eric benton department of physics oklahoma state university, stillwater, ok 74078 usa

31
The Use of Accelerator Beams for Calibration and Characterization of Solid State Nuclear Track Detectors Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Upload: eliot

Post on 22-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA. The Use of Accelerator Beams for Calibration and Characterization of Solid State Nuclear Track Detectors. Uses of Accelerators for SSNTD Research. Calibration/Determination of NTD sensitivity - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

The Use of Accelerator Beams for Calibration and Characterization of Solid State Nuclear

Track Detectors

Eric BentonDepartment of Physics

Oklahoma State University, Stillwater, OK 74078 USA

Page 2: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Uses of Accelerators for SSNTD Research

• Calibration/Determination of NTD sensitivity

• Space Radiation Photoreaction and Dosimetry (calibration, intercomparison of detectors from different labs, assessment of shielding materials)

• Cosmic Ray (Astrophysics) Research

• Nuclear and Particle Physics

• Neutron Dosimetry

• Air Crew Dosimetry

• etc.

Page 3: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Accelerators useful for SSNTD Research

Accelerator must produce particles that will result in tracks in CR-39 PNTD

• Tracks formed by primary particles (LETkeV/m)– 12 MeV Protons – 200 MeV -particles– ions of Z6 of all energies

• Tracks formed by secondaries produced in nuclear interactions between primaries and heavy target nuclei

– high energy protons– neutrons

• Range of particle in NTD must be sufficient to leave visible track after etching...low energy limitation.

Page 4: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Useful to (arbitrarily) group Accelerators by Beam Energy

Primary Particles form Tracks• Very High Energy Heavy Ion Accelerators• High Energy Heavy Ion Accelerators• Medium Energy Heavy Ion Accelerators• Low Energy Heavy Ion/Proton Accelerators

Secondary Particles Produce Tracks• Medium to High Energy Proton Accelerators• Spallation Neutron Sources

Page 5: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Very High Energy Heavy Ion Accelerator Facilities

Accelerator Institution Location Zproj Eproj (GeV/nuc)

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL)

New York, USA 1 79

250 100

Proton Synchroton (PS) CERN Geneva, Switzerland

1-82 26

Super Proton Synchroton (SPS) CERN Geneva, Switzerland

1-82 ~200

• These facilities can accelerate heavy ions (Z>1) for use in SSNTD studies, but rarely do.

• Difficult to get beam time for SSNTD experiments on these accelerators.

Page 6: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

High Energy Heavy Ion Accelerator Facilities• Exemplified by the BEVALAC at Lawrence Berkeley

Laboratory (closed in 1992)

• Probably the most useful for SSNTD work

• Particles: 1 Z 92 • Energies: 100s MeV to 1-2 GeV• LETto keV/m

• Current (SSNTD Friendly) Facilities include:

• NIRS HIMAC in Chiba, Japan

• GSI SIS in Darmstadt, Germany

• JINR Phasotron/Nuclotron in Dubna, Russia

Page 7: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

High Energy Heavy Ion Accelerator FacilitiesAccelerator Institution Location Zproj Eproj

(MeV/nuc) Alternating Gradient Synchroton (AGS)

Brookhaven National Laboratory

New York, USA 1-79 600-30,000

Heavy Ion Medical Accelerator in Chiba (HIMAC)

National Institute of Radiological Sciences

Chiba, Japan 1-54 100-800

Heavy Ion Research Facility in Lanzhou (HIRFL)

Institute of Modern Physics Lanzhou, China 6-92 400-900

Heidelberger Ionenstrahl-Therapie (HIT)

Universitätsklinikum Heidelberg

Heidelberg, Germany

1 6

220 430

Hyogo Ion Beam Medical Center

Hyogo Ion Beam Medical Center

Hyogo, Japan 1,2 6

70-230 70-320

NASA Space Radiation Laboratory (NSRL)

Brookhaven National Laboratory

New York, USA 1-79 100-1000

Nuclotron Joint Institute for Nuclear Research (JINR)

Dubna, Russia 1-26 6000

Phasotron Joint Institute for Nuclear Research (JINR)

Dubna, Russia 1-16 2-16

9000

SIS-18 Gessellschaft für Schwerionenforschung (GSI)

Darmstadt, Germany

1-92 50-2000

CNAO National Centre of Oncological Hadrontherapy

Pavia, Italy 1 6

430

ETOILE National Hadrontherapy Centre

Lyon, France 1 6

50-400

MedAustron MedAustron Wiener Neustadt, Austria

1 6

400

Page 8: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Medium Energy Heavy Ion Accelerator Facilities

• Useful for SSNTD work

• Particles: 1 Z 92 • Energies: 10’s MeV to 100 MeV• LETto keV/m

• Lower Energy Shorter Range Changing LET

• Current Facilities include:

• GANIL in Caens, France

• NSCL at Michigan State University, USA

Page 9: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Medium Energy Heavy Ion Accelerator Facilities*

Accelerator Institution Location Zproj Eproj (MeV/nuc)

88” Cyclotron Lawrence Berkeley National Laboratory (LBNL)

Berkeley, CA USA 1-8 55

Aarhus STorage RIng in Denmark (ASTRID)

Institute for Storage Ring Facilities, U. of Aarhus

Aarhus, Denmark 1-54 <165

Accelerateur Groningen-Orsay (AGOR)

Kernfysisch Versneller Instituut

Groningen, Netherlands

1-82 8-90

Crocker Nuclear Laboratory Cyclotron

University of California at Davis

Davis, CA USA 1-2 70

Grand Accelerateur National D’Ions Lourds (GANIL)

GANIL Caen, France 6-92 25-95

iThemba Cyclotron iThemba Laboratory for Accelerator-Based Sciences

Somerset West, South Africa

1-54 10-200

TAMU Cyclotron Texas A&M University (TAMU)

College Station, TX USA

1-92 70

National Superconducting Cyclotron Laboratory (NSCL)

Michigan State University East Lansing, MI USA

1-92 90

Ring Cyclotron Institute for Physical and Chemical Research (RIKEN)

Wako Saitmama, Japan

1-28 ~210

Superconducting Cyclotron INFN - Laboratori Nazionali del Sud (LNS)

Catania, Italy 1-92 8-100

The Svedberg Laboratory (TSL) Cyclotron

Uppsala Universitet Uppsala, Sweden 1-54 25-180

TIARA AVF Cyclotron Takasaki Advanced Radiation Research Institute

Takasaki, Japan 1-79 5-90

*not exhaustive list

Page 10: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Low Energy Heavy Ion Accelerator Facilities

• Limited usefulness in SSNTD work

• Particles: 1 Z 92 • Energies: 1 to 10 MeV• LETkeV/m

• Low Energy Very Short Range Changing LET

• Low Energy Very Short Range over etch tracks

• Current Facilities include:

• GSI Unilac in Darmstadt, Germany

• BNL Tandem Van de Graaff in New York, USA

Page 11: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Low Energy Heavy Ion Accelerator Facilities*

Accelerator Institution Location Zproj Eproj (MeV/nuc)

Argonne Tandem Linac Accelerator System (ATLAS)

Argonne National Laboratory (ANL)

Argonne, IL USA 3-92 <~8

Bonn Isochronus Cyclotron Helmholtz - Institut für Strahlen- und Kernphysik

Bonn, Germany 1-8 6

CYCLONE110 (CYClotron de LOuvain-la-NEuve)

Centre de Recherche du Cyclotron, Université catholique de Louvain

Louvain, Belgium 1 2-18

15

HIMAC Linac National Institute of Radiological Sciences (NIRS)

Chiba, Japan 2-54 8-16

K130 Cyclotron University of Jyväskylä Jyväskylä, Finland 1-36 5-38 2.5-12.5

Le Cyclotron Centre d'Etudes et de Recherches par Irradiation

Orléans, France 1 2

80 27.5

Tandem Van de Graaff Brookhaven National Laboratory (BNL)

New York, USA 1-79 7-14

TANDEM-ALPI INFN - Laboratori Nazionali di Legnaro (LNL)

Legnaro, Italy 6-40 <90

Unilac Gessellschaft für Schwerionenforschung (GSI)

Darmstadt, Germany

1-92 6-12

*not exhaustive list

Page 12: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Some Fine PrintWhile accelerator might be capable of accelerating protons through U, often restricted to “menu” of beams.

Advertised Beams Available at NIRS HIMACAvailable

Ions Energy (MeV/nuc) Intensity

(particles/spill) He 100, 180, 230 <1.2 1010

C 100, 180, 230, 290, 350, 400, 430

<1.8 109

N 100, 180, 230, 290, 350, 400, 430

<1.5 109

O 100, 180, 230, 290, 350, 400, 430

<1.1 109

Ne 100, 180, 230, 290, 350, 400, 600

<7.8 108

Si 100, 180, 230, 290, 350, 400, 600, 800

<4.0 108

Ar 290, 400, 650 <2.4 108 Fe 400, 500 <2.2 108

Page 13: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

LET Calibration of CR-39 PNTD at NIRS HIMAC

350 MeV/n 84Kr424.5 keV/m

422 MeV/n 56Fe202 keV/m

450 MeV/n 40Ar93.7 keV/m

438 MeV/n 28Si57.4 keV/m

370 MeV/n 20Ne31.8 keV/m

270 MeV/n 12C13.6 keV/m

Page 14: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Bragg Curves measured by HIMAC inline Ion Chamber/Binary Filter

0.0 5.0 10.0 15.0 20.0 25.0Range in H2O (cm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Dos

e R

atio

(IC

b/IC

f)

270 MeV/n 12C370 MeV/n 20Ne438 MeV/n 28Si450 MeV/n 40Ar422 MeV/n 56Fe350 MeV/n 84Kr

Page 15: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Measured Track Distribution in NIRS HIMAC Multi-ion Detector

0.0 0.5 1.0 1.5 2.0 2.5Reduced Etch Rate Ratio (VR - 1)

0

20

40

60

80

100

120 370 MeV/n 20Ne

438

MeV

/n 28

Si

450 MeV/n 40Ar422 MeV/n 56Fe

350 MeV/n 84Kr

270

MeV

/n 12

C

Page 16: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Typical Response Function for CR-39 PNTD*

10-3 10-2 10-1 100 101

Reduced Etch Rate Ratio (VR - 1)

100

101

102

103

LET 2

00C

R-3

9 (k

eV/

m)

where y = Log(LET) and x = Log(VR - 1)

10.6 GeV/n 197Au135 MeV/n 131Xe

350 MeV/n 84Kr

7.2 MeV p

388 MeV/n 12C277 MeV/n 12C

371.4 MeV/n 20Ne

437.2 MeV/n 28Si

1 GeV/n 56Fe600 MeV/n 56Fe

420.6 MeV/n 56Fe72.1 MeV/n 28Si

600 MeV/n 28Si447 MeV/n 28Si

5 GeV/n 56Fe

450 MeV/n 40Ar

y = 2.11 + 1.063x + 0.0845x2 - 0.1439x3 - 0.04289x4

*Batch 24 USF-4 from American Technical Plastics, Inc.

Page 17: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Converting LET200CR-39 to LETH20

100 101 102 103

Energy (MeV/amu)

1.2

1.3

1.4

1.5

LET

H2O

/LET

200C

R-3

9

1H4He12C16O20Ne24Mg28Si40Ar56Fe84Kr131Xe

Ratio of LETH20 to LET200CR-39 as a function of energy for several Z from 1 to 54

Obviously Ratio is not a constant (or unique).

Page 18: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Converting LET200CR-39 to LETH20

2 200Log( ) 0.1689 0.984 Log( 39)LET H O LET CR

10-1 100 101 102 103 104

LET200CR-39 (keV/m)

10-1

100

101

102

103

104

LET

H

2O (k

eV/

m)

1H4He12C16O20Ne24Mg28Si40Ar56Fe84Kr131Xe

Page 19: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

ICCHIBAN Project(InterComparison of Cosmic-rays with Heavy Ion

Beams At NIRS)Objectives of the ICCHIBAN Project

• Determine the response of space radiation dosimeters to heavy ions of charge and energy similar to that found in the galactic cosmic radiation (GCR) spectrum.

• Compare response and sensitivity of various space radiation monitoring instruments. Aid in reconciling differences in measurements made by various radiation instruments during space flight.

• Establish and characterize a heavy ion “reference standard” against which space radiation instruments can be calibrated.

Page 20: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

ICCHIBAN-4: Passive Dosimeter Exposures

Page 21: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

ICCHIBAN-4: 19-30 May 2003Blind Exposures60Co

g-rays

137Cs g-rays

4He 12C 20Ne 56Fe

1. 60Co g-rays 25 mGy

2. 137Cs g-rays 25 mGy

3. Helium 25 mGy

4. Space Simulation 10 mGy 1 mGy 1000 cm-2 1000 cm-2 1000 cm-2

5. Equal Dose 2 mGy 2 mGy 2 mGy 2 mGy 2 mGy

6. CR-39 Equal Fluence 1000 cm-2 1000 cm-2 1000 cm-2

7. 5 g/cm2 Al 1 mGy

8. Carbon 25 mGy

Page 22: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

ICCHIBAN-4: Blind No. 4 CR-39 PNTD

AT

I

ER

I

INP

JAX

A

NP

I

0.00.20.40.60.81.01.21.41.61.82.0

Dos

e (m

Gy)

012345678910

Dos

e Eq

uiva

lent

(mSv

)

Delivered Dose: 0.39mGy, Delivered Dose Eq.: 7.20mSv

Page 23: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

ICCHIBAN-4: Blind No. 4 Combined TLD/OSLD + CR-39 PNTD

0

2

4

6

8

10

12

14

16

18

20

Dos

e (m

Gy)

0

2

4

6

8

10

12

14

16

18

20

Dos

e Eq

uiva

lent

(mSv

)

ATI ERI ERI + KFKI JAXA

Delivered Dose: 12.15 mGy, Delivered Dose Eq.: 19.32 mSv

Page 24: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Proton and Carbon Beam Radiotherapy Accelerators

• ~30 Proton Cancer Treatment Centers operating worldwide

• ~10 more Proton Centers to become operation over next five years

• 4-5 Carbon Cancer Treatment Accelerators operating worldwide

• 2-3 Carbon Cancer Treatment Accelerators over next five years

Page 25: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Neutrons and High Energy ProtonsCR-39 PNTD exposed to 230 MeV Protons (LETkeV/m at the Loma Linda University Medical Center Proton Therapy Facility

All tracks are result of proton- and neutron-induced target fragment secondaries.

Page 26: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Measurement of Secondary Neutrons from Loma Linda Proton Beam using CR-39 PNTD

Page 27: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Integral LET Fluence Spectrum measured in CR-39 PNTD in TE Phantom outside the Loma

Linda Treatment Field

100 101 102 103

LETH2O (keV/m)

10-2

10-1

100

101

102

103

104

105P

artic

les(

> LE

T H

2O)/(

cm2 G

y p)

On Axis, 38.9 cm deep46.5 cm from beam, front edge26.5 cm from beam, 28.5 cm deep46.5 cm from beam, 28.5 cm deep

Page 28: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Comparison of MCNPX and CR-39 PNTD Results for Secondary Neutrons from Loma

Linda Proton Beam Off-Axis Distance (cm) Depth

(cm H2O) 0 11.5 26.5 46.5 100.0 0 8.0110-1

— 1.3310-2 2.6810-3

2.2610-3 3.8510-4

7.7310-4 3.1010-4

1.5110-4 1.1210-4

15.0 8.1610-1 —

1.8010-2 2.7010-3

7.8310-4 1.0110-4

2.0110-4 1.8310-4

4.6110-5 9.3710-6

28.9 1.0010-0 —

2.0410-2 6.9210-3

5.6010-4 7.6510-5

1.5310-4 6.8210-5

2.0210-5 9.6910-6

38.9 2.9610-3 1.0810-3

1.7010-3 2.8310-3

4.8810-4 4.0410-5

1.3110-4 4.0710-5

1.5710-5

1.0310-6

(all values Gy/Gyprotons)top value - MCNPX total physical dose relative to prescribed dosebottom value - CR-39 physical dose (LETH2O 5 keV/m) relative to prescribed dose

Page 29: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Concluding Remarks• SSNTDs and Accelerators make up a “two-way street”

• Accelerators are useful in calibrating and investigating SSNTDs

• SSNTDs useful in characterizing Accelerator beams

• Together, both can be used for other science (e.g. nuclear physics measurements, ICCHIBAN)

• High Energy Heavy Ion Accelerators are often the most useful:

• Limited number of facilities

• New opportunities due to growth of Carbon Radiotherapy

• Beam time (often at no cost) is available through a proposal submission/review process.

Page 30: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

Acknowledgements

• Nakahiro Yasuda, Yukio Uchihori, and Hisashi Kitamura of the National Institute for Radiological Sciences, Chiba, Japan

• Jack Miller of Lawrence Berkeley National Laboratory

• Dieter Schardt of Gessellschaft für Schwerionenforschung (GSI)

• Michael Moyers of Loma Linda University Medical Center

Page 31: Eric Benton Department of Physics Oklahoma State University, Stillwater, OK 74078 USA

High Energy Spallation Neutron Facilities Facility Institution Location Max. Neutron

Energy CERN EU Reference Field (CERF)

CERN Geneva, Switzerland

200 GeV

ISIS Rutherford Appleton Laboratory Oxford, UK 800 MeV Los Alamos Neutron Science Center (LANSCE)

Los Alamos National Laboratory (LANL)

Los Alamos, NM USA

800 MeV

Materials and Life Science Experimental Facility (MLF)

Japan Proton Acclerator Research Complex (J-PARC)

Tokai, Japan 3 GeV

Spallation Neutron Source (SNS)

Oak Ridge National Laboratory (ORNL)

Oak Ridge, TN USA

1 GeV

Swiss Spallation Neutron Source (SINQ)

Paul Scherrer Institute Villigen, Switzerland

570 MeV