estimating 0

18
Estimating 0 Estimating the proportion of true null hypotheses with the method of moments Jose M Muino. Email: [email protected]

Upload: brinly

Post on 09-Jan-2016

26 views

Category:

Documents


0 download

DESCRIPTION

Estimating  0. Estimating the proportion of true null hypotheses with the method of moments. By Jose M Muino. Email: [email protected]. The objective. Objective - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Estimating   0

Estimating 0

Estimating the proportion of true null hypotheses with the method of moments

By Jose M Muino. Email: [email protected]

Page 2: Estimating   0

The objective

Objective To obtain some information (0 and moments)

to help in the construction of the critical region in a multiple hypotheses problem

The situation: Low sample size The distribution under the null hypothesis is

unknown But the expectation of the null distribution is

known

Page 3: Estimating   0

Definitions

-2 2 4 6

0.1

0.2

0.3

0.4

t

)(1 Tf Tf0 )()1()( 1000 TfTfTg

Let Ti, i = 1, . . . ,m, be the test statistics for testing null hypotheses H0,i based on observable random variables.

Assume that H0,i is true with probability 0 and false with probability (1- 0)

Assume Ti follows a density function f0(T) under H0,i and f1(T) if H0,i is false.

Assume that the first m0 =m*0 H0,i are true, and the next m1 =m*(1-0 ) H0,i are false

)(on distributi theofmoment central thedenotes

)(on distributi theofmoment raw thedenotes

)(,

)(,

xjc

xjth

xj

thxj

Page 4: Estimating   0

The idea

)()1()( 1000 TfTfTg

)(,10,10)(,1 10)1( TfTfTg

)(,20,202 10)1( TfTf ccd

Define:

20

20)(,22 )(1,10,1

)1(TfTfTgd

Then:

)(,2)(,1)(,12

)(,12

)(,22

)(,120

002 TgTfTgTf

TgTg

d

d

)(,1)(,1

)(,2)(,1)(,12)(,1

0

0

1

TgTf

TgTfTgTf

d

Page 5: Estimating   0

The estimators

)(,2)(,1)(,12

)(,12

)(,22

)(,120

002 TgTfTgTf

TgTg

d

d

)(,1)(,1

)(,2)(,1)(,12)(,1

0

0

1

TgTf

TgTfTgTf

d

)(,20,202 10)1( TfTf ccd

m

iicm

d1

,22 ˆ1ˆ

)(,1 0 TfAssumed known

)(,2

)(,1

Tg

Tg

2)(,2

)(,1

iTg

iTg

Tm

Tm

Page 6: Estimating   0

Any moment

Because:

Then:

Page 7: Estimating   0

Estimators

Sample levelTest value level

m

ijij c

md

1,ˆ

m

i

jiTgj T

m 1)(,

Page 8: Estimating   0

Example: The mean value as test statistic

The properties of the estimators can be studied by taking Taylor series.

The properties will be illustrated with the example of the mean value as test statistic

Testing m hypotheses regarding m observed samples xi,j, i=1,…m, j=1,…n, using as test statistic the mean of the observations

ii xT 0:

0:

1

0

i

i

H

H

Page 9: Estimating   0

Properties

Assuming independence

m

ijij c

md

1,ˆ

1ˆ if

Page 10: Estimating   0

Properties

Assuming independence

0ˆ if jd

Page 11: Estimating   0

Properties

Assuming independence

Page 12: Estimating   0

Numerical Simulations

m0=450,m1=50, H0->N(0,1), H1->N(1,1)(2000 simulations)

0 10 20 30 40sample size

-0.025

0

0.025

0.05

0.075

0.1

0.125

0.15

saib

a

0B

0S

0

0

0

0 10 20 30 40sample size

0

0.01

0.02

0.03

0.04

0.05

dradnatsnoitaived

b

0B

0S

0

0

0

)/5,2(

)/5,0(

40,...,2

500

1000

1

0

1

0

nNTf

nNTf

n

m

m

5000 simulations

Page 13: Estimating   0

Numerical Simulations

0 10 20 30 40sample size

0

0.05

0.1

0.15

0.2

0.25

saib

a

B

S

3

2

1

0 10 20 30 40sample size

0

0.02

0.04

0.06

0.08

dradnatsnoitaived

b

B

S

3

2

1

)5,2(

)5,0(

40,...,2

500

1000

1

0

1

0

NTf

NTf

n

m

m

5000 simulations

Page 14: Estimating   0

From moments to quantiles

A family of distributions (eg: Pearson family) can be used to calculate the quantiles

)/1,4( )/1,0( 5000 15000 1010 nNTfnNTfmm

error type I

  n=3 n=3 n=4 n=4 n=5 n=5

  MM Classical MM Classical MM Classical

0,5 0,487 0,499 0,493 0,5 0,496 0,499

0,1 0,096 0,099 0,097 0,099 0,098 0,099

0,05 0,056 0,049 0,052 0,049 0,051 0,049

0,01 0,022 0,009 0,014 0,01 0,012 0,009

0,001 0,01 0,001 0,003 0,001 0,002 0,0009

100 simulations

Page 15: Estimating   0

From moments to quantiles

)/1,4( )/1,0( 10000 10000 1010 nNTfnNTfmm error type I

  n=3 n=3 n=4 n=4 n=5 n=5

  MM Classical MM Classical MM Classical

0,5 0,476 0,499 0,489 0,5 0,494 0,5

0,1 0,096 0,099 0,096 0,099 0,097 0,1

0,05 0,063 0,049 0,054 0,049 0,052 0,05

0,01 0,038 0,009 0,019 0,01 0,015 0,01

0,001 0,029 0,0009 0,007 0,001 0,003 0,001

error type I

  n=3 n=3 n=4 n=4 n=5 n=5

  MM Classical MM Classical MM Classical

0,5 0,489 0,5 0,495 0,5 0,496 0,5

0,1 0,097 0,1 0,098 0,099 0,098 0,1

0,05 0,054 0,05 0,052 0,049 0,051 0,05

0,01 0,018 0,01 0,013 0,01 0,012 0,01

0,001 0,006 0,0009 0,002 0,001 0,002 0,001

)/1,4( )/1,0( 2000 18000 1010 nNTfnNTfmm

Page 16: Estimating   0

Advantages

Combine information from sample and test level.

No assumptions about the shape of the distribution (finite moments required)

Analytical solution Properties can be obtained Estimator can be improved

Page 17: Estimating   0

Disadvantages

Different estimator for different test statistic

Estimators of the central moments of the test statistics are required

The estimation can be outside of the parameter space

Page 18: Estimating   0

Thanks for your attention!!

Questions?, Suggestions?

Or write me at:[email protected]

Work funded by Marie Curie RTN: “Transistor” (“Trans-cis elements regulating key switches in plant development”)