embodiedenergyinelectro mechanical(installa6ons(of ... · embodiedenergyinelectro...

18
Embodied Energy in Electro Mechanical Installa6ons of Hellenic Dwellings Dimitrios Koubogiannis 1 , Costas Balaras 2 [email protected] 1 Department of Energy Technology Engineering, Technological Educa<onal Ins<tute of Athens, Greece 2 Group Energy Conserva<on, Ins<tute for Environmental Research & Sustainable Development, Na<onal Observatory of Athens, Greece EinB2014 3 rd Interna<onal Conference “ENERGY in BUILDINGS 2014”

Upload: others

Post on 19-Sep-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Embodied  Energy  in  Electro-­‐Mechanical  Installa6ons  of  Hellenic  

Dwellings  Dimitrios  Koubogiannis1,  Costas  Balaras2  

[email protected]  

1  Department  of  Energy  Technology  Engineering,  Technological  Educa<onal  Ins<tute  of  Athens,  Greece  

2  Group  Energy  Conserva<on,  Ins<tute  for  Environmental  Research  &  Sustainable  Development,  Na<onal  Observatory  of  Athens,  Greece  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

OUTLINE  OF  THE  PRESENTATION  •  Introduc6on  •  Mo6va6on-­‐Aim  •  Categoriza6on  

–    …  of  buildings  –    …  of  building  materials  and  equipment    

•  The  buildings  –  case  studies  •  Material  Analysis  

–  Methodology  –  Examples  –  Mass  Analysis  

•  Embodied  Energy  Analysis  –  Materials’  Database  –  Assump<ons  –  Components’  Database  

•  Results  &  Discussion  •  Energy  Es6ma6on  for  boiler  manufacturing  …  

–    …  as  an  example  of  item  for  Components’  Database  

•  Conclusions  –    Ongoing  &  future  research    –    Acknowledgments  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

2  

INTRODUCTION  •  Total  Energy  during  life  cycle  of  a  building:  

  -­‐   Opera6onal   Energy   (OE):   energy   consumed   by   the   building   during   its   opera<on   (for   hea<ng,  cooling,  ven<la<on  ligh<ng  and  opera<on  of  various  appliances  and  equipment).     -­‐   Embodied   Energy   (EE):   energy   consumed   for   the   excava<on,   machining,   construc<on,  transporta<on   of   the   building   materials   and   equipment,   i.e.   for   manufacturing,   transporta<on   and  disposal  ac<vi<es.    

•  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐>          D  u  r  i  n  g        b  u  i  l  d  i  n  g        l  i  f  e        c  y  c  l  e        -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐>  

Ini6al  Stage  (during  building  construc6on)  q  Ini6al  Embodied  Energy  (IEE)    

ü  Indirect  EE:  extrac<on  of  materials  and  manufacturing  (cradle  to  factory  gate)  ü  Direct  EE:  transport  on-­‐site  (factory  to  construc<on  site),  on-­‐site  construc<on  and  

assembly  

Opera6on  stage  (during  building  opera6on)  q  Opera6onal  Energy:  hea<ng,  cooling,  ligh<ng,  ven<la<on,  appliances,  equipment  q  Recurring  EE:  refurbishment  and  maintenance  

Final  stage  (building  demoli6on)  q  Embodied  Energy:  demoli<on,  waste  and  disposal  /  recycling  of  materials  

•  Companion   concept:  embodied   emissions  or  Embodied  CO2   (ECO2):   the   amount   of   CO2   emi]ed   to   the  atmosphere  due  to  the  EE  consump<on.  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

3  

MOTIVATION  -­‐  AIM  ü  Buildings  are  responsible  for  about  the  40%  of  the  total  energy  consump<on  in  Europe  and  about  

a  third  of  the  total  energy  related  CO2  emissions.  ü  Main   legisla<ve   instrument:   EPBD   recast   (2010/31/EC)   on   the   energy   performance   of   buildings.  

Focus  towards  NZEBs  by  the  end  of  the  decade.  •  Near  Zero  Energy  Building  (NZEB):  a  building  that  has  a  very  high  energy  performance,  while  the  

nearly  zero  or  very  low  amount  of  energy  required  should  be  covered  to  a  very  significant  extent  by  energy  from  RES  (on-­‐site  or  nearby).    

•  Life   Cycle   Zero   Energy   Building   (LC-­‐ZEB):   the   building   where   the   primary   energy   used   in   the  building   in   opera<on   plus   the   energy   embodied   within   its   cons<tuent   materials   and   systems,  including  energy  genera<ng  ones,  over   the   life   cycle  of   the  building   is   equal   to  or   less   than   the  energy  produced  by  RES  within  the  building  over  their  life<me  (Hernandez  and  Kenny,  2010).  

Ø  Assess  building  energy  consump<on  and  environmental  impact  during  its  life-­‐cycle,  instead  of  only  its  opera<onal  period  of  <me.  

Ø  Building  Embodied  Energy  (EE)  and  Embodied  CO2  (ECO2)  become  increasingly  important  data  for  the  overall  analysis.  Such  data  could  also  be  considered  to  assess  future  policies  or  various  energy  conserva<on  measures  implemented  in  exis<ng  buildings.  

AIM  OF  THIS  WORK:  To  perform  material  analysis  and  es<mate  the  Ini6al  Indirect  EE   of   the   basic   electro-­‐mechanical   installa<ons   of   typical   urban   Hellenic  residen<al  buildings.    (Hernandez,  P.  and  P.  Kenny.  2010.  From  net  energy  to  zero  energy  buildings:  Defining  life  cycle  zero  energy  buildings  (LC-­‐ZEB).  Energy  and  Buildings,  42:  815-­‐821).  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

4  

CATEGORIZATION  ...  OF  BUILDINGS  •  Building   construc<on   depends   on   type   and   use   of  

the   building   (e.g.   residen<al,   offices,   hospitals,  schools,   hotels),   as   well   as   on   the   clima<c   zone   it  belongs  to  (4  zones  in  Greece:  A,  B,  C,  D).    

•  Hellenic   residen6al   building   typologies   are  categorized   according   to   their   date   of   construc<on  in  the  following  periods  (Dascalaki  et  al.  2011)  :     (a)   pre-­‐1980,   (b)   during   1981-­‐2000,   (c)   during  2001-­‐2010  and   (d)   aier  2010   that  marks   the  EPBD  implementa<on  in  Greece  (Dascalaki  et  al.  2012).  

 ...  OF  BUILDING  MATERIALS  &  EQUIPMENT  •  Construc6on   Materials   (CM)   set   mainly   consis<ng  

of   subsets   of   either   finished   products   or   raw  materials   (materials   for   bearing   the   structure,  masonry–coa<ngs,   flooring,   integra<on   and  insula<on,  heat  protec<on,  waterproof,  soundproof,  etc).  

•  Electro-­‐Mechanical  Installa6ons  (EMI)  set  generally  consis<ng   of   materials   and   equipment   for   space  hea<ng,   hydraulic   and   hot  water   network,   cooling,  ven<la<on,   fire   protec<on,   electrical   and   ligh<ng  installa<ons,  automa<on  systems.  

     

   

 

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

5  

Dascalaki,  E.G.,  Droutsa,  K.G.,  Balaras,  C.A.  and  S.  Kontoyiannidis.  2011.   Building   Typologies   as   a   Tool   for   Assessing   the   Energy  Performance   of   ResidenSal   Buildings   –   A   Case   Study   for   the  Hellenic  Building  Stock,  Energy  &  Buildings,  43(12):  3400-­‐3409.    Dascalaki,   E.G.,   Balaras,   C.A.,   Gaglia,   A.G.,   Droutsa,   K.G.   and   S.  Kontoyiannidis.  2012.  Energy  Performance  of  Buildings   -­‐  EPBD   in  Greece,  Energy  Policy,  45:  469–477.  

THE  BUILDINGS  –  CASE  STUDIES  •  Two  representa<ve  buildings  were  selected,  a  Single-­‐Family  Dwelling  (SFD)  and  a  

Mul<-­‐Family  Dwelling  (MFD),  constructed  aier  2000  and  located  in  clima<c  zone  B  (Koubogiannis  et  al.  2013  and  2014).  

•  Both   buildings   have   a   single-­‐pipe   hydronic   central   hea<ng   system   connected   to  room  space  radiators.  MFD:   3-­‐story   building,   each   floor   being   an   apartment,   with   ground   floor   and   a  

basement,  having  a  total  floor  area  of  435.6  m2.  Natural  gas  steel  boiler  of  34.8  kW  connected  to  the  city  natural  gas  network.    

SFD:    2-­‐story  building  (mezone]e),  with  a  total  floor  area  of  152  m2.  Oil-­‐fired  cast-­‐iron  boiler  with  a  hea<ng  capacity  of  26.7  kW  coupled  to  a  metallic  oil  tank.  

•  For  domes<c  hot  water  produc<on,  both  buildings  include  triple-­‐energy  hot  water  storage  tanks  (that  use  either  central  hea<ng  system  or  solar  power  or  electricity).  

•  An   energy   audit  was   performed   in   both   buildings.   The   corresponding   technical  reports,   drawings   and   detailed   data   concerning   EMI   were   released   by   two  different  professional  engineering  offices.  

    Koubogiannis,   D.G,   Daskalaki   A.   and   C.A.   Balaras.   2013.   A   contribuSon   to   Building   Lifecycle   Analysis:   Embodied   energy   analysis   of   mechanical  installaSons  for  a  typical  urban  Greek  dwelling.  3rd  InternaSonal  Exergy,  Life  Cycle  Assessment,  and  Sustainability  Workshop  &  Symposium  (ELCAS3),  7-­‐9  July,  Nisyros–Greece.  

    Koubogiannis,  D.G.,   Lavoutas  A.,   Lekkas  A.   and  C.A.   Balaras.   2014.   EsSmaSon  of   Embodied   CO2   in   Electro-­‐Mechanical   InstallaSons   for   an  Urban  Hellenic  Dwelling.   InternaSonal  Conference  on  Buildings  Energy  Efficiency  and  Renewable  Energy   Sources  2014   (BEE  RES  2014),   1-­‐3   June,  Kozani–Greece.  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

6  

MATERIAL  ANALYSIS  (METHODOLOGY)  

•  Cascading  concept  was  followed:  Set    à    Groups    à    Item  Analysis  

•  Item  Analysis:     Items  à   sub-­‐items  à   sub-­‐sub-­‐items  à   …  à   basic   items   (bitems)  à   cons<tu<ve   single  materials  

 •  EMI  Set  was  divided  into  4  Groups:  

1.   Space  Hea6ng  (SH)  (boiler,  oil  burner,  fuel  tank,  flue  gas  exhaust,  pump,  radiators,  pipe  network,  expansion  tank,  valves,  and  other  components  like  magnesium  anode,  thermostats,  deaerators,  etc).  

2.   Hydraulic  and  Hot  Water  (HHW)  (solar  collectors,  hot  water  storage  tank,  support  base,  various  fiqngs  and  accessories,  hot  water  pipe  network).  

3.   Air  Condi6oning  (AC)  (split  unit  heat  pumps,  evaporator,  fan,  motor,  support  materials,  condenser,  compressor,  fan,  motor,  four-­‐way  valve,  connec<ng  pipes,  support  and  drainage  materials).  

4.   Electrical  (EL)  (control  panels,  cables,  pipes  and  wall  plugs  for  SH,  for  HW  and  for  the  ligh<ng  network).  

•  Material   analysis   is   described  by   the   sequence:   EMI  à  Groups   (SH,  HW,  AC,   EL)  à   Items  (e.g.   boiler,   radiators,   etc)  à   sub-­‐items  à   (e.g.   burner   breakdown)  à   …  à   bitems  à  cons<tu<ve  single  materials  (steel,  iron,  copper,  aluminum,  glass,  etc).    

•  Mass   analysis:   (a)   weigh<ng   of   individual   components,   (b)   obtained   by   the  manufacturer  manuals  and  commercial   leaflets  (accessed  on  the  internet  or  by  personal  communica<on),  (c)   [Mass]=[Volume]*[material-­‐density],  where  volume  was  es<mated  using  data  extracted  from  technical  reports  and  drawings  (e.g.  floor  plans  were  used  to  determine  the  length  of  piping)  (d)  logical  engineering  assump<ons  and  es<ma<ons  whenever  needed.  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

7  

MATERIAL  ANALYSIS  (EXAMPLES)  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

8  

EMBODIED  ENERGY  ANALYSIS  •  Ini<al  Embodied  Energy  [MJ]=  mass  [kg]  *  EE  coefficient  [MJ/kg]  •  MATERIALS’   DATABASE:   …   EE   coefficients   …   to   account   for   the   extrac<on   and  

manufacturing  of  materials  (e.g.  of  1  kg  of  aluminum).    No  naSonal  database!  •  Available  databases  in  the  literature.  EE  coefficients  are  na<onally  dependent.    •  UK  database  (Hammond  and  Jones,  2008)  was  used  herein:  Aluminium  has  the  higher  

EE  coefficient,  the  “synthe<c”  materials  (PP,  rubber,  …,  PEF)  have  high  EE  values,  while  copper,  brass,  …,  glass  have  rela<vely  lower  EE  values.  

•  COMPONENTS’   DATABASE:   EE   values   …   to   account   for   the   manufacturing   of  components  (e.g.  of  a  boiler).  Not  exisSng!  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

9  

Hammond,   G.P   and   C.I.   Jones.   2008.   Inventory   of  Carbon   and   Energy   (ICE)   Version   1.6a.   Sustainable  Energy   Research   Team,   Department   of   Mechanical  Engineering,   University   of   Bath.   Available   from:  hgp://per igordvacance. typepad.com/files/inventoryofcarbonandenergy.pdf   (accessed   on  27/03/2014).  

RESULTS-­‐1  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

10  

RESULTS-­‐2  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

11  

RESULTS-­‐3  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

12  

RESULTS-­‐4  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

13  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

14  

RESULTS-­‐5  

ENERGY  ESTIMATION  FOR  BOILER  MANUFACTURING    

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

15  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

16  

EE  OF  BOILER-­‐BURNER  SET  

AN  INDICATIVE  APPLICATION  OF  THE  PRESENT  RESULTS  ...  •  Assessment  of  energy  conserva<on  measures,  e.g.  the  replacement  of  an  oil-­‐fired  boiler  in  old  SFD  

central  hea6ng  installa6on  with  a  new  units.  •  Such  a   replacement  would   result   to  17%  annual  opera<onal   thermal  energy   savings   for   the  en<re  

Hellenic  SFD  stock,  which  results  to  an  es<ma<on  of  about  19.6  kWh/m2  annual  energy  savings  per  SFD  (Balaras  et  al.  2007).  

•  According   to   the   present   study   the   EE   of   the   SFD   boiler-­‐burner   set   is   11.8kWh/m2.   The   total   EE  involved   in   the   replacement   is   doubled   (to   account   for   both   old-­‐unit-­‐output/new-­‐unit-­‐input)  EErepl=23.6   kWh/m2.   Thus,   the  opera6onal   energy   savings  would   compensate  EErepl   in   about  14.5  months  (or  about  over  two  hea<ng  seasons)  (ENERGY  PAYBACK  TIME).  

Balaras,  C.A.,  Gaglia  A.G.,  Georgopoulou  E.,  Mirasgedis  S.,  Sarafidis  Y.  and  D.P.  Lalas.  2007.  European  residenSal  buildings  and  empirical  assessment  of   the  Hellenic  building  stock,  energy  consumpSon,  emissions  and  potenSal  energy  savings,  Building  and  Environment,  42:  1298–1314.  

CONCLUSIONS  ü  Proposed-­‐Applied   a   methodology   for   material   &   EE   analysis   for   SFD/MFD  

electromechanical  installa<ons  ü  Ini<ated  a  process  for  deriving  prac<cal  benchmark  values  

Ø  Prevailing   materials   in   terms   of   mass   are   generally   the   same,   but   normalized   material  quan<<es  have  different  values  for  the  two  inves<gated  building  typologies  (SFD  and  MFD).  

Ø  EE  values  (using  interna<onal  databases),  provide  ini<al  guidance:  •  For  life  cycle  assessment  evalua<on  of  buildings  •  For   assessing   common   energy   conserva<on   measures   (e.g.   the   annual   opera<onal   energy  

savings   due   to   the   replacement   of   oil-­‐fired   boilers   with   more   energy   efficient   units   would  account  for  EE  in  rela<vely  short  <me  frames).  

 

ONGOING  &  FUTURE  RESEARCH  •  Repeat   &   extend   current   analysis   for   a   number   of   different   Hellenic   building  

typologies  •  Calculate  EE  for  manufacturing  major  EMI  items  (e.g.  different  types  of  boilers)  •  Address  relevant  issues  for  building  construc<on  materials  

•  Long-­‐term  goal:  Derive  suitable  benchmarks  in  order  to  facilitate  the  development  of  a  Hellenic  database  for  EE  or  ECO2    

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

17  

EinB2014  -­‐  3rd  Interna<onal  Conference  “ENERGY  in  BUILDINGS  2014”    

18  

Embodied  Energy  in  Electro-­‐Mechanical  Installa6ons  of  Hellenic  Dwellings  

Dimitrios  Koubogiannis  [email protected]