engrg new century08

49
Engineering in the 21st Century Educating Engineers for the New Century— Challenges and Opportunities Gretar Tryggvason Worcester Polytechnic Institute University of Iceland—Division of Engineering March 6, 2008

Post on 18-Oct-2014

1.825 views

Category:

Education


0 download

DESCRIPTION

I have given this talk a few times, including at HUST in Wuhan, Iceland, and in the US. It includes a discussion of the ideas presented in the JOM paper.

TRANSCRIPT

Page 1: Engrg New Century08

Engineering in the 21st Century

Educating Engineers for the New Century—

Challenges and Opportunities

Gretar Tryggvason Worcester Polytechnic Institute

University of Iceland—Division of Engineering March 6, 2008

Page 2: Engrg New Century08

Engineering in the 21st Century

The need for change in engineering education Background Context

How does engineering education need to change? The Engineer of the 21st Century Examples

Outline

Page 3: Engrg New Century08

Engineering in the 21st Century

• Ph.D. Brown University, Division of Engineering, 1985

• Professor and Head, Department of Mechanical Engineering. Worcester Polytechnic Institute, MA, since 2000.

• Professor of Mechanical Engineering and Applied Mechanics. University of Michigan, Ann Arbor. 1985 - 2000

• Nearly 100 journal papers, about 1500 citations • Over 20 PhD students • Several million dollars in research funding from US federal agencies

and corporations

• Editor-in-chief, Journal of Computational Physics (1000 submissions per year; Impact Factor > 2.3)

• Associate Editor, International Journal of Multiphase Flow • Chair. Governing Board of the International Conference of Multiphase

Flow, 2007-2010.

• The 2005 Computational Mechanics Award from the Computational Mechanics Division of the JSME

• Fellow of the American Society of Mechanical Engineers • Fellow of the American Physical Society

Gretar Tryggvason—who am I?

Page 4: Engrg New Century08

Engineering in the 21st Century

Background

Page 5: Engrg New Century08

Engineering in the 21st Century

We now live in a “flat” (or “spiky”) world where the economy is “global,” “exponential,” and “entrepreneurial,” and where innovation and the ability to “get things done” are the most valuable attributes of individuals

Curtis R. Carlson, William W. Wilmot, Innovation: The Five Disciplines for Creating What Customers Want. 2006

Carl J. Schramm. The Entrepreneurial Imperative: How America's Economic Miracle Will Reshape the World (and Change Your Life). 2006

Thomas L. Friedman. The World is Flat: A Brief History of the Twenty-First Century. 2005

Challenges

Page 6: Engrg New Century08

Engineering in the 21st Century

The globalization of the world economy along with unprecedented connectivity has changed the way engineering and manufacturing is being done. The global growth in education makes it now possible to locate engineering and manufacturing anywhere, usually where the cost is lowest. Many traditional advantages based on location and culture are rapidly disappearing.

Challenges

Page 7: Engrg New Century08

Engineering in the 21st Century National Science Foundation Workshop

"The 5XME" NSF Workshop: Transforming Mechanical Engineering Education and Research in the USA, May 10-11, 2007

The goal of the workshop was to lay the foundation for transformative change in mechanical engineering education and research in the USA. It is motivated by the fact that the science-based engineering education taught at our engineering schools has become a commodity, available to students all over the world, including low-wage markets.Global companies employ such world-class engineering talent, often at 20% of the cost in the USA, and are moving manufacturing, design and even research activities to such locations.The challenge for engineering schools in the USA is how to educate a mechanical engineer that provides five times the value added when compared to the global competition, i.e., the "5XME.”

Organized by Prof. Galip A. Ulsoy, University of Michigan

Attended by chairs of top US ME programs

Page 8: Engrg New Century08

Engineering in the 21st Century

• Engineering graduates command some of the highest starting salaries of all undergraduates

• US corporations, universities, and research laboratories must bring in a large number of foreign born — and often foreign educated — engineers to meet their needs

• Rapid economic development in the worldʼs most populated countries will require a large number of engineers

Everything suggests that we will continue to need large number of people with the ability to create “things”

Challenges

Page 9: Engrg New Century08

Engineering in the 21st Century

The US is still the leader in technological innovations and the most desirable place to pursue a technical career. But, to keep the lead it is necessary to: Educate a sufficiently large number of technologically proficient people to keep creating new products and opportunities. Provide an education that prepares young engineers to work in the modern world and to compete successfully with peers educated in other countries. With technical skill being available in abundance at a lower cost than in the US, our education must focus on aspects that give all of our students an competitive advantage.

Challenges

Page 10: Engrg New Century08

Engineering in the 21st Century

http://chronicle.com/premium/stats/freshmen/2007/data.htm#major

from: http://money.cnn.com

Engineering students are offered some of the highest starting salaries of all college graduates—yet, interest in engineering remains low!

Data

Page 11: Engrg New Century08

Engineering in the 21st Century

On the average, over the long run, production of engineers has increased, but not fast enough to keep up with demand

Number of undergraduate degrees in engineering have not increased over the last 20 years

Graduation Numbers

Education Statistics 2006 Table 287

0

1000

2000

3000

4000

5000

6000

7000

1950 1970 1990 2010

Engineering Doctoral Degrees

0 5,000

10,000 15,000 20,000 25,000 30,000 35,000 40,000

1950 1970 1990 2010

Engineering Master's Degrees

0

20,000

40,000

60,000

80,000

100,000

120,000

1950 1970 1990 2010

Engineering & Engineering Technology

Bachelor's Degrees

Page 12: Engrg New Century08

Engineering in the 21st Century

Source: Noeth, R. J., Cruce, T., and Harmston, M. T., Maintaining a Strong Engineering Workforce, ACT Policy Report, (2003).

PERCENT OF TOTAL BACHELORʼS DEGREES GRANTED THAT ARE IN ENGINEERING

Source: Science & Engineering Indicators 2002

Although the absolute numbers show an increase in the number of graduates, the relative numbers do not

Graduation Numbers

Page 13: Engrg New Century08

Engineering in the 21st Century

Diversity

Currently only 20% of engineering graduates are women. Nationally, however, women make up over 50% of students enrolled in colleges. In law and medicine, for example, women now graduate in comparable numbers as men. If engineering could achieve a 50-50 ratio (keeping the guys!) then we would see over 50% increase in the total number of engineers produced every year.

Challenges

Page 14: Engrg New Century08

Engineering in the 21st Century

The student body is changing

Their background is different: Students now come into engineering with little hands-on knowledge, but often with extensive computer experience.

The faculty, of course, generally agree that their students do not work as hard as they used to, nor measure up in other ways to the previous generation.

As Socrates wrote: “Youth today love luxury. They have bad manners, contempt for authority, no respect for older people, and talk nonsense when they should be working.”

Students

Page 15: Engrg New Century08

Engineering in the 21st Century

The data suggests that we are wrong: Students entering college today are more socially conscious, drink less, get pregnant less frequently, and get higher test scores than college students twenty and thirty years ago (about the time when their professors were in college!).

Their attitudes are also different: Optimistic, cooperative team players, respectful of authority and more accepting of structure, close to parents, smart, believe in the future and see them selves at the cutting edge (Millennials Rising, 2000)

Students

Page 16: Engrg New Century08

Engineering in the 21st Century What Skills are Important?

Data from a University of Michigan 1992 survey

Number of Institutions have attempted to assess the utility of specific topics for the long term success of their students. The data presented here is typical.

Reference: G. Tryggvason, M. Thouless, D. Dutta, S. L. Ceccio, and D. M. Tilbury. “The New Mechanical Engineering Curriculum at the University of Michigan.” Journal of Engineering Education 90 (2001), 437-444.

Page 17: Engrg New Century08

Engineering in the 21st Century

First the current efforts need to be put into context

Page 18: Engrg New Century08

Engineering in the 21st Century

19th and first half of the 20th century: the professional engineer Early engineering programs focused on providing their graduates with considerable hands on training. However, mathematical modeling slowly increased as Applied Mechanics increasingly gained acceptance.

Define the Context

Page 19: Engrg New Century08

Engineering in the 21st Century

Second half of the 20th century: the scientific engineer In the the sixties, motivated by Sputnik but probably also by the successful harnessing of nuclear energy, engineering became much more science based. This has, to a large degree continued until the present time, although “design” content increased slowly. In the early nineties it was clear that more than science was needed and many schools started to emphasize non-technical skills such as teamwork and communications

Define the Context

Page 20: Engrg New Century08

Engineering in the 21st Century

The 21st century: The entrepreneurial engineer Skill will no longer be a distinguishing feature that commands high salaries. The ability to identify new needs, find new solutions, and to make things happen will be required of every successful engineer. SpaceShipOne

Tesla electric car

Segway

Sony Robot

Define the Context

Page 21: Engrg New Century08

Engineering in the 21st Century

Within each period, engineering education evolved. ABET criteria, for example, have stressed:

80’s: Focus on bringing design into the curriculum again

90’s: Focus on non-technical skills (including societal and global issues, ability to apply engineering skills, groups skills, and understanding of ethics and professional issues

00’s: Innovation and creativity, new technical disciplines such as bio and nano

The ABET criteria have had some impact: A recent report on the effect of ECE2000 found, for example, that between 1994 and 2004 the students understanding of societal and global issues, their ability to apply engineering skills, groups skills, and understanding of ethics and professional issues had improved.

Define the Context

Page 22: Engrg New Century08

Engineering in the 21st Century

“After World War I, the demands of industry for graduates with immediate utility forced more and more specialization, and the number of engineering disciplines expanded rapidly. Although there were occasional calls for a more general education, the laboratory became the place for teaching current industrial techniques. World War II helped swing the balance in the other direction. The war highlighted the shortcoming of engineering education, as people trained in physics were better suited to perform many of the tasks of new weapons development. Engineering education rapidly moved toward a much more fundamental approach, and in many cases the curriculum became the study of engineering science. The movement toward science continued until recent problems in the competitive position of many American companies in global markets has shown the disadvantage of neglecting industrial applications. There once again is movement in the schools to reemphasize engineering practice, including manufacturing techniques, and concepts such as quality and reliability of the product.”

L. P. Grayson, The Making of an Engineer, 1993

Define the Context

Page 23: Engrg New Century08

Engineering in the 21st Century

How must engineering education change?

Page 24: Engrg New Century08

Engineering in the 21st Century

Engineering education needs to accomplish two objectives:

•  Teach the students what engineers needs to know (statics, solid mechanics, thermodynamics, etc.)

•  Help the students start to think like engineers (to design, be creative, understand need, long and short time cost, social and environmental impact, communications, professional ethics, etc.)

The time to develop these skills in the undergraduate curriculum is very finite and since the first objective is obviously much easier (to define, accomplish and test), we have probably focused too much on that, at the expense of the second one. The “non-technical” professional skills are, however, just as important.

Engineering Education

Page 25: Engrg New Century08

Engineering in the 21st Century

• Knows Everything— Or rather, can find any information quickly and knows how to evaluate and use those information.

• Can do Anything — Understands the basics to the degree that he or she can quickly understand what needs to be done and acquire the tools needed

• Works with Anybody Anywhere — Has the communication skills, team skills, and understanding of global and current issues to work with other people

• Imagines and can make the Imagination a Reality — Has the entrepreneurial spirit and the managerial skills to identify needs, come up with new solutions, and see them through

The Entrepreneurial Engineer

Source: Tryggvason and Apelian, Journal of Metals, V.58, No.10, pp. 14-17 (2006)

Page 26: Engrg New Century08

Engineering in the 21st Century

• Knows Everything— Or rather, can find any information quickly and knows how to evaluate and use those information.

The Entrepreneurial Engineer

The Internet makes nearly every information accessible and the key skill is the ability to ask the right questions. However, the communalization of knowledge has made the user responsible for evaluating the quality of the information available. Living in the new world requires new approaches and new attitudes that we are only beginning to understand

Page 27: Engrg New Century08

Engineering in the 21st Century

• Can do Anything — Understands the basics to the degree that he or she can quickly understand what needs to be done and acquire the tools needed

The Entrepreneurial Engineer

Modern engineering tools free the engineer from the drudgery of routine calculations and allow him/her to analyses that would have been impossible just a decade or two ago. Thus, more tasks can become non-routine. This calls for mastery of the basics (fundamental principles and quantitative understanding), as well as the ability to use modern tools effectively.

Page 28: Engrg New Century08

Engineering in the 21st Century

• Works with Anybody Anywhere — Has the communication skills, team skills, and understanding of global and current issues to work with other people

The Entrepreneurial Engineer

The complexity of modern engineering designs and the speed by which they must be developed call for collaborations and teamwork. Working with people is more important than ever. The internet has made truly global businesses the norm and most engineers will need to work with people of diverse backgrounds.

Page 29: Engrg New Century08

Engineering in the 21st Century

• Imagines and can make the Imagination a Reality — Has the entrepreneurial spirit and the managerial skills to identify needs, come up with new solutions, and see them through

The Entrepreneurial Engineer

Seeing new opportunities and being able to see new ideas through has always been what the best engineers do. With the value of products increasingly moving to the concept stage, everybody must be exceptional!

Page 30: Engrg New Century08

Engineering in the 21st Century What we need to do—short term!

• Promote the role of engineers as creators of our modern Civilization (not just problem solvers and analysts)

• Make the first year as exciting as possible by allowing students to engage in exciting and meaningful projects immediately

• Blend strong technical preparation with creativity and entrepreneurship, including communication skills and understanding of customer needs

• Develop programs that the student identify with and that excite them (robotics, gaming)

Page 31: Engrg New Century08

Engineering in the 21st Century How engineering education will change

• Ensure that global awareness and experience is part of the preparation of every student

• Account for the fact that the show-stoppers of the future may not always be due to “laws of Nature.” (Social Sciences may be the “physics” of the 21 century!)

• Teaching fundamental sciences and engineering with a focus on providing the foundation for continuous learning and mastery of new skills. Defining foundations vs BOK.

• Prepare the students to “know all” and “be able to do everything”

Page 32: Engrg New Century08

Engineering in the 21st Century

Examples

Page 33: Engrg New Century08

Engineering in the 21st Century

  Established in 1865   220 full-time faculty   14 academic departments   2700 undergraduates   800 full and part time graduate

students (~30 Ph.D. per year)   A longstanding tradition in innovative

engineering education:

About WPI

The “WPI Plan”—established in the mid 70ʼs—emphasized projects and outcomes based curriculum, long before these concepts became part of the accreditation (ABET) requirements for all engineering programs

The WPI Global Perspectives Program, established more than two decades ago, currently provides over 60% of all WPI students with a global experience. The importance of including a global component in the education of engineering students is increasingly being recognized by other institutions

The recent BS in Robotics Engineering, the first in the Nation, is already attracting strong student interest

Many other WPI innovations, such as a relatively flexible curriculum, are widely strived for by other engineering schools

Page 34: Engrg New Century08

Engineering in the 21st Century

Innovation and Entrepreneurship

Page 35: Engrg New Century08

Engineering in the 21st Century

Many institutions offer courses and programs for interested engineering students. Those Include:

•  Stanford: EE203, The Entrepreneurial Engineer •  Cornell: ENGRI 127, Introduction to Entrepreneurship and

Enterprise Engineering •  Maryland: ENES 140, Discovering New Venues •  WPIʼs the Collaborative for Entrepreneurship & Innovation •  The Enterprise Program at Michigan Technological University,

Only Olin College requires Entrepreneurship for all students: AHS 1500 Foundations of Business and Entrepreneurship (freshman year)

Feland, John M., III. The entrepreneurial engineer: Educating tomorrow's innovator (special issue). International Journal of Engineering Education. 2005. v. 21, no. 2.

ENTREPRENEER: An ENTREPREneurial engiNEER http://entrepreneer.wordpress.com/

Innovation and Entrepreneurship

Page 36: Engrg New Century08

Engineering in the 21st Century

2008 ASME I•Show

Innovation Showcase OCTOBER 31, 2008 • BOSTON, MA in conjuction with ASME IMECE

2008 ASME Annual Meeting June 7-11, 2008

ENGINEER-TO-ENTREPRENEUR

MONDAY, JUNE 9 • 1:45 PM to 3:15 PM

Venture formation…licensing…bootstrapping…whatever your strategy, gain insight on developing the best path forward for leveraging your technology. Designed for the science, engineering, and technology communities, the Engineer-to-Entrepreneur session offers technology entrepreneurship basics and provides a framework for moving ideas toward commercializing. Topics to be discussed include idea validation, intellectual property issues & challenges, and finding the money.

Courses, textbooks, and sessions at professional meetings are starting to address the issues

Innovation and Entrepreneurship

Page 37: Engrg New Century08

Engineering in the 21st Century

Global Experience

Page 38: Engrg New Century08

Engineering in the 21st Century

Global Programs within Engineering Schools:

Major Efforts: • Purdue University • University of Rhode Island • Georgia Tech • RPI (plans) • WPI

Others: UT Austin, UCI, Duke, Embry Riddle and many others

Not including programs mainly to serve foreign populations (MIT Singapore; Michigan in China; etc)

Global Experience for Engineering Students

Page 39: Engrg New Century08

Engineering in the 21st Century

The WPI Global Perspectives Program operates on a “massive” scale. Currently over 60% of our students (~500 per year) go abroad for project work and we expect the number to rise

The projects are highly structured and performed in teams under the supervision of a WPI faculty member in close collaboration with the sponsor

Faculty dedication to the projects program is the key. Cost is not a (major) obstacle

The program is not a study abroad (or a “wandering scholar”) program! As the program has grown, risk management has become a more pressing issue

The Institute has implemented an extensive program to protect the student, the faculty, the Institute and the sponsor

Extensive pre-planning and checking of facilities and attention to communications (students carry cell phones, for example)

So far no major problems, although minor accidents and illnesses are not uncommon

WPI Global Perspectives Program

Page 40: Engrg New Century08

Engineering in the 21st Century

Abstract: Our project focused on determining the feasibility of implementing a micro-hydroelectric system as a reliable source of electricity to the remote Karen village of Kre Khi, in northwest Thailand. The intended use of the electricity is to improve the education within the village. While in Kre Khi, we conducted fieldwork which involved determining the attitudes of villagers towards electricity, surveying a nearby stream, and calculating the potential power output in order to determine what educational tools could be used.

Micro-Hydroelectric Power in Kre Khi, Thailand (2002) President's IQP Award, First Place 2002 Students: Sonja Kristina Bjork, Benjamin C. Charbonneau, Jaclyn Mary Maiorano, Andrew Paul West Advisor: Hansen, P.H. (HU)

Examples of Junior Projects

WPI Global Perspectives Program

Page 41: Engrg New Century08

Engineering in the 21st Century

Robotics Engineering

Page 42: Engrg New Century08

Engineering in the 21st Century

Research on engineering education has taught us: •  the structure of the curriculum plays an important role in overall student

satisfaction and retention and that early introduction to engineering generally helps

•  different teaching methods appeal to different learner types and that generally all people learn more in an environment where the material is presented in a variety of ways

•  creativity and innovation can be taught, or at least stimulated, in a properly structured course

Robotics Engineering

J. Margolis and A. Fisher. Unlocking the Clubhouse: Women in Computing, MIT Press, 2002. J. Busch-Vishniac and J.P. Jaroz. Can Diversity in the Undergraduate Engineering Population be Enhanched Through Curricular Change. J. Woman and Minorities in Science and Engineering. 10 (2004), 255-281. Retention is a Big Issue in Engineering Education, and More Schools Are Developing Programs To Keep Students From Dropping Out. PRISM Magazine, Wednesday, January 05, 2005. http://www.prismmagazine.org/jan05/feature_lending.cfm P. C. Wankat and F. S. Oreovicz. Teaching Engineering. McGraw-Hill, 1993. R.M. Felder. Several papers available at http://www.ncsu.edu/felder-public/ J. L. Adams. Conceptual Blockbusting 3 rd Edition Reading Mass: Addison Wesley, 1986. H.S. Fogler and S.E. LeBlanc. Strategies for Creative Problem Solving. Englewood Cliffs, N.J.: Prentice Hall, 1995. E. Lumsdaine and M. Lumsdaine. Creative Problem Solving: Thinking Skills for A Changing World. New York: McGraw Hill, 1995.

Page 43: Engrg New Century08

Engineering in the 21st Century

FIRST expects to reach over 37,000 high-school aged students in 2008.

Botball robotic soccer competitions have included over 40,000 students to date.

Other robotics events, such as BattleBots IQ, Robocup (numbers unknown) and Boosting Engineering, Science and Technology (BEST) Robotics with over 10,000 students yearly, also illustrate the high level of interest.

The robots.net Robotics Competition page lists over hundred competitions in 2008

Robotics Engineering

Robotics competitions are generating enormous interest and excitement among pre-college students

In 2007, over 32,000 high-school students and their mentors participated in the FIRST Robotic Competition and another 5,500, high school aged students competed in the FIRST Tech Challenge.

Page 44: Engrg New Century08

Engineering in the 21st Century

Introduced in spring 2007.

First undergraduate program in Robotics Engineering in the US

Collaborative effort between Electrical and Computer Engineering, Computer Science and Mechanical Engineering

Requires five new courses: Introduction to Robotics and Unified Robotics I-IV plus courses already existing in the participating department—significant hands-on/building component

Explicit requirements for a course in entrepreneurship and social impact of robotics

Advisory board with members from major robotics corporations

As of late January 2008, over 60 freshmen had declared RBE as their major (compared to 70 in CS and 77 in ECE)

WPIʼs BS program in Robotics Engineering

Robotics Engineering

Page 45: Engrg New Century08

Engineering in the 21st Century

• Have a basic understanding of the fundamentals of Computer Science, Electrical and Computer Engineering, Mechanical Engineering, and Systems Engineering.

• Apply these abstract concepts and practical skills to design and construct robots and robotic systems for diverse applications.

• Have the imagination to see how robotics can be used to improve society and the entrepreneurial background and spirit to make their ideas become reality.

• Demonstrate the ethical behavior and standards expected of responsible professionals functioning in a diverse society.

WPIʼs BS program in Robotics Engineering Program Goals for Graduates

Robotics Engineering

Page 46: Engrg New Century08

Engineering in the 21st Century

And Finally!

Page 47: Engrg New Century08

Engineering in the 21st Century

The annual ASME International Mechanical Engineering Education Conference is the premier event for mechanical engineering department heads and faculty leaders to network, debate current issues, and examine strategies that will help them chart the future of their research and instructional programs.

Specific topics: Result of 5XME workshop, global programs, entrepreneurship

General Chair: G. Tryggvason

The 2008 International Mechanical Engineering Education Conference, Galveston, Texas April 4 - 8, 2008

Page 48: Engrg New Century08

Engineering in the 21st Century

Today, academics spend a great deal of time—and money—fretting over the state of “STEM” education. STEM—a clever acronym for science, technology, engineering and mathematics—attempts, wrongly in my view, to tightly associate educational enterprises that should be distinctly delineated.

Bernard M. Gordon The New England Journal of Higher Education, summer 2007

“Scientists discover the world that exists; engineers create the world that never was.”

Theodore von Karman

Page 49: Engrg New Century08

Engineering in the 21st Century

“What is important in Engineering Education?”

“Making universities and engineering schools exciting, creative, adventurous, rigorous, demanding, and empowering

milieus is more important than specifying curricular details.”

Charles M. Vest, President of the US National Academy of Engineering. Talk at: ABET Annual Meeting, Incline Village, NV. November 2, 2007.