r e e d i f f e r e n t a d s o r b e n t s a s

a n a i d t o w a r d s t h e a s s e s s m e n t o f t h e p o t e n t i a l o f

t h a t p r o ces s .

W e h a v e f o c u se d o n t h e h y d r o p h o b i c a d s o r b e n t s

s i l i c a l i t e , Z S M - 5 a n d C M S - 5 A b e c a u s e i t c o u l d b e

e x p e c t e d t h a t t h e y w o u l d s h o w h i g h e r s e l e c ti v it y f o re t h a n o l t h a n f o r w a t e r a n d t h e o t h e r c o m p o n e n t s o f

t h e f e r m e n t a t i o n b r o t h . N e v e r t h e l e s s , w e h a v e a l s o

t e s t e d t h e a d s o r p t i o n c h a r a c t e r i st i c s o f s u g a r s a n d

g l y c e r o l o n t o t h e s o li d s in c o n c e n t r a t i o n r a n g e s

u s u a l ly f o u n d f o r t h o s e c o m p o n e n t s i n e t h a n o l i c

f e r m e n t a t i o n p r o c e s s e s .

M E T H O D S

M a t e r ia l s

A d s o r b en t s

T w o s y n t h e t i c s i l i c a m o l ecu l a r s i ev es , s i l i c a l i t e

( U O P ) , Z S M - 5 ( M o b i l C h e m i c a l I n te r n a t i o n a l) a n d

a n a c t i v a t e d c a r b o n m o l e c u l a r s i e v e , C M S - 5 A

( T a k e d a C h e m i c a l I n d u s t r i e s ) , w e r e t e s t e d a s a d s o r -

b en t s . T h e s i ze o f th e p e l l e t i zed cy l i n d r i ca l s o l id s

w a s : 3 × 1 m m f o r p e l l e ts o f Z S M - 5 , 5 × 1 m m f o r

s il ic a l it e a n d 8 × 4 m m f o r C M S - 5 A . B e f o r e e a c h

r u n , Z S M - 5 a n d s i l i c a l i t e w e r e r e g e n e r a t e d b y

w a s h i n g r e p e a t e d l y w i t h u l t r a p u r e b o i li n g w a t e r a n d

d r y i n g a t 2 0 0 - 2 2 0 °C . C M S - 5 A w a s d i r e c t ly u s e d ,

a f t e r w a s h i n g , a s a w e t s o li d , b e c a u s e p r e l i m i n a r y

t e s ts s h o w e d t h a t i t s a d s o r p t i o n c a p a c i t y w h e n w e t

w a s s l i g ht ly h i g h e r t h a n w h e n d r i e d .

A d s o r b a t e s

E t h a n o l , g l u c o se , f r u c t o s e a n d g l y c e ro l w e r e u s e d i n

c o n c e n t r a t i o n r a n g e s l a r g e e n o u g h t o c o v e r a ll l ev e l s

w h i c h t y p i c a ll y a p p e a r i n f e r m e n t a t i o n b r o t h s .

S y n t h e t i c s o l u t io n s i n t h e r a n g e s 0 - 5 0 % ( w /w ) f o r

e t h a n o l - w a t e r m i x tu r e s, 0 - 2 - 1 5 % ( w /w ) fo r g l u c o s e -

w a t e r so l u ti o n s , 0 - 2 - 8 % ( w /w ) f o r f r u c t o s e - w a t e r

a n d 0 . 2 - 0 . 7 % ( w /w ) fo r g l y c e r o l - w a t e r w e r e

p r e p a r e d .

Kinet ic and equi l ibr ium exper iments

T h e e q u i li b ri u m a d s o r p t io n m e a s u r e m e n t s a t

2 5 _ 0 " 1 ° C a n d p H 4 . 0 + 0 . 1 w e r e c o n d u c t e d b y

i m m e r s i n g i n s t o p p e r e d f l a s k s k n o w n m a s s e s o f

a d s o r b e n t a n d s o l u t io n o f i n it ia l s o l u t e c o n c e n t r a -

Page 2: Ethanol Adsorption

8/8/2019 Ethanol Adsorption

http://slidepdf.com/reader/full/ethanol-adsorption 2/4

76 S h o r t c o m m u n i c a t i o n

t i o n C o. T h e s t i r r e d s o l u t i o n s w e r e a l l o w e d t o r e a c h

e q u i l i b r i u m a n d , a f t e r f i l tr a t io n , c l e a r s a m p l e s w e r e

t a k e n a n d a n a l y s e d i n o r d e r t o d e t e r m i n e t h e

c o n c e n t r a t i o n o f s o l u t e in s o l u t i o n a t e q u i li b r i u m ,

C e .

A s i m i l a r p r o c e d u r e w a s f o l l o w e d in s o m e e x p e r i -

m e n t s w i t h e t h a n o l - w a t e r s o l u t i o n s . I n t h i s c a s e ,

s a m p l e s o f s o l u t i o n w e r e i n t e r m i t t e n t l y t a k e n b y

m e a n s o f a h y p o d e r m i c s y r in g e t h ro u g h a r u b b e r

s e p t u m o n t h e t o p o f th e c l o s e d f la s k. T h e e v o l u t i o n

o f e th a n o l c o n c e n t r a t i o n w i th t i m e w a s d e t e r m i n e d

b y a n a ly s i n g e a c h s a m p l e .

A n a l y t ic a l m e t h o d s a n d m a s s b a l a n c e s

C o n c e n t r a t i o n s o f e th a n o l , c a r b o h y d r a t e s a n d

g l yc e r o l w e r e m e a s u r e d b y H P L C u s in g a n A m i n e x

I o n E x c lu s i o n H P X - 8 7 H B i o R a d c o l u m n a n d

0 "0 1 N H 2 5 0 4 s o l u t i o n a t 6 0° C a s m o b i l e p h a s e a n d

a f l ow r a t e o f 0 .7 c m 3 m i n - l . E l u t e d m a t e r i a l s w e r e

d e t e c t e d u s i n g a W a t e r s d i f fe r e n t ia l r e f r a c t o m e t e r

d e t e c t o r 4 10 ( W a t e r s C h r o m a t o g r a p h y D i v is i on /

M i l l ip o r e C o r p o r a t i o n , 3 4 M a p l e S t r e e t /M i l f o r d ,

M A 0 1 7 5 7 ) .

T h e a d s o r p t i o n u p t a k e C s , g a d s o r b e d s o l u t e / g

s o l id a d s o r b e n t , w a s f o u n d b y a m a s s b a l a n c e o n t h e

a d s o r b e d s p e c i e s, a s s u m i n g w a t e r w a s n o t s i g ni fi -

c a n t l y a d s o r b e d .

W h e n u s in g d r y a d s o r b e n ts , t h e m a s s b a l a n c e

y i e l d e d t o t h e e q u a t i o n :

M ( C o - - C ,, )C s - ( 1 )

S ( 1 O 0 - - C e )

M a n d S b e i n g t h e m a s s ( g ) o f i n i ti a l s o l u t i o n a n d

d r y a d s o r b e n t , r e s p e c t iv e l y .

W h e n u s i n g w e t a d s o r b e n t , t h e f o l l o w i n g e q u a t i o n

w a s u s e d :

M C o - - ( M + S w - - S ) C eCs = (2 )

S ( I O 0 - C e)

S w b e i n g t h e m a s s ( g ) o f w e t a d s o r b e n t .

R E S U L T S A N D D I S C U S S I O N

K i n e t i c s

K i n e t i c e x p e r i m e n t s o n s i li c a li te a n d C M S - 5 A w e r e

c o n d u c t e d a t t w o i n i t i a l e t h a n o l c o n c e n t r a t i o n s :

C o = 1 0 " 1 5 % a n d 5 . 0 9 % ( w / w ) .

F o r b o t h a d s o r b e n ts , t h e d e c r e a s e o f e t h a n o l

c o m p o s i t i o n i n s o lu t i o n w a s s l i g ht ly h i g h e r w h e n t h e

i n it ia l s o l u t io n w a s m o r e c o n c e n t r a t e d . I n g e n e r a l ,

a n i n i t ia l f a s t a d s o r p t i o n o f e t h a n o l f o l l o w e d b y as e c o n d s l o w s t a g e w a s o b s e r v e d . A s i m i l a r p e r f o r m -

a n c e w a s f o u n d w h e n c h e c k i n g th e a d s o r p t i o n o n

Z S M - 5 . A s s u g g e s t e d f r o m t h e k i n e t i c p r o f i l e s , t h e

k i n e t i c r e s u l t s w e r e a s s a y e d t o f i t a f i r s t - o r d e r k i n e t i c

m o d e l :

C t = C o e - k ' (3 )

C t ( % w / w ) a n d k ( m i n 1 ) b e i n g t h e e t h a n o l

c o n c e n t r a t i o n i n s o l u ti o n a t t im e t ( m i n ) a n d t h e

k i n e t i c r a t e c o n s t a n t , r e s p e c t i v e l y .

B y l i n e a r i z a t io n o f e q n ( 3 ), a n a c c e p t a b l e f it w a s

a c h i e v e d f o r t h e t w o s u c c e s s i v e f i r s t - o r d e r s t e p s .T a b l e 1 s h o w s t h e l i n e a r f i tt e d p a r a m e t e r s , t o g e t h e r

w i t h e x p e r i m e n t a l r e s ul ts . F o r e t h a n o l a d s o r p t i o n o n

s i l ic a l i te a t C o = 1 0 - 1 5 % , a l o w k - v a l u e r e s u l t e d f o r

t h e s e c o n d s t e p , t h i s f a c t s h o w i n g t h a t t h e o v e r a l l

a d s o r p t i o n o c c u r s i n t h e f i r s t s t a g e .

T able 1 . K ine t i c s o f e thano l adsorpt ion o nto s i l i ca li t e and C M S-5A : exper im enta l re su l t s and l inear param eters f it t ed toa tw o- s tage f i r s t order m ode l

S i l ica l i te S i l ica l it e CM S -5 A CM S -5 A

C t t C t t C t t C t t

10.15 0 5"09 0 10-15 0 5"09 09.92 5 4.92 8 10.05 5 4"85 59.75 15 4.81 23 9.93 10 4.71 209.73 35 4.78 39 9.63 50 4.63 359.75 70 4.75 57 9.51 65 4.53 529.79 80 4.74 72 9.50 85 4.49 839"78 110 4.73 90 9.46 105 4.48 1079"76 125 4.71 500 9"40 144 4.42 1379"73 500 9.36 500 4-32 500

C o n s t a n t s o f e q n ( 3 )S t e p 110.15 > C t > 9"75k = 2-55 x 1 0 -3

S t e p 2Ct < 9-75k = 1.26 x 10 .5

C o n s t a n t s o f e q n ( 3 )S t e p 1

5"09 > C t > 4"78k = 2"37 x 10 -3

S t e p 2Ct _< 4-78

k = 1.33 x 10 -4

C o n s t a n t s o f e q n ( 3 )S t e p 1

10.15 > C t > 9"70k = 2"02 x 10 3

S t e p 2Ct < 9-70

k = 2.70 x 10 4

C o n s t a n t s o f e q n ( 3 )S t ep 1

5.09 > Ct > 4.71k = 5.74 x 10 3

S t e p 2Ct < 4.71

k = 4 .80 x 1 0 -4

Page 3: Ethanol Adsorption

8/8/2019 Ethanol Adsorption

http://slidepdf.com/reader/full/ethanol-adsorption 3/4

Shor t communica t ion 77

T a b l e 2 . A d s o r p t i o n i s o t h e r m s o f e t h a n o l o n t o s i li c a l it e , C M S - 5 A a n d Z S M - 5 a t 2 9 8 K : e x p e r i m e n t a l r e s u l t s a n d

L a n g m u i r - ty p e a d s o r p t i o n p a r a m e t e r s

Silicalite CMS-5A ZSM-5

C~ C~ C~ C¢ Cs C~

1.274 0-016 0.322 0.032 0"365 0.0232-753 0.025 0.753 0.039 0.739 0"0364-700 0.034 2.144 0"055 1'641 0"0457"778 0"051 4.222 0.074 0.614 0.052

11.548 0.056 6.164 0.089 5"539 0'05614.609 0.064 9.705 0.107 7"576 0"05722-109 0.065 13.685 0" 116 13"692 0.05829-704 0.066 26.502 0.115 25"418 0.06440-484 0.072 30.323 0"116 28.921 0"06849-656 0.075 33"078 0.117 39.309 0-071

Langmuir parameters Langmuir parameters Langmuir parametersa = 0.015 a = 0"058 a = 0-095b = 0"179 b = 0"464 b = 1'437Norm = 0"008 Norm = 0-023 Norm = 0-009

Langmuir equation C~ = a'Ce/(1 + b'Ce).

E q u i l i b r i u m

A d s o r p t i o n o f e t h a n o l

Ethanol adsorption equilibrium results on to silica-

lite, ZSM-5 and CMS-5A from ethanol-water

mixtures are given in Table 2. The shape of the

isotherms displays the adsorption type favourable in

all cases. Therefore, a Langmuir-type equation was

used to represent equilibrium adsorption. Values of

model parameters, a and b, were determined by

fitting the experimental data to the proposed

equation, using the program SigmaPlot ScientificGraphing System. The magnitude of the norm is

also shown in Table 2.

The asymptotic uptakes at ethanol adsorption

equilibrium, a / b , increase in the order: 0-068

(ZSM-5)<0.084 (silicalite)<0.126 (CMS-5A). The

calculated saturation capacities of silicalite and

ZSM-5 are smaller than those given by Farhadpour

(Farhadpour & Bono, 1988) and Milestone

(Milestone & Bibby, 1983), respectively, for the

same systems at similar temperatures: 0-131g

ethanol/g microcrystalline silicalite and 0-12 g

ethanol/g microcrystalline ZMS-5. The discrepancy

might be due to the use of pelletized adsorbents,which diminishes the hyd rophobicity by the presence

of the agglomerant. The content of A1203 in the

adsorbent ZSM-5, even while low, could justify the

observed capacity difference between ZSM-5 and

silicalite.

Concerning the CMS-5A equilibrium adsorption

data, we have not found any references in the litera-

ture. For the purpose of comparison, Lee and Wang

(1982) found an adsorption capacity value of 0.13 g

ethanol/g adsorbent for the adsorption of ethanol on

to a conventional activated carbon.

A d s o r p t i o n o f g lu c o se , f r u c to s e a n d g l yc e ro l

An experimental adsorption study of the systems

glucose-water, fructose-water and glycerol-water

was made. No measurable adsorption of glucose,

fructose and glycerol on silicalite and ZSM-5 was

found. However, a maximal adsorption of glucose

(0"011g glucose/g adsorbent), fructose (0.010g

fructose/g adsorbent) and glycerol (0-014 g glycerol/g

adsorbent) on CMS-5A was found.

The non-adsorption of substrate, together with a

good selectivity for ethanol, make the use of silica-

lite or ZMS-5 as sorbents in removing ethanol from

fermentation broths attractive. The CMS-5A sieve

shows minimal adsorption of substrate. We alsochecked the multicomponent adsorption of ethanol,

glucose and fructose on to this adsorbent. The

results (not shown) indicated that the adsorption of

ethanol did not decrease significantly from the

binary to the multico mponent, while the ad sorption

of the substrates glucose and fructose in the multi-

component system was even lower than in their

respective binary systems. In conclusion, the adsor-

bents screened in this work seem to be promising to

use in ethanol fementation processes. Nevertheless,

we should stress that the results of this preliminary

study correspond to batch processes and these donot mimic the conditions which would be found in a

real fermentation. Further work would be needed to

examine aspects of mass transfer.

R E F E R E N C E S

Bravo, P. & Gonz~ilez, G. (1991). Continuous ethanolfermentation by immobilized yeast cells in a fluidized-bed reactor. J. Chem . Tech. Biotechnol. , 52, 127-134.

Cysewski, G. R. & Wilke, C. R. (1977). Rapid ethanolfermentat ions using vacuum and cell recycle. Biotechnol.Bioeng., 19, 1125-1143.

Farhadpour, F. A. & Bono, A. (1988). Adsorption fromsolution of nonelectrolytes by microporous crystallinesolids: ethanol-water/silicalite system.Journal of Colloidand Interface Science, 124, 209-227.

Page 4: Ethanol Adsorption

8/8/2019 Ethanol Adsorption

http://slidepdf.com/reader/full/ethanol-adsorption 4/4

78 Short communication

F in n , R . K . & Ram al in g am , A . (1 9 77 ) . Th e v acu fe rmp r o c e s s : a n e w a p p r o a c h t o f e r m e n t a t i o n a l c o h o l .Biotechnol. Bioeng., 1 9 , 5 8 3 -5 8 9 .

Lee , S . S . & Wan g , H . Y . (1 9 8 2 ) . Rep ea t ed f ed -b a t chrap id f e rmen ta t i o n u s in g y eas t ce l l s an d ac t i v a t edcarb o n ex t r ac t i o n sy s t e r r t Biotechnol. Bioeng. Symp., 12 ,2 2 1 - 2 3 1 .

L e n c k i , R . W . , R o b i n s o n , C . W . & M o o - Y o u n g , M .( 1 98 3 ). O n - l i n e e x t r a c t i o n o f e th a n o l f r o m f e r m e n t a t i o nb r o t h s u s i n g h y d r o p h o b i c a d s o r b e n t s Biotechnol.Bioeng. Symp., 1 3 , 6 1 7 -6 2 8 .

Le to u rn eau , F . & Vi ll a , P . ( 1 98 7 ) . S acch aro m y ces y eas tg r o w t h o n b e e t m o l a s se s e f f e c t s o f s u b s tr a t e c o n c e n t r a -t ion on alcohol tox ici ty . Biotechnol. Letters, 9 , 5 3 -5 8 .

M aio re l l a , B . L . , B l an ch , H . W. & Wi lk e , C . R . (1 9 8 4 ) .E c o n o m i c e v a l u a t i o n o f a l t e r n a t i v e e t h a n o l f e r m e n t a -t i o n p ro cesses , Biotechnol. Bioeng., 26 , 1003-1025 .

M i l es to n e , N . B . & Bib b y , D . M . (1 9 8 3 ) . Ad so rp t i o n o fa l co h o l s f ro m aq u eo u s so lu t i o n b y ZS M -5 . J . Ch em .

Tech. Biotechnol., 3 4 A, 7 3 -7 9 .M i n e r , M . & G o m a , G . ( 1 9 8 2) . E t h a n o l p r o d u c t i o n b y

ex t r ac t i v e f e rmen ta t i o n . Bio technol . B ioeng . , 24 ,1 5 6 5 -1 5 7 9 .

P i t t , W. W. , Haag , G . L . & Lee , D . D . (1 9 8 3 ) . Reco v eryo f e t h a n o l f r o m f e r m e n t a t i o n b r o t h s u s i n g s e l e c t i v es o r p t i o n - d e s o r p t i o n . Biotechnol. Bioeng., 25 , 123-131 .

A. Cart6n, G. Gonz~i lez Benito*,

J . A. Rey & M. de la Fuente

Department of Chemical Engineering,Faculty of Sc iences, University o f Valladolid,47011 Valladolid, Spain

(Rec e iv ed 1 4 Ju ly 1 9 9 7; r ev i sed v e r s io n r ece iv ed6 F eb ru ary 1 9 9 8 ; accep t ed 1 2 F eb ru ary 1 9 9 8 )

* A u t h o r t o w h o m c o r r e s p o n d e n c e s h o u l d b e a d d r e s s e d .