electrostatic control of spin polarization in a quantum ...in a quantum hall ferromagnet: a platform...

33
Luchon, France May 24 - 29, 2015 Electrostatic control of spin polarization in a quantum Hall ferromagnet: a platform to realize high order non- Abelian excitations Aleksander Kazakov & Leonid Rokhinson Department of Physics, Purdue University V. Kolkovsky, Z. Adamus, & Tomasz Wojtowicz Institute of Physics, Polish Academy of Science, Warsaw, Poland George Simion & Yuli Lyanda-Geller Department of Physics, Purdue University

Upload: others

Post on 10-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Luchon, France

    May 24 - 29, 2015

    Electrostatic control of spin polarization

    in a quantum Hall ferromagnet:

    a platform to realize high order non-

    Abelian excitations

    Aleksander Kazakov & Leonid Rokhinson Department of Physics, Purdue University

    V. Kolkovsky, Z. Adamus, & Tomasz Wojtowicz Institute of Physics, Polish Academy of Science, Warsaw, Poland

    George Simion & Yuli Lyanda-Geller Department of Physics, Purdue University

  • Engineering Majorana fermions

    6/11/2015 Leonid Rokhinson, Purdue University 2

    requirements:

    1D

    spinless (one mode)

    superconductor

    topological superconductor

    k

    2D

    Bso

    B

    kk

    EZ

    B = 0 Bso || B

    EZE

    F

    pairing

    possible

    Sau, et al ’10, Alicea, et al β€˜10

    SC SC

  • parameter space

    6/11/2015 Leonid Rokhinson, Purdue Univesity 3

    𝐸𝑍 > π›₯2 + 𝐸𝐹

    2

    Bso B

    single-spin condition:

    ]110[

    [110] kx

    ky d=20nm w>200nm

    𝐸𝑍~𝐸𝑆𝑂 to protect superconductivity:

    2 22 2 ( / )SO D z DE k k d k

    6 12.6 [meV], [10 cm ]SOE k k

    d=100nm 6 10.1 [meV], [10 cm ]SOE k k

    smallest dimension defines Eso:

    small d β‡’ large Eso β‡’ large EF β‡’ less localization

  • Characteristic 4 energy-flux relation

    6/11/2015 Leonid Rokhinson, Purdue Univesity 4

    modification of the Josephson phase

    trivial superconductor 2 Cooper pairs, I sin(f)

    topological superconductor 4 Majorana particles, I sin(f/2)

    Kwon ’04 Lutchyn β€˜10

    Kitaev β€˜01 𝑏† = (𝛾𝑙 βˆ’ π‘–π›Ύπ‘š)

  • ac Josephson effect

    6/11/2015 Leonid Rokhinson, Purdue Univesity 5

    πœ™1 πœ™2

    V

    𝑑(Ξ”πœ™)

    𝑑𝑑=2𝑒𝑉

    ℏ

    𝐼𝑠 = 𝐼𝑐 sin πœ”π½π‘‘ = 𝐼𝑐 sin2𝑒𝑉

    ℏ𝑑

    Current oscillates with frequency V

    direct inverse

    πœ™1 πœ™2

    I

    𝐼 = 𝐼0 + πΌπœ”sin(πœ”π‘‘)

    Constant voltage steps w

    𝑉 =β„Žπœ”

    2𝑒

  • -200 0 200

    -24

    -12

    0

    12

    24

    -200 0 200 -200 0 200 -200 0 200 -200 0 200

    V (

    V

    )

    I (nA)

    B=0 B=1.0 T

    I (nA)

    B=1.6 T

    I (nA)

    B=2.1 T

    I (nA)

    B=2.5 T

    I (nA)

    Disappearance of the first Shapiro step

    6/11/2015 Leonid Rokhinson, Purdue Univesity 6

    f = 3 GHz

    LR, X. Liu, J. Furdyna, Nature Physics 8, 795 (2012)

    dc rf ~

    V

  • Shapiro steps

    6/11/2015 Leonid Rokhinson, Purdue Univesity 7

    0 300 0 100 0 100 0 100 0 100-200 0 200

    0

    2

    4

    6

    8

    10

    12

    Vrf (

    mV

    )

    I (nA)

    0

    5

    10

    dV/dIB=0, f = 3 GHz

    I0 (nA) I

    1I

    2I

    3I

    4

    -40

    -32

    -24

    -16

    -8

    0

    8

    16

    24

    32

    40

    -300 -200 -100 0 100 200 300

    0

    20

    40

    f = 4 GHz

    Vrf = 14.25 mV

    V (

    V

    )

    dV

    /dI

    I (nA)

    Δ𝐼𝑛=A|𝐽𝑛2π‘’π‘£π‘Ÿπ‘“

    β„πœ”π‘Ÿπ‘“|

  • dV/dI vs B

    6/11/2015 Leonid Rokhinson, Purdue Univesity 8

    step @ 6 V step @ 12 V

  • 4-periodic Josephson supercurrent in HgTe-based 3D TI

    6/11/2015 Leonid Rokhinson, Purdue Univesity 9

    arXiv:1503.05591

    Wiedenmann, …M. Klapwijk, …, Seigo Tarucha, L. W. Molenkamp

  • 6/11/2015 Leonid Rokhinson, Purdue Univesity 10

    Advantage of 1D wires: Majorana modes are localized easy to perform spectroscopy

    Disadvantage of 1D wires: Majorana modes are localized almost impossible to perform exchange

    quantum Hall

    effect

    magnetic

    semiconductors superconductivity

    new materials to support exotic non-Abelian excitations

    reconfigurable 1D topological superconductors in 2D systems

  • Motivation and inspiration

    6/11/2015 Leonid Rokhinson, Purdue Univesity 11

    Exotic non-Abelian anyons from conventional fractional quantum Hall states

    David J. Clarke, Jason Alicea, and Kirill Shtengel

    Nature Commun., 2012, 4,, 1348

    Topological Quantum Computation - From Basic

    Concepts to First Experiments

    Ady Stern & Netanel Lindner

    Science, 2013, 339, 1179

  • 6/11/2015 Leonid Rokhinson, Purdue University 12

    Mn [Ar]3d54s2

    exchange split ~3 eV (Hunds rule), Β½ filled

    S=5/2

    Ga [Ar]3d104s24p1 As [Ar]3d104s24p3

    p-doping

    large s-d exchange (ferromagnetic)

    GaAs:Mn

    CdTe:Mn Cd [Kr]4d105s2 Te [Kr]4d105s25p4

    neutral impurity, large s-d exchange

    Development of a new system CdTe:Mn QW

  • Development of a new system

    6/11/2015 Leonid Rokhinson, Purdue University 13

    High mobility 2D gas in CdTe/CdMgTe QW

    m*=0.11, Eg=1.44 eV

    no Mn ~1% Mn

    add Mn into CdTe (neutral impurity with 5/2 spin)

  • FQHE in CdTe:Mn

    6/11/2015 Leonid Rokhinson, Purdue Univesity 14

    Betthausen, et al, Phys. Rev. B 90, 115302 (2014)

    T. Wojtowicz

  • Anomalous Zeeman splitting in CdTe:Mn

    6/11/2015 Leonid Rokhinson, Purdue University 15

    𝐸𝑛,↑↓ = (𝑛 +12 )β„πœ”π‘ Β±

    12 𝑔

    βˆ—πœ‡π΅π΅ + π‘₯π‘€π‘›πΈπ‘ π‘‘π”…π‘†π‘”πœ‡π΅π‘†π΅

    π‘˜π΅π‘‡

    cyclotron Zeeman

    g*1.6

    s-d exchange (>0)

    1.3% Mn 0.13% Mn for n=1

    En (

    meV

    )

    En (

    meV

    )

    En (

    meV

    ) B (Tesla) B (Tesla) B (Tesla)

    0 2 4 6 8 10-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

  • Magnetoreflectivity studies

    6/11/2015 Leonid Rokhinson, Purdue Univesity 16

    Wojtowicz, et al, PRB 59, R10437 (1999)

    negatively charged exciton complex π‘‹βˆ’

    (trion) to singlet 𝑋 transition under polarized 𝜎+/πœŽβˆ’ light

  • 0 2 4 6 8 10-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    spin

    ener

    gy s

    pli

    ttin

    g (

    Kel

    vin

    )

    magnetic field (Tesla)

    =

    1/m

    new platform for non-Abelian excitations

    6/11/2015 Leonid Rokhinson, Purdue University 17

    B*

    Ohmic SC contact

  • 0 2 4 6 8 10-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    sp

    in e

    ne

    rgy s

    plit

    tin

    g (

    Ke

    lvin

    )

    magnetic field (Tesla)

    =

    1/m

    new platform for non-Abelian excitations

    6/11/2015 Leonid Rokhinson, Purdue University 18

    𝜈 =1

    π‘š, 𝐸𝑍↑ > 0 𝜈 =

    1

    π‘š, 𝐸𝑍↑ < 0

    parafermions

    𝐸𝑍

    π‘₯ 𝐸𝐹 B* B*

    braiding sequence

    Ohmic SC contact

    SC

    S

    C

  • 0 5 10-20

    0

    20

    40

    60

    80

    7 8 9 10-0.2

    0.0

    0.2

    0.4

    (a) 0 3 6 9 12

    -1.0

    -0.5

    0.0

    0.5

    1.0

    𝜈 𝐸𝑠↑↓

    (K)

    magnetic field (T)

    𝐡𝜈

    𝜈 =1

    π‘š |↓

    parafermions

    𝐸𝑠↑↓

    π‘₯ 𝐸𝐹

    𝜈 =1

    π‘š |↑

    magnetic field (T)

    magnetic field (T)

    𝑛+1 2β„πœ”π‘+𝐸𝑠↑↓

    (meV

    ) 𝐸𝑝𝐢𝐹+𝐸𝑠↑↓ (m

    eV)

    (b)

    (c)

    (d)

    |0, ↓

    |1, ↓

    |2, ↓

    |3, ↓

    |0, ↑

    |1, ↑

    |2, ↑

    |3, ↑

    |1, ↓

    |2, ↓ |3, ↓ |4, ↓

    |1, ↑

    |2, ↑ |3, ↑ |4, ↑

    |𝑝, 𝑠

    |𝑛, 𝑠

    𝜈 = 2

    1

    3,5

    3

    𝜈 =2

    3,4

    3,2

    5,8

    5

    Crossing of neighboring LLs

  • Quantum Hall ferromagnet & level crossing

    6/11/2015 Leonid Rokhinson, Purdue Univesity 20

    Jaroszynski, et al, PRL 89, 266802 (2002)

    Jaroszynski, et al, AIP conference proceedings (2005)

    uniformly Mn-doped quantum well

  • Gate control of exchange

    6/11/2015 Leonid Rokhinson, Purdue Univesity 21

    0 20 40 60 80 100 120 140 160 180 200

    0.0

    0.1

    0.2

    0.3

    0.4

    ba

    nd

    ed

    ge

    (m

    eV

    )

    distance (nm)

    𝐸𝑠𝑑 ∝ πœ“π‘’ π‘₯ πœ’π‘€π‘›(π‘₯) 𝑑π‘₯

    100 120 140

    0.0

    0.2

    0.4

    VG1

    VG2

    bandedge [

    meV

    ]

    depth from surface [nm]

    (x

    )

    100 120 140

    0.0

    0.2

    0.4

    b

    an

    de

    dg

    e [

    me

    V]

    depth from surface [nm]

    0.0

    0.1

    0.2

    0.3

    wa

    ve

    fu

    nction

    dencity

    front gate

    exchange

    100 120 140

    0.0

    0.2

    0.4

    ba

    nd

    edg

    e [

    me

    V]

    depth from surface [nm]

    0.0

    0.1

    0.2

    0.3

    wa

    ve

    fu

    nction

    de

    ncity

    back gate

    overlap

    exch

    an

    ge

    VFG

    VBG

  • Structures with asymmetric doping

    6/11/2015 Leonid Rokhinson, Purdue Univesity 22

    0 10 20 30 40 50 60 70 80 90

    7x(5x1)

    Layer number

    011414A

    0 10 20 30 40 50 60 70 80 90

    7x(2x1)

    Layer number

    011514A

    0 10 20 30 40 50 60 70 80 90

    8x(3x1)

    Layer number

    011614A

    0 10 20 30 40 50 60 70 80 90

    6x(1x1)

    Layer number

    011714A

    0.00

    0.03

    0.06

    0.00

    0.03

    0.06

    0.00

    0.03

    0.06

    75 100 125 150 1750.00

    0.03

    0.06

    b

    an

    de

    dg

    e [

    eV

    ]

    wafer #011414A0.0

    0.3

    wafer #011514A0.0

    0.3

    wafer #011614A0.0

    0.3

    x [nm]

    wafer #011714A0.0

    0.3

  • Gate control of s-d exchange

    6/11/2015 Leonid Rokhinson, Purdue Univesity 23

    0.6 0.8 1 1.2 1.4 1.6 1.8 2

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    Exc

    = const

    E xc

    simulation: 5-12

    simulation: 21-23

    data: wafer #011414

    data: B*(V

    g)/B

    *(-200) vs (V

    g)/(-200)

    log

    no

    ralis

    ed

    ove

    rla

    p

    log normalized dencity

    change of the overlap with density

    Exc

    1/

    4 5 6 7 8 9

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    1 2

    Rxx (

    k

    )

    B (T)

    #011414T=400 mKB @ 18Β° d023

    VBG

    3

    5 6 7 8 9

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    2

    2

    1

    B (Tesla)

    VB

    G (

    Vo

    lts)

    0.0

    1.2

    2.4

    3.6

    4.8

    6.0

    0

    5

    10

    VBG

    = 0

    Rxx

    (k)

    Rxx (

    k

    )

    0.0

    0.5

    1.0

    #011414

    Rxy (

    h/e

    2)

    B @ 18Β° T=400 mK (1 ↓)

    (0 ↑)

    (0 ↓)

    crossing 1 and 1.3% Mn

  • Gate control of the crossing

    6/11/2015 Leonid Rokhinson, Purdue Univesity 24

    4 6 80

    50

    100

    150

    1

    2

    >

    B [T]

    Vb

    ack g

    ate [

    V]

    = 2

    |1,>

    4 6 80,0

    0,1

    0,2

    0,3

    B [T]

    Vto

    p g

    ate [V

    ]

    1

    2

    >

    |1>

    = 2100 120 140

    0.0

    0.2

    0.4

    b

    an

    de

    dg

    e [

    me

    V]

    depth from surface [nm]

    0.0

    0.1

    0.2

    0.3w

    ave

    fu

    nction

    dencity

    front gate

    exchange

    100 120 140

    0,0

    0,2

    0,4

    b

    an

    de

    dg

    e [

    me

    V]

    depth from surface [nm]

    0,0

    0,1

    0,2

    0,3

    wa

    ve

    fu

    nction

    de

    ncity

    back gate

    overlap

    exch

    an

    ge

    VFG

    VBG

    𝜈 = 2

  • low Mn concentration

    6/11/2015 Leonid Rokhinson, Purdue Univesity 25

    beating in SdH

    Node position:

    𝐸𝑍 = 𝑁 +1

    2β„πœ”πΆ = 𝑔

    βˆ—πœ‡π΅π΅ + 𝛼π‘₯𝑒𝑓𝑓Sβ„¬π‘†π‘”πœ‡π΅π‘†π΅

    π‘˜π΅π‘‡0

    0.0

    0.3

    0.6

    Rxx [

    k

    ]

    #081214

    425 mK

    0.00 0.25 0.50 0.750.0

    0.8

    1.6

    E [m

    eV

    ]

    B [T]

    𝑛 +1

    2β„πœ”π‘

  • 0.0 0.2 0.4 0.6 0.80.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Rxx [

    k

    ]

    B [T]

    #081214

    625 mK

    33 mK

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.2

    0.4

    0.6

    xeff

    = 0.34%

    T0 = 84 mK

    no

    de p

    ositio

    n [T

    ]

    T [K]

    # 081214

    node 1

    node 2

    node 3

    node 4

    node 5

    node 6

    node 7

    node 8

    𝑁 +1

    2β„πœ”πΆ = 𝑔

    βˆ—πœ‡π΅π΅ + 𝛼π‘₯𝑒𝑓𝑓Sβ„¬π‘†π‘”πœ‡π΅π‘†π΅

    π‘˜π΅(𝑇𝐴𝐹 + 𝑇)

    SdH beating, xeff and TFM

    temperature dependence

  • Gate control of SdH beating

    0,1 0,2 0,3 0,4 0,50,0

    0,2

    0,4

    0,6

    0,8

    1,0

    Rxx [k

    ]

    B [T]

    #090514A200 V

    -200 V

    -200 -100 0 100 2000.85

    0.90

    0.95

    1.00

    1.05

    1.10#090514

    node 2

    node 3

    node 4

    node 5

    node p

    ositio

    n (

    Vbg)

    / n

    od

    e p

    ositio

    n (

    0V

    )

    Vbg

    [V]

    back gate dependence

  • Comparison of high and low Mn concentrations

  • Anticrossing between 1st and 2nd LLs

    6/11/2015 Leonid Rokhinson, Purdue Univesity 29

    200 300 400 600 800

    0.1

    1

    resis

    tance

    T, mK

    1.12exp

    KR

    T

    0 1an tic ro ss in g g ap b e tw een an d E E

    EAC

    = 1.12K = 96 eV

    6.5 7.0 7.5 8.00

    2

    4

    T =200mK

    resis

    tan

    ce

    B (tesla)

    T =800mK

  • The role of SO interactions

    𝐻𝑆𝑂 = π›Ύπ·πˆ β‹… 𝜿 + 𝛾𝑅 𝝈 Γ— π’Œ β‹… 𝓔

    πœ… = ( π‘˜π‘₯, π‘˜π‘¦2 βˆ’ π‘˜π‘§

    2 , π‘˜π‘¦, π‘˜π‘§2 βˆ’ π‘˜π‘₯

    2 , π‘˜π‘§, π‘˜π‘₯2 βˆ’ π‘˜π‘¦

    2 )

    Only Rashba coupling contributes to N=1 and N+2 anticrossing

  • Transport across a gate

    6/11/2015 Leonid Rokhinson, Purdue Univesity 31

    0

    5

    10

    15

    20

    25

    30

    R [

    k

    ]

    Vfg = 50 mV

    Rg-u

    xx

    Rgated

    xy

    Rungated

    xy

    3 4 5 6 7 8 90

    50

    100

    150

    200

    250

    300

    B [T]

    Vfg [

    mV

    ]

    0.000

    2.000

    4.000

    6.000

    8.000

    10.00

    12.00

    14.00

    Gg-u

    xx [e

    2/h]V

    bg = 100 V

    n, m

    Landauer-Buttiker:

    𝐺 = 𝐺0𝑛(𝑛 +π‘š)

    π‘š

    𝜈 = 2 π‘Žπ‘›π‘‘ 𝜈 = 3 𝑛 = 2,π‘š = 1 G = 6G0

  • Transport across QHFm domain wall

    6/11/2015 Leonid Rokhinson, Purdue Univesity 32

    4 6 8 10

    0

    6

    12

    18

    24

    R [k

    ]

    B [T]

    Vbg

    = 60 V

    Vfg = 0.3 V

    T = 100 mK

    ungated area

    gated area

    across the gate

    6.6 6.8 7.0 7.2 7.4 7.60

    1

    2

    4 6 8 10

    0

    6

    12

    18

    24

    R [

    k

    ]

    B [T]

    Vbg

    = 60 V

    Vfg = 0.3 V

    T = 100 mK

    ungated area

    gated area

    across the gate

    6 7 8 9

    0

    6

    R [

    k

    ]

    B [T]

    Vbg

    = 60 V

    Vfg = 0.3 V

    T = 100 mK

    ungated area

    gated area

    across the gate

  • people involved

    6/11/2015 Leonid Rokhinson, Purdue University 33

    Aleksander Kazakov, Purdue University

    Tomasz Wojtowicz

    Institute of Physics, Polish Academy of Sciences

    V. Kolkovsky & Z. Adamus, Polish Academy of Science

    Yuli Lyanda-Geller, Purdue University

    http://www.ncn.gov.pl/?language=en