electonics final handouts

Upload: diane-basilio

Post on 06-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Electonics Final Handouts

    1/84

     

    MMAAPPUUAA 

    EECCEE RREEVVIIEEWW 

    RReevviieeww CCoouurrssee 

    ELECTRONICS ENGINEERING 

    N107 MIT, Muralla St., Intramuros, Manila ℡ (02) 247-5000 local 2100 or (02)524-5572

    Electronics EngineeringReview Course

    2

    EELLEECCTTRROONNIICCSS 

    •  Science dealing with the development and application of devices and system involving flow of electrons in a vacuum, in gaseous media, in plasma and/or in semiconductors.

     Application of Electronics:1.  Communication Electronics2.  Electric Power3.  Digital Electronics

    Basic Electrical Components:1.   Active – devices that can be used for amplification, rectification or change energy

    one another.

    a.  semiconductorb.  electron tubesc.  visual display devices

    2.  Passivea.  Resistors – limits the flow of current or divide the voltages in the circuit.b.  Capacitor – concentrates the electric field of voltage applied to a dielectc.  Inductor – concentrates the magnetic field of electric current in the coil.

     ATOMIC STRUCTURE

    •   Atom – the smallest particle of an element that retains the characteristics of the elemen

    BOHR MODELFigure 1-1. - The composition of a simple helium atom.

    Subatomic Particles:MASS  CHARGE

    Electrons 9.1 x 10-31kg 1.67 x 10-19 CProtons 1.67 x 10-27kg 1.67 x 10-19 C

    Neutrons 1.67 x 10-27 kg none

  • 8/17/2019 Electonics Final Handouts

    2/84

    Electronics EngineeringReview Course

    3

     Atomic number – number of protons

     Atomic Mass – number of protons and neutrons

    SHELL & SUBSHELL AROUND THE NUCLEUS

    SHELL

    Numerical Literal Subshells Capacity

    1 K s2 2 e-

    2 L s2, p6 8 e-

    3 M s2, p6, d10 18 e-4 N s2, p6, d10, f14 32 e-

    • • • •

    • • • •

    • • • •

    ELECTRICAL CLASSIFICATION OF MATERIALS

    CONDUCTOR 

    •   A material that easily conducts electric current•  Number of valence electrons is 1-3

    INSULATOR 

    •   A material that DOES NOT conducts electric current under normal conditions•  Number of valence electrons is 5-8•  Valence electrons are tightly bound to the atoms.

    SEMICONDUCTOR 

    •   A material that is between conductors and insulators in its ability to conduct electricalcurrent

    •  Number of valence electrons is 4•  Neither a good conductor nor a good insulator in its pure form

    ENERGY BANDS

    Figure 1-4. - The energy arrangement in atoms.

    Electronics EngineeringReview Course

    4

    Figure 1-5. - Energy level diagram.

    TYPES OF SEMICONDUCTOR

    1.  Intrinsic Semiconductor  – semiconductor in its pure (elemental) form.a.  Siliconb.  Germanium

    Figure 1-7. - A two-dimensional view of a silicon cubic lattice.

    Conduction Electrons – free electrons or electrons in the conduction band

  • 8/17/2019 Electonics Final Handouts

    3/84

    Electronics EngineeringReview Course

    5

    Hole – vacancy left by the electron in the valence band or the absence of electron

    Electron-Hole Pair  – for every electron raised to the conduction band by external energy, there isone hole left in the valence bandRecombination – occurs when a conduction-band electron loses energy and falls back into a hole inthe valence band.Electron Current –movement of free electrons in a semiconductive materials.Hole Current – movement of holes in a semiconductive material

    2.  Extrinsic Semiconductor  – semiconductor with impuritiesDoping – The process of adding impurities to an intrinsic semiconductor.

    a.  Pentavalent atoms –atoms with 5 valence electrons.

    1.   Arsenic (As)2.  Phosphorus (P)3.  Bismuth (Bi)4.   Antimony (Sb)

    b.  Trivalent atoms – atoms with 3 valence electrons1.   Aluminum (Al)2.  Boron (B)3.  Indium (In)4.  Galium (Ga)

    a.  N-Type Semiconductor  – doped with pentavalent atomFigure 1-9. - Germanium crystal doped with arsenic.

    b. P-Type Semiconductor  – doped with trivalent atomFigure 1-11. - Germanium crystal doped with indium.

    Electronics EngineeringReview Course

    6

    PN JUNCTION

    •  The boundary between two different types of semiconductive material•  Formed when a piece of intrinsic silicon is doped so that half is n-type and the other ha

    p-typeFigure 1-13. - The PN junction barrier formation.

    DEPLETION REGION

    •  The area near a pn junction on both sides that has no majority carriers•  Region that is depleted of carriers.

    BARRIER POTENTIAL

    •  The potential difference of the electric field across the depletion region•  The amount of energy required to move electrons through the electric field

    •  Typically equal to0.7V for Silicon and 0.3V for Germanium at 25oC

  • 8/17/2019 Electonics Final Handouts

    4/84

    Electronics EngineeringReview Course

    7

    BIASING THE PN JUNCTION

    •   Application of external dc voltage across the pn junctionFORWARD BIAS  – is the condition that allows current through a pn junction

    Figure 1-14. - Forward-biased PN junction.

    REVERSE BIAS  - is the condition that prevents current through the pn  junction

    Figure 1-15. - Reverse-biased PN junction.

    THE DIODE

    •   A semiconductor device that allows the flow of current in one direction only.•   A single pn junction device with conductive contacts and wire leads connected to each region

    anode cathode 

    Figure 1-16. - PN junction diode characteristic curve.

    Electronics EngineeringReview Course

    8

    Dynamic Resistance  – the nonlinear internal resistance of a semiconductive material.

    DIODE MODELS

    The Ideal Diode Model

    •   A simple switch, FB is like a closed (on) switch, RB is like an open (off) switch•  Barrier potential, forward dynamic resistance and the reverse current are all neglected

    The Practical Diode Model

    •   Adds the barrier potential to the ideal switch model•  When FB acts like a closed switch in series with a small voltage.•  When diode is reverse bias it acts like an open switch

    IF

    VFVB

    VR 

    IF

    VFVB

    VR 

  • 8/17/2019 Electonics Final Handouts

    5/84

    Electronics EngineeringReview Course

    9

    The Complex Diode Model

    •  Consist of the barrier potential, the small dynamic resistance (r’d)  and the large internalreverse resistance (r’R) •  When FB acts like a closed switch in series with the barrier potential voltage and the small

    forward dynamic resistance (r’d).

    •  When diode is reverse bias it acts like an open switch in parallel with the large internalreverse resistance (r’R).

    Review Questions

    IF

    V0.7

    V

    Small reversecurrent due to hi h

    IR

    Slope due to low

    forward

    Electronics EngineeringReview Course

    10

    1.  Which of the following is currently being

    used to describe the atomic structure?a.  JJ Thomson’s modelb.  Rutherford’s modelc.  Bohr’s modeld.   Armstrong’s model

    2.  Which of the following subatomicparticles, according to Bohr’s model, issmallest?

    a.  protonb.  electron

    c.  neutrond.  magnetron

    3.   ____ is 1800 times as heavy as _____.a.  electron, protonb.  proton, neutronc.  neutron, protond.  proton, electron

    4.  Which of the following statements istrue?

    a.  electron has a unit charge of +1b.  proton has a unit charge of -1c.  neutron has a unit charge of 0d.  none of the above.

    5.  Which determines the atomic number ofan element?

    a.  number of electronsb.  number of protonsc.  number of neutronsd.  number of protons and neutrons

    6.  Which determines the atomic mass ofan element?

    a.  number of electronsb.  number of protonsc.  number of neutronsd.  number of protons and neutrons

    7.  1H3 is an example of a Hydrogen atom.Which statement is true?

    a.  Hydrogen has an atomic number of

    3b.  Hydrogen has an atomic mass of 1

    c.  Hydrogen has number of proton

    equals 3d.  Hydrogen has number of neutroequals 2

    8.   Atoms with same atomic number budifferent atomic mass is called

    a.  isotopesb.  isobarsc.  cationd.  anion

    9.  18 Ar 40  and 20Ca40 atoms are consider

    asa.  isotopesb.  isobarsc.  cationd.  anion

    10.  3rd quantum number is also known aa.  K-shellb.  L-shellc.  M-shell

    d.  N-shell11.  How many subshells are there in N-

    shell?a.  5 subshellsb.  4 subshellsc.  3 subshellsd.  2 subshells

    12.  f-subshell is the 4th subshell. What dof means?

    a.  falseb.  factualc.  fundamentald.  finite

    13.  f-subshell can accommodate maximof ____ electrons.

    a.  14b.  10c.  8d.  6

    14.  L-shell can accommodate maximum ____ electrons.

  • 8/17/2019 Electonics Final Handouts

    6/84

  • 8/17/2019 Electonics Final Handouts

    7/84

  • 8/17/2019 Electonics Final Handouts

    8/84

  • 8/17/2019 Electonics Final Handouts

    9/84

    Electronics EngineeringReview Course

    17

    a.  3117 μFb.  3207 μFc.  311.7 μFd.  320.7 μF

    85.  Find the voltage regulation giving a dcvoltage of 67 V without load and with fullload current drawn the output voltagedrops to 42 V.

    a.  59.5%b.  62.7%c.  15.9%

    d.  32.5%86.  What is the voltage across a reverse

    biased diode in series with a 10V DCsource and a 1kΩ resistor?

    a.  0Vb.  0.7Vc.  0.3Vd.  10V

    Electronics EngineeringReview Course

    18

    TRANSISTOR 

    •   A semiconductive device used for amplification and switching applications.•  William Shockley, John Bardeen and Walter Brattain were the co-inventors of transisto

    Bell Laboratories in 1947.

    BIPOLAR JUNCTION TRANSISTOR (BJT)The term Bipolar is because two type of charges (electrons and holes) are involved in

    flow of electricity•  The term Junction is because there are two pn junctions

    •  There are two configurations for this device 

    NPN and PNP Transistors

    NPN Transistor PNP Transistor

  • 8/17/2019 Electonics Final Handouts

    10/84

    Electronics EngineeringReview Course

    19

    Parts and Proper Bias1) Collector- moderately doped (collector carrier)

    -the doping is between that of the emitter and the base- largest of the three regions

    2) Base - Lightly doped (control)- controls the flow of carriers from emitter and collector

    -smallest3) Emitter - Heavily doped

    - 2nd largest- emits carrier

    PROPER BIAS OF TRANSISTORFor proper operation of the circuit

    1) Emitter base junction should be forward bias2) Collector-base junction should be reversed bias

    Transistor Operation

    Electronics EngineeringReview Course

    20

    BJT CONFIGURATIONS 

    Relationship of β and α 

    IE = IB + ICMultiply with 1/ Ic[IE = IB + IC] 1/ IcIE IB IC

    IC IC IC1 / α  = 1 + 1/ β 

    Example No 1.Determine βDC, IE, and αDC for a transistor where IB = 50μ A and IC = 3.65mA.Current and Voltage Analysis

    VCE = Voltage drop from collector to emitterVCB = Voltage drop from collector to baseVBE = Voltage drop from base to emitterIC = Current into  the collectorIB = Current into the baseIE = Current out of  the emitter.

     E 

     I 

     I =α  Forward

    Current Gain

    Typical values: 0.001 to 0.9999

    Common Base Common Collector

     B

     E 

     I 

     I =+1 β  Forward

    Current Gain

    α = β / (β  + 1 )

  • 8/17/2019 Electonics Final Handouts

    11/84

    Electronics EngineeringReview Course

    21

    Example 2.Determine IB, IC, IE, VBE, VCE, and VCB in the circuit. The transistor has a βDC = 150

    Collector Characteristic Curves

    Electronics EngineeringReview Course

    22

    Examples.Sketch an ideal family of collector curves for the circuit for IB = 5μ A to 25μ A in 5μ A increments. β= 100 and that VCE does not exceed breakdown.

    Cutoff, Saturation, and The DC load line

    Example 4.Determine whether or not the transistor is in saturation. Assume VCE(sat) = 0.2 V.

    RB 

    VCC 

    VBB 

    RC 

    IB 

    IC 

    . βDC  = 100

  • 8/17/2019 Electonics Final Handouts

    12/84

    Electronics EngineeringReview Course

    23

    Example 5) The transistor has the following maximum ratings: PD(max) =800mW, VCE(max) = 15V,and IC(max) = 100mA. Determine the maximum value to whichh VCC can be adjusted withoutexceeding a rating.

    Derating PDmax)Example 6) A certain transistor has PD(max) of 1W at 25°C. The derating factor is 5mw/C° . What isthe PD(max) at a temperature of 70°C ?The Transistor as a switch

    +VCC

    RC

    C

    E

    RB 

    +VCC 

    R

    0

    IB = 0

    I = 0

    +VCC 

    R

    C

    E

    a) Cutoff

    R

    +V

    R

    +V

    I

    I

    +VCC

    RC

    C

    E

    B) Saturation

    Electronics EngineeringReview Course

    24

    Example 7)a) For the transistor, what is VCE when VIN = 0V?b) What minimum value of IB is required to saturate this transistor if βDC is 200? Neglect VCE(sac) Calculate the maximum value of RB when VIN = 5V.

    DC Operating point

    DC Load Line

  • 8/17/2019 Electonics Final Handouts

    13/84

    Electronics EngineeringReview Course

    25

    Linear Operation

    Waveform Distortion

    Electronics EngineeringReview Course

    26

    Example 1) Determine the Q-point, and find the maximum peak value of base current for linearoperation. Assume βDC = 200.

    BASE BIAS

  • 8/17/2019 Electonics Final Handouts

    14/84

    Electronics EngineeringReview Course

    27

    Example 2) The Base bias circuit is subjected to increase in temperature from 25°C to 75°C. If βDC= 100 at 25°C and 150 at 75°C, determine the percent in Q-point values (IC and VCE) over thetemperature range. Neglect any change in VBE and the effects of leakage current.

    VOLTAGE DIVIDER BIAS

    Electronics EngineeringReview Course

    28

    Analysis of Voltage-Divider Circuit

    Example 3) Determine VCEand IC. Assume βDC = 100

    +VCC 

    R

    R2 

    RIN(base) 

    a)Unloaded

    b) Loaded

    Simplified Voltage-Divider  Input Resistance at the Base

    IE  RE 

    +VCC 

    RC 

    VIN 

    +

    -

    IIN 

    + -VBE 

    RIN(base) = βDCRE

    +

    R

    +VCC 

    +VCC 

    10kΩ 

    5.6kΩ 

    1kΩ 

    560Ω 

  • 8/17/2019 Electonics Final Handouts

    15/84

  • 8/17/2019 Electonics Final Handouts

    16/84

  • 8/17/2019 Electonics Final Handouts

    17/84

  • 8/17/2019 Electonics Final Handouts

    18/84

    Electronics EngineeringReview Course

    35

    77.  Method used in producing thick filmcomponents.

    a.  Evaporationb.  Epitaxialc.  Screeningd.  diffusion

    78.  Method(s) used in producing thin films.a.  Vacuum evaporationb.  Cathode sputteringc.  Screeningd.   A and b

    79.   A method used to deposit thin filmcomponents on a single substrate in ahighly evacuated chamber.

    a.  Diffusionb.  Epitaxialc.  Cathode sputteringd.  Vacuum evaporation

    80.   A ____ is an IC that is used to processanalog signals.

    a.  ROMb.  CMOSc.  Linear ICd.  VMOS

    81.  The most widely used digital logic familya.  DTLb.  TTLc.  ECLd.  RTL

    82.  ECL is high speed because

    a.  Operation is in the low noisenegative supply region

    b.  Construction in small geometriesc.  The use of gallium arsenide

    conductorsd.  The operating transistors being

    unsaturated83.  What is a CMOS IC?

    a.   A chip with only bipolar transistors

    b.   A chip with n-channel transistors

    c.   A chip with p-channel(pmos) and n-channel(nmos) transistors

    d.   A chip with p-channel transistors84.  Digital IC that contains 10 to 100 gates.

    a.  SSIb.  MSIc.  LSId.  VLSI

    Electronics EngineeringReview Course

    36

    FIELD EFFECT TRANSISTOR

    GENERAL VOLTAGE AMPLIFIER

    MODEL

     

    BJT AMPLIFIER CONFIGURATION

     

  • 8/17/2019 Electonics Final Handouts

    19/84

    Electronics EngineeringReview Course

    37

    BJT EQUIVALENT CIRCUIT

    1. Hybrid model – uses h-parameters of a two-

    port network system

    2221212

    2121111

    V  h I h I 

    V  h I hV  

    +=

    +=

     

    HYBRID MODEL

     

    Electronics EngineeringReview Course

    38

    PERFORMANCE FACTORS

    oio

    oii

    V h I h I 

    V h I hV 

    2221

    1211

    +=

    +=

     

    BJT EQUIVALENT CIRCUIT

    2. re-model – considers the ac or dynamic resistance

    of a forward bias pn junction

     E 

    e

     I 

    mV r 

      26=

     

  • 8/17/2019 Electonics Final Handouts

    20/84

    Electronics EngineeringReview Course

    39

    PERFORMANCE FACTORS

     

    FIELD EFFECT TRANSISTORS

    1. Junction Field Effect Transistor (JFET)

    - a type of JFET that only operates at reverse bias tocontrol the flow of current

    - acts as a normally close switch

     

    Electronics EngineeringReview Course

    40

    2. Metal Oxide Semiconductor Field EffectTransistor (MOSFET)

    - a type of FET with insulated gate whichprovides a very high input impedance

     

    a. Depletion type MOSFET (D-MOSFET)

    - a MOSFET with channel when gate

    is open

    - acts a normally close switch

     

  • 8/17/2019 Electonics Final Handouts

    21/84

    Electronics EngineeringReview Course

    41

    b. Enhancement type MOSFET (E-MOSFET)

    - a MOSFET without channel when gate

    is open

    - acts a normally open switch

     

    JFET OPERATION

    • When VGS = 0V:

    - As VDD increases, carrier flow increases

    from source to drain.

    - Gate to Drain junction is reverse biased,resulting to a high channel resistance

    - Drain current becomes saturated when

    VDS equal pinch-off voltage (VP)

     

    Electronics EngineeringReview Course

    42

    JFET OPERATION

    • When VGS  ≠ 0V (reverse bias):

    - As the reverse bias voltage at the gate

    increases, channel resistance increases

    - Drain current is easily saturated

    - When VGS = |VP|, drain current is zero

     

    DMOSFET OPERATION

    • When VGS = 0V:

    - As VDD increases, carrier flow increases

    from source to drain.

    - Gate to Drain junction is reverse biasedresulting to a recombination of carriers

    between the channel and the substrate

    - Drain current becomes saturated when

    VDS equal pinch-off voltage (VP)

     

  • 8/17/2019 Electonics Final Handouts

    22/84

    Electronics EngineeringReview Course

    43

    DMOSFET OPERATION

    When VGS  ≠ 0V (reverse bias voltage):

    - As the reverse bias voltage at the gateincreases, channel resistance increases

    - Drain current is easily saturated

    - When VGS = |VP|, drain current is zero

    When VGS  ≠ 0V (forward bias voltage):- As the forward bias voltage at the gateincreases, carriers are enhanced resultingto increase in drain current

     

    EMOSFET OPERATION

    When VGS = 0V:

    - ID is zero

    When VGS < 0V:

    - ID is zero

    When VGS > 0V:- Channel starts to build up

    - When VGS equals VTH, carriers start toflow form source to drain

     

    Electronics EngineeringReview Course

    44

    REVIEW QUESTIONS:1.  The term use to describe suddenreverse conduction of an electroniccomponent cause by excess reversevoltage across the device.

    a. cut-offb. saturationc.  avalanched.  revertion

    2.  What phenomenon in electronicsdoes an avalanche breakdown primarily

    dependent?a. dopingb.  recombinationc.  ionizationd. collision

    3.  The primary use of zener diode inelectronic circuits.

    a.  resistance regulatorb.  rectifier

    c.  voltage regulatord. current regulator4.  How do zener diodes widely used?

    a. Current limitersb. Power collectorsc.  Variable resistorsd. Voltage regulators

    5.   _______ is the type of biasrequired by an LED to produceluminescence.

    a. Forward biasb. Zero biasc.  Reverse biasd.  Inductive bias

    6.  Which semiconductor material iscommonly used in the conduction of LED?

    a. Silicon (Si)b. Gallium Arsenide (Ga As)c.  Germanium (Ge)

    d. Gallium (Ga)

    7.  If an arrow next to anoptoelectronic device schematic symbo

    points away from the symbol, the devicconsidered to be

    a. photoemissiveb. a p-type semiconductorc.  photosensitived. an n-type semiconductor

    8.   _____ is a pn junctionsemiconductor device that emits non-coherent optical radiation when biased

    the forward direction, as a result of arecombination effect.

    a. LASERb. JFETc.  LEDd. MOS

    9.  Find the normal operating voltaand current of LED

    a. 60V and 20mAb. 5V and 50mAc.  0.7V and 60mAd. 1.7V and 20mA

    10.   A photodiode is normallya.  forward-biasedb.  reverse biasedc.  neither forward nor reverse biasd. emitting light

    11.  The reverse current flowing throa photodiode with no light input

    a. Saturation currentb. Dark currentc.  breakdown currentd. Light current

    12.  The capacitance of the varactodiode increases when the reverse voltaacross it

    a. decreasesb.  increases

    c.  breakdown

  • 8/17/2019 Electonics Final Handouts

    23/84

  • 8/17/2019 Electonics Final Handouts

    24/84

  • 8/17/2019 Electonics Final Handouts

    25/84

  • 8/17/2019 Electonics Final Handouts

    26/84

    Electronics EngineeringReview Course

    51

    ADVANCED ELECTRONICS

    INTEGRATED CIRCUIT FABRICATION

    The silicon planar process of fabrication includes the following steps:a.  Silicon Wafer (Substrate) Preparationb.  Epitaxial Growthc.  Oxidationd.  Photolithographye.  Diffusion

    f.  Ion Implantationg.  Isolationh.  Metallizationi.  Packaging

    The individual steps are explained in brief.a.  Silicon Wafer Preparation. The basic material required for making the substrate, i.e. 

    silicon, is cut into thin sheets, or wafers. This step includes the substeps like crystal growth,doping, slicing into wafers, and polishing and cleaning the wafer.

    Silicon wafer preparation.

    b.  Epitaxial Growth. ‘Epi’ in Greek means ‘upon’ and ‘teinon’ in Greek means ‘arranged.’

    In reality, epitaxy is simply a process to grow a single-crystal layer on a single-crystalsubstrate.

    Types: homoepitaxy- single-crystal layer on a single-crystal are of exactly the same material; heteroepitaxy- single-crystal layer on a single-crystal are different in any aspect material

     Applied to all kinds of thin-film depositions as long as they arranged in order ; employed toprepare III-V and II-VI compound semiconductor materials and devices.

    Electronics EngineeringReview Course

    52

    Epitaxial growth.

    Note : The thickness and other dimensions of the IC will be in mils.

    where

    c.  Oxidation. Here an oxide layer is grown over the epitaxial layer. The SiO 2 layer formedoxidation prevents diffusion of almost all impurities. Oxidation is accomplished by placin

    the silicon vertically into a quartz boat in a quartz tube, which is slowly passed through aresistance-heated furnace, in a presence of oxygen operating at about 1000oC.

     After oxidations the structure has 3 layers, i.e. the substrate, the epitaxial layer, and theoxide layer.

    Oxidation.

    El t i E i i El t i E i i

  • 8/17/2019 Electonics Final Handouts

    27/84

    Electronics EngineeringReview Course

    53

    d.  Photolithography. The purpose of this step is to remove portions of the SiO 2 layer sodiffusion can occur in selected areas.

    Functional Components of Lithography• Energy—cause (photo)chemical reactions that modify resist dissolution rate• Mask—Pattern (or direct) energy to create an aerial image of mask in resist• Aligner—Align mask to previous patterns on wafer (to a tolerance level)• Resist—Transfer image from mask to wafer, after development Positive resist reproducesthe mask pattern, Negative resist reproduces inverse mask pattern• Substrate—Has previous mask patterns

    The structure before applying the photolithography process is shown below

    Input structure for photolithography.

    The photolithography process involves many steps which are described in detail below.

    The first step is to make a photoresist layer above the oxide layer.

    Structure with photoresist layer.

    The second step is to make masks, the locations of which are determined by the finalstructure. The masks will protect the photoresist layer from the ultraviolet light applied in stepthree.

    Electronics EngineeringReview Course

    54

    Structure with masks.

    Step three involves passing an ultraviolet light over the masks. Wherever the mask is nopresent, the photoresist layer is ‘polymerized.’

     Structure with mask layer during ultraviolet exposure.

    Structure with mask layer after ultra-violet exposure.

    Etching Techniques - The process of selective removal of regions of a semiconductor, metasilicon dioxide.

    Types:Wet Etching: the wafers are immersed in a chemical solution at a predeterminedtemperature. In this process, the material to be etched is removed equally in all directio

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    28/84

    Electronics EngineeringReview Course

    55

    Dry (Plasma) Etching: the wafers are immersed in gaseous plasma created by a radiofrequency electric field applied to a gas such as argon.

    The structure is dipped into a solution of hydrofluoric acid in the fourth step. The masks and thenon-polymerized portions of the photoresist layer will dissolve in the hydrofluoric acid solution.

    Structure after dissolution in hydrofluoric acid.

    The fifth step involves dipping the structure into a photosensitive emulsion. The oxide layernot protected by the polymerized photoresist will dissolve in the solution.

    Structure after dissolving in photoemulsive solution.

    The sixth and final step is to remove the polymerized photoresist. At the end of this step, theoxide layer will be exposed.

    Final structure after photolithography.

    Chemical Mechanical Polishing (CMP) - is a process that planarizes the wafer. This is donebefore patterning of the wafer to provide flat surface to expose the mask image on.

    Electronics EngineeringReview Course

    56

    e.  Diffusion. Diffusion is the process by which the N- type or P-type impurity silicon atoms

    can be diffused into the epitaxial layer, through the holes in the oxide layer.

    Diffusion.

    Diffusion process occur in two steps:Predeposition Step: a high concentration of dopant atoms are introduced at the silsurface by a vapor that contains the dopant at a temperature of about 1000Predeposition tends to produce, near the silicon surface, a shallow but heavily dolayer.Drive-in: Used to drive the impurity atoms deeper into the surface, without addingmore impurities, thus reducing the surface concentration of the dopant.

    f.  Ion Implantation. In this process, an alternative to diffusion, the epitaxial layer can beimplanted with impurity ions.

    g.  Isolation. Since a number of different circuits are manufactured in a single planar proceit becomes essential to differentiate the circuits. This process checks whether any shortcircuit is present between different circuits and, if so, the corresponding part is identified unusable.

    h.  Metallization. This process provides electrical metal contacts to the different diffusedareas, where the terminals of the devices should be taken. Wherever the terminals shoube short-circuited always, the metal contacts will be short-circuited and a single lead termwill be taken ‘out.’

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    29/84

    Electronics EngineeringReview Course

    57

    Metallization.

    i.  Packaging. The circuits manufactured in a single process will be scribed and cut down intoseparate structures. Each structure will be packed as a separate IC. The packaging will beused to give output leads to users.

    Different package configurations available:1.  To-5 Glass Metal Package2.  Ceramic Flat Package3.  Dual-In-Line Package (DIP).4.  Molded Matrix Array Package5.  Flip-Chip Ball Grid Array

    Example of IC packages.

    Cleanrooms - are classified by the cleanliness of their air. The method most easily understood anduniversally applied is the one suggested in the earlier versions (A to D) of Federal Standard 209 inwhich the number of particles equal to and greater than 0.5 m m is measured in one cubic foot of airand this count is used to classify the room.

    Electronics EngineeringReview Course

    58

    Federal Standard 209 - This standard was first published in 1963 in the USA and titled "Cleanrand Work Station Requirements, Controlled Environments". It was revised in 1966 (209A), 1

    (209B), 1987 (C), 1988 (D) and 1992 (E).

    Federal Standard 209D Class Limits  

    DIGITAL INTEGRATED CIRCUITS

    Properties and Definition

    Ideal Logic Inverter

    Operates from a single power supply

    Voltage Transfer Characteristics

    Voltage Transfer Characteristic (VTC)

    The transfer characteristics of a logic gate are represented by a curve relating the output voltagethe input voltage. The curve is plotted on a graph where the input voltage is on the x-axis and theoutput voltage is on the y-axis.

    CLASSMEASURED PARTICLE SIZE (MICROMETE

    0.1 0.2 0.3 0.5 5

    1 35 7.5 3 1

    10 350 75 30 10

    100 NA 750 300 100

    1,000 NA NA NA 1,00010,000 NA NA NA 10,000

    100,000 NA NA NA 100,000

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    30/84

    Electronics EngineeringReview Course

    59

    In order that the high and low voltage levels always be distinguishable, must always have

    VOH > V IH   and V OL > V IL

    Where:VOH—The nominal, or minimum, logic-1 state output voltage.VOL—The nominal, or maximum, logic-0 state output voltage.ViL—The nominal, or maximum, input voltage required for logic-0 input.ViH—The nominal, or minimum, logic-1 input voltage.

    Midpoint Voltage VM, sometimes referred as threshold voltage Vth , is defined as the point on VTCwhere VIN=VOUT and ideally appears at the center of the transition region.

    Logic Swing – magnitude of voltage difference between the output high and output voltage levels.

    Transition Width – amount of voltage change that is required of the output voltage from the high tothe low level (or vice versa)Noise Margins – terminology used to describe fluctuations/variations in the high and logic low levels.

    Electronics EngineeringReview Course

    60

    The effects of input variations are quantified in terms of the Noise Sensitivities. The high andnoise sensitivities are defined as the difference between the input and midpoint voltage for VIN  at and VOL, respectively.

    The quantity Noise Immunity is the ability of a gate to reject noise.

    The term fan-in  is used to describe the number of inputs to the gate. Similarly, the term fan-oused to describe the number of outputs of a gate. The maximum fan-out of a digital circurestricted by its input and output currents.

    The maximum fan-out possible during the driving gate’s logical 1  output gate isNhigh = IOUT(high) / I’IN (high) 

    The maximum fan-out possible during the driving gate’s logical 0  output gate isNlow = IOUT(low) / I’IN (low) 

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    31/84

    Electronics EngineeringReview Course

    61

    Transient Characteristics

    Switching Speed Definitions

    td = delay timetr  = rise timets = storage timetf  = fall time

    tON = turn on timetOFF = turn off time

    Propagation delay - symbolized tpd, is the average time required for a digital signal to travel from theinput(s) of a logic gate to the output.

    Electronics EngineeringReview Course

    62

    Power Dissipation

    PCC (avg) = ( PCC(OH) + PCC(OL) ) / 2 PCC (avg) = VCC ( ICC(OH) + ICC(OL) ) / 2 

  • 8/17/2019 Electonics Final Handouts

    32/84

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    33/84

    g gReview Course

    65

    Simple TTL NAND gate.

    The standard form of a TTL NAND gate is shown in below

    Standard TTL NAND gate.

    The standard form of TTL NAND gate is also called a modified TTL NAND gate. In this circuit, atotem pole or active pull-up stage is added to the simple TTL NAND gate to increase fan-out.

    g gReview Course

    66

    Transfer characteristics of a TTL NAND gate.  Region I is for logic-0 input.  Region II is the transition stage.  Region III is for logic-1 input.

    EMITTER COUPLED LOGIC (ECL)

     Also referred to as Emitter Coupled Transistor Logic (ECTL) this logic employs an emitter coupdifferential amplifier. The basic gates of this family are OR, NOT, and NOR.

    This family has the minimum propagation delay because the output is not driven into saturation.

     A standard ECL OR/NOR gate is shown.

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    34/84

    Review Course

    67

    ECL OR/NOR gate.

    COMPLEMENTARY METAL OXIDE SEMICONDUCTOR (CMOS) LOGIC

    MOS Logic

    This logic is similar to the other transistor logic families except it uses metal oxide semiconductorfield effect transistors instead of bipolar junction transistors. The advantages offered are easierfabrication process, increased operating speed, and low power comsumption.

    Generally, the N-channel MOSFET is used in this family. Hence the logic is named NMOS logic. Thebasic gate used is a NOT gate.

    CMOS Logic

    Here, N-channel and P-channel MOSFETs are used. This increases the systems complexity andchip area compared to NMOS logic. The great advantage of CMOS logic is that the powerconsumption in a steady state is almost zero. Power consumption occurs only when there is aswitching action from one state to another. The basic gates used are NOT and NAND.

    Review Course

    68

    CMOS NOT gate.

    Logic-1 = VCC  and Logic-0 ~0 volts.

    CMOS NAND gate.

    CMOS Fabrication

    CMOS (complementary metal oxide semiconductor field effect transistor) fabrication needs an N-channel MOSFET and P-channel MOSFET which are connected together as shown below

    Electronics Engineering Electronics Engineering

  • 8/17/2019 Electonics Final Handouts

    35/84

    Review Course

    69

    N-channel and P-channel connection for CMOS fabrication.

    Final structure of CMOS.

    Review Course

    70

    RESONANCE

    Resonance - condition wherein the inductive reactance (X L) of a coil equals the capacitive react(XC) of a capacitor in a circuit.

    The resonant frequency f r  can be computed from the condition above. Since,XL = 2 f  r  L

    andXC = 1/2 f   r  C

    then,

    f r =

    where: f r = resonant freq. in HzL = inductance in HenryC = capacitance in Farad

    Series Resonance – L and C are in series.

    I

    Z

      E

    E

    1

    2π√LC

    Electronics EngineeringR i C

    Electronics EngineeringR i C

  • 8/17/2019 Electonics Final Handouts

    36/84

    Review Course

    71

    We can write the series impedance in rectangular form as:Z = R + j (XL – X C)

    Taking the magnitude of the equation:lZl = R2 + (X L  – XC)2

    We can calculate the current I in the series:

    I = =

    But since XL = X C at resonance:then:

    Z = RI = E/R

    Characteristics of series resonant circuit:(1)  Z=R minimum resistance(2)  I = E/R maximum current(3)  current is in phase with voltage(4)  power factor is unity(5)  power is maximum

    Quality factor Q  – figure of merit or factor of merit in sharpness of resonance.- ratio of the reactive power (energy stored) to the true power developed in the circuit

    (energy dissipated per cycle).

    Q = = in a

    series resonant circuit. Therefore,

    Q =

    since XL = 2pif  r Land

    f r =

    E E

    lZl  R 2 + (XL – XC)

    2

    Pa I2XLS 

    P I2 R

    XLS 

    R

    1

    2π√LC

    Review Course

    72

    thenQ =

    Q rise in voltage across a series L or C:The Q of the resonant circuit can be considered a magnification factor that determines

    much the voltage across L or C in increased by the resonant rise of current in a series circuit:VL = V C = IX C = IXL

    butI = E/R

    VC = EX C  / R

    VC = QE or V L = QE

    Bandwidth:- any resonant frequency has an associated band of frequencies that provide resona

    effects. The width of the resonant band of frequencies centered around f r  is called the bandwidtthe tuned circuit.

    I = 0.707 Imax

    P = 0.5 Pmax

    BW = f r /Q and BW = R/2piL

    - From the equation, an increase in Q-factor will correspond to a decrease in BW.- As the L/C ratio increases, the response becomes sharper. Also, as R is decreased, the betterresponse.

    1 L

    R C

    Imax

    0.707 Imax

    f 1  f f 2 

    Electronics EngineeringR i C

    Electronics EngineeringR i C

  • 8/17/2019 Electonics Final Handouts

    37/84

    Review Course

    73

    Parallel Resonant Circuit(Antiresonant Ckt.):

    a b

    Review Course

    74

    where Yac = 1/(RL + jX L)and Ybc = 1/(RC + jX C)simplify, then equate the susceptance: BL = BC

    therefore,f ar  =

    Basic Variations:(a) RC is negligible

    f ar  = 1 –

    (b) RL is negligible

    Z = Yac + Y bc 

    c

    1  R L2 – L/C

    2π LC R C2 – L/C

    1 R L2C

    2π LC L

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    38/84

    Review Course

    75

    f ar  =

    (c) RL and R C are both negligible

    f ar  =

    Circuit conditions:1.  total susceptance is zero2.  inductive susceptance is equal to the capacitive susceptance of the circuit

    3.  impedance is maximum4.  total current through the circuit is minimum5.  power factor is unity

    1 1

    2π LC 1 – (R C2C/L)

    1

    2π LC

    Review Course

    76

    Theoretical antiresonant circuit:

    if BL = B C then Y = Gtherefore Z = Rand

    f ar =

    Q-factor:

    Q = =

    Q =

    Resonant rise of the current:

    IL = I T 

    since BL = B C

    IL = I T

    Z

    1

    2π LC

    PQ  E2/XL 

    P E2/R

    R

    XL 

    G + j BC 

    G + j (BC - BL)

    G + j BC 

    G + j (BC - BL)

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    39/84

    Review Course

    77

    Bandwidth:

    BW =f ar  

    Q

    Review Course

    78

    - The above graph shows the variation in the current through the parallel RLC circuit. Noticethe current is a minimum at the resonant frequency. This is an example of a band-stop cresponse.- The shape of the band-stop response of a parallel RLC circuit depends on the value of R andas shown in the next graphs. Note that the band-stop characteristic becomes narrower as the vof R increases.

    can be used to block frequencies near the resonant frequency, while allowing others to pass.

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    40/84

    Review Course

    79

    FILTERS

    FILTERS - a network that possesses the ability to discriminate undesired frequency and allows thepassage of desired frequency.

    •  Generally, inductors and capacitors are used for filtering, because of their opposite frequencycharacteristics.  

    •   A filter is usually a combination of capacitors, coils and resistors. 

    Passband – band of frequencies that the filter does not attenuate.Stopband – band of frequencies that the filter attenuates.

    Classifications of Filters according to the frequency response:

    1. Low-pass Filter (LPF) – filter that rejects or attenuates frequencies above the cut-off frequencyand passes frequency components below the cut-off frequency.

    2. High-pass Filter (HPF) – filter that rejects or attenuates the frequencies below the cut-offfrequency and passes frequencies above the cut-off.

    f c

    PB SB

    f c

    SB PB

    Review Course

    80

    3. Band-pass Filter - a filter that rejects or attenuates frequencies not within the two cufrequency.

    4. Band-reject Filter - a filter that attenuates or rejects frequencies within the two cufrequencies.

    Simple RC Low-pass Filter:

    •  XC  at low frequency is very high, capacitor is open, V S = V O, AV = 1.

    P S

    f c1

    S P

    f c2

    PB SB PB

    f c1 f 

    CVS

    VO

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    41/84

    81

    •  XC  at high frequency is very low, V O is smaller than VS. 

    With RS and R L  connected:

    Simple RC High-pass Filter:

    •   At very low frequencies, C is open, therefore VO  ≈0, AV   ≈ 0.•   At high frequencies, C is shorted, therefore, VO = V S, AV = 1.

    A = 1

    √1 + (ωRC) 2f c =

    1

    2πRC

    A =R L

    R + R L  f c =1

    2πRC

    VS

    C

    R VO

    82

    with RS and RL connected:

    Simple RC Bandpass Filter:

    •  not suitable for narrowband applications because too much interaction takes place betweesections if the cut-off frequencies are close together:

    f C2 > f C1

    A = f c =1

    2πRC

    A =R//R L

    R S+R//R L f c =

    1

    2πRC

    VS

    R 1 C2

    C1 R 2

    LPF HPF

    VO

    VS R S  C

    R R L

    VS

    1

    √1 + (1/ωRC) 2

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    42/84

    83

    R2 > 10R1

    •  at frequencies below the passband, the circuit behaves like a HPF. For frequencies above the

    passband, the circuit behaves like a LPF. Therefore,

     At passband,

     AV = R2 / (R1 + R2)

    Band-stop Filter (or Notch Filter):

    Wien-Bridge Circuit:

    f c2 =1

    2πR1Cf c1 =

    1

    2πR2C

    R 1

    R 2 VS

    84

    at high frequencies, C is shorted:

    VO = voltage across R1/2 ; Av = 1/3

    at low frequencies, C is open,

    VO = voltage across R1/2 ; Av = 1/3

      Somewhere between very low and very high frequency, we will find a frequency where bridge balances. In other words, VO  will equal zero for a specific frequency.

    Z1 R 1

    Z2 R 1/2

    R

    VS

    Z1 R 1

    Z2 R 1/2 R

    VO

    VO

    f  f c2f o

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    43/84

    85

    Notch filter completely rejects one particular frequency.

    If A = 0, the circuit is balanced:

    then f O =

    and A =

    BASIC LC FILTERS

    Low pass:

    f C =

    Z1 Z3=

    Z2 Z4

    1

    2πRC1 ωRC – (1/ωRC)

    3 9 + [ωRC – (1/ωRC)]2 

    L

    C

    1 1 + √ 2

    2π  LC

    86

    High-pass:

    f C =

    Constant K-filter:

    If we consider an L-type as a basic example, the values of inductance and capacitance cadesigned to make the product of XL and XC constant at all frequencies. The purpose is to havefilter present a constant impedance at the input and output terminals.

    RK = characteristic image impedance of the filter networkZ1Z2 = RK2 = L/C (or nominal impedance)

    For a T-network:

    ZOT = RK + 1

    C

    L

    1

    2π √  LC (1 + √ 2 )

    Z1/2 Z1/2

    Z2

    Z1

    4Z2

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    44/84

    87

    For a pi-network:

    ZO

    at cut-off, ZOT = 0 ; ZO = pi

    for ZOT to be zero, let = -1 (1)

    since RK = √ Z1 Z2

    Z1 = (2) Z2 = (3)

    Z1 

    2Z2 2Z2 

    R K

    1 +Z1

    4Z2

    LPF HPF

    ZOT ZOT

    ZOΠ ZOΠ

    Z1

    4Z2

    R K   

    Z2 

    R K 2 

    Z1 

    88

    Substitute (2) and (3) in (1):

    = = = -1

    Z22 = ; Z2  = ± j

    Z12 = - 4RK2  ; Z 1  = ± j 2RK

    Use (+) inductance( - ) capacitance

    therefore, for the T-network,

    = j Z2 =

    L1 = C2 =

    f C =

    Z1

    4Z2

    R K   

    4Z22Z1

    4R K 2 

    - R K   

    4

    R K  

    2

    Z1/2 Z1/2

    Z2

      L1/2 L1/2

    C

    Z1 L1 1 

    4Z2 2  jω C2 

    R K 2  1

    πf C πR K  f C

    1

    π √ L1C2  

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    45/84

    89

    Formulas:

    1. Low Pass

    T-section

    -section

    L1 = C2 =

    f C  = R K = √ L1/C2

    2. High Pass

    T-section -section

    L2 = C1 =

    f C = RK = √  L2/C1

    Z1/2 Z1/2 L1/2 L1/2

    Z2  C2

    Z1 L1 

    2Z2  2Z2  C2/2 C2/2

    R K    1

    πf C πR K  f C

    1π √  L1C2 

    2C1 2C1 C1

    L2 2L2 2L2

    R K   1

    4πf C 4πR K  f C

    1

    4π √  L1C2 

    90

    3. Band Pass

    T-section

    -section

    L1 = L2 =

    C1 = C2 =

    RK

    = √ L1/C1 = √ L2/C2 f O

     = √ f1f2

    f2 = + +

    f1 = + +

    L1/2 2C1 2C1 L1/2

    L2 C2

    L1 C1

    2L2 C2/2 2L2 C2/2

    R K   R K (f2 – f1) π(f2 – f1)  4πf1 f2 

    (f2 – f1) 14π R K  f1 f2 πR K (f2 – f1) 

    1 1 1 12π L1C2 L1C2 L1C1

    1 −1 1 12π L1C2 L1C2 L1C1

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    46/84

    91

    4. Band Stop

    T-section

    -section

    RK = √ L1/C1 = √ L2/C2

    L1 = L2 =

    C1 = C2 =

    L1/2 L1/2

    L1

    C12L2 2L2

    C2/2  C2/2 

    R K (f2 – f1) R K  πf1 f2 4π(f2 – f1) 

    (f2 – f1) 1 π R K  f1 f2 4πR K (f2 – f1) 

    L2

    C2

    92

    The m-derived Filter:

    This is the modified form of the constant k-filter. The design is based on the ratio of the filter cufrequency to the frequency of infinite attenuation. This ratio determines the m-factor. The m-defilter also can be high pass or low pass. The advantage is very sharp cut-off.

    m=1m = 0.6±

    m = 0.2± 

    m =almost zero 

    ZOT

    ZOΠ 

    m-derived 

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    47/84

    93

    m-derived Equivalent Circuits:

    Low-Pass Filter

    m = √ 1 – (fc – f    ) fc < f  

    High-Pass Filter

    mL1/2 mL1/2

    1 – m  

    4mL1

    m C2

    f c f α 

    2C1/ m 2C1/ m

    L2/m

    4m

    1 – m2 

    C1

    94

    m = √ 1 – (f – f  c) fc > f  

    f α f c

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    48/84

    95 96

    DC CIRCUITS

    Atom  - the smallest particle of an elementthat still retains the properties of the element.Components of the Atom:

    Proton - a positively charged particle of 1.6 x10 C and has a mass of 1.672x10 E-27.

    Electron -a negatively charged particle of 1.6x 10 C and has a mass of 9.107x10E-32.

    Neutron  - A neutral particle with a mass of1.672 x 10E-27 C.

    Valence electrons  – electrons in theoutermost orbit of an atom.

    Electric charge – exists if a body is deficientor has an excess number of electrons than its

    normal values due to sharing.

    Coulomb(C)  is the unit of electric chargewhich was named after the French Physicist ,Charles A. Coulomb. 1 Coulomb of Charge isequivalent to 6.25 x 10 E18 electrons orprotons.

    Ampere(A) - the unit of electric current. One

    ampere is equivalent to once coulomb ofcharge passing a particular point in onesecond. The unit was named after the FrenchPhysicist Andre M. Ampere.

    Resistance(R)  – The property of a materialthat limits the current flow when subjected toa potential difference.

    Electromotive Force  – is the enesupplied to charge by some active de

    such as a battery. A 2V of emf means tdevice supplies 2J of energy to eCoulomb of charge. EMF maintains potedifference.

    Potential Difference – exists when energconverted to work as charges move frompoint to another point. A 2V potedifference between points A and B methat each Coulomb of charge will give u

    energy of 2 J in moving from A to B.

    Volt(V) – the unit of potential difference emf . One Volt of potential difference/eequal to one joule of work/endone/supplied per one coulomb of chThe unit was named after the ItPhysicist, Alessandro C. Volta.

    Electric Current   – electrons in motion. rate at which charges are moving ovperiod of time or the rate of change of chper unit time. It is caused by potedifference.

    Ohm(Ω)  – the unit of electrical resistanamed after the German Physicist GeoOhm.

    Circular   Mil  –the area of a circle whdiameter is one mil.

    Mil – a unit of length equivalent to 1/100an inch.

  • 8/17/2019 Electonics Final Handouts

    49/84

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    50/84

    99

    RESISTANCE:  The opposition to the flow of current.

    where:

    R – the resistance in ohms,Ω

     

    ρρ  – – tthhee r r eessiissttiivviittyy oor r   ssppeecciif f iicc r r eessiissttaannccee oof f   tthhee ccoonndduuccttoor r  

    L  – the length of the conductorA  – the area of the conductorV  – the volume of the conductor

    Resistivityρ 

    Length L  Area

     A

    Ω-m m sq.m

    Ω-cm cm sq.cmΩ-CM/ft ft CM

    CONDUCTANCE:

    where:

    G  – the conductance of the conductor,Siemensσ – the conductivity of the conductor

    Rectangular Conductor:  

    Cylindrical Conductor: 

    if d  is expressed in mils 

    where:

    CM = circular-mils

    R = ρA

    L= ρ

    V

    L2 = ρ

    2A

    V  

    G =R 

    1  σ=

    ρ

    Area = d2  (CM)

    Area =π

    /4 

    [d2] sq. unit

    1 inch = 1000 mils

    a

     b

    Figure

    Figure

    d

    1o

    F-lb

    BTU 

    1oC-kg

    kcal 

    100

    Resistivity of SomeCommon Materials

    MaterialResistivity ρ 

    Ω-m Ω-CM/ft

     Aluminum 2.83 10-8  17.02

    Copper 1.724 10-8  10.371

    Gold 2.44 10-8  14.676

    Iron 98 10-8  589.4

    Silver 1.629 10-8  9.805

    EFFECT OF TEMPERATURE ON

    RESISTANCE OF CONDUCTORS:

    where:

    R2

      – resistance at temperature t2

     R1  – resistance at temperature t1T  – inferred absolute zero temperature

    α1- temperature coefficient of resistance temperature t1

    Inferred Absolute ZeroTemperature

    MaterialT (oC)

     Aluminum 228

     Annealed Copper 234.5

    Hard-Drawn Copper 241.5

    Iron 180

    Silver 243

    INSULATION RESISTANCE OF

    HIGH-VOLTAGE CABLES:

    where:

    ρ  – resistivity of the insulating material

    -m)

    l  – length of the cable (m)

    r 1  – radius of the conductorr 2  – radius of the insulating material

    2tT

    2R 

    1tT

    1R 

    +=

    R 2 = R 1 [1 + α1 (t2 - t1)]

    11

    tT

    +=  

    R 2

    R 1

    t1 

    t2 

    t

    R =1

    2r

    rln 2π

    ρ

    r1 

    r2 Cable 

    Insulator  

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    51/84

    101

    COLOR CODING:

    Color

    NumberBand1,Band2

    Multiplier

    Band3

    ToleranceBand4± %

    Black 0 100  -

    Brown 1 101  1

    Red 2 102  2

    Orange 3 103  -

    Yellow 4 104  -

    Green 5 105  0.5

    Blue 6 106  0.25

    Violet 7 107  0.1Gray 8 108  0.05

    White 9 109  -

    Gold - 10-1  5

    Silver - 10-2  10

    None - - 20

    OHM’S LAW:

      In an electrical circuit, the current isdirectly proportional to voltage and

    is inversely proportional to

    resistance.

    where:  

    I  – current in amperesV  – voltage in volts

    R  – resistance in ohms, Ω G  – conductance in Siemens

    Kirchhoff’s Voltage Law (KVL)

      The algebraic sum  of all voltages  in acircuit taken around a closed path is zero.

    Convention:

    First Digit 

    Second Digit MultiplierTolerance

    igure

    I = R 

    V  I = V G 

    V

    a

     b

    igure

    Path b-a: Potential Rise = +V

    Path a-b: Potential Drop = -V 

    Path b-a: Potential Rise = +Vr 

    Path a-b: Potential Drop = -Vr 

    R

    I

    Vr +

    a

     b

    102

    Kirchhoff’s Current Law (KCL)

      The algebraic sum  of all currents entering and leaving a node is zero.

    Convention:

    RESISTANCES IN SERIES:

    The same current I exist on each resistor

    The source voltage V is the summation ofvoltages across each resistor.

    The total resistance RT  is the sum of theindividual resistances.

    RESISTANCES IN PARALLEL:

    II == 1

    1

    V==

    2

    2

    V==

    nR 

    nV 

    V = V1 + V2 + … Vn 

    R T = R 1 + R 2 + .. R n 

    R T =TG

    1=

    1G

    1+

    2G

    1+..

    nG

    I1 =1

    V; I2 =

    2R 

    V; In =

    nR 

    I1 I4 

    I3 I2 

    node

    Current entering a node: + sign

    Current leaving a node: - sign

    I1 – I2 – I3 + I4 = 0

    I

    V1  V2  Vn 

    R 1  R 2  R n 

    V

    R n 

    I1 

    R 1  R 2 V

    I2  In 

    IT 

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    52/84

    103

    The same voltage V exists across eachresistor.

    The total current IT  is the sum of individualcurrent passing through each resistor.

    TWO RESISTANCES IN PARALLEL:

    SERIES-PARALLEL CIRCUIT:

    PARALLEL-SERIES CIRCUIT:

    CURRENT DIVIDER:

    VOLTAGE DIVIDER:

    IT = I1 + I2 + .. In 

    GT = G1 + G2 + .. Gn 

    GT =TR 

    1=

    1R 

    1+

    2R 

    1+…

    nR 

    R R TT ==21

    21

    R R 

    R R 

    R R 

    TT ==

     R R 

    11 

    ++

    21

    21

    R R 

    R R 

    R R TT == 321

    321

    R R R 

    ]R R [R 

    +++

     

    I1 =21

    2T

    R R 

    ]R [I

    I2 =21

    1T

    R R 

    ]R [I

    VR 1 

    R 2  V2 

    V2 =21

    2

    R R 

    ]R [V

    R 2R 1 

    R 2

    I1 

    R 1 

    I2 

    IT 

    R 2 

    R 1 

    R 3 

    R 2 R 1 

    R 3 

    104

    ELECTRICAL POWER: 

    THEVENIN’S THEOREM:

    where:

    VTH  – the open-circuit voltage measured

    across terminals a  and b with RL 

    removed.

    RTH  – the equivalent resistance with all

    voltage sources shorted and all cur

    sources opened, across terminals

    and b with RL removed.

    RL   – load resistance.

    IL   – load current.

    MAXIMUM POWER TRANSFER:

      Maximum power transferred to the R L occurs when R L = R TH 

    P = I2

    R (watts) 

    P = V I (watts) 

    P =R V

    2

      (watts) 

    VT

    Circuit

    Network R L

    a

    b

    IL

      R L

    R T a

    IL

      igure

    R L

    R T

    VTH 

    b

    IL 

    Maximum Power:

    Pmax =TH

    2TH

    2TH

    L2

    TH

    4R 

    V

    ]2R [

    R V

    =  

    IILL == LTH

    TH

    R R 

    V

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    53/84

    105

    NORTON’S THEOREM:

    where:

    ISC  – the short-circuit current passingthrough terminals a and b  with RL removed and terminals a and b short-circuited.

    RTH  – the equivalent resistance with allvoltage sources shorted and all currentsources opened, across terminals a and b with RL removed.

    RL   – load resistance.IL   – load current.

    SOURCE TRANSFORMATION:

    NODAL ANALYSIS:

      In this method, a solution is possible withn-1 equations, where n  represents thenumber of nodes.

     At node a :

    CircuitNetwork

    a

    IL 

    R L R T

    ISC

    IL 

    IILL == LTH

    THSC

    R R 

    R I

    +

    ⋅ 

    VVTTHH == R R TTHH  IISSCC 

    V2 

    zero potential

    (Common Node)

    R 1 

    V1 

    I1 

    R 2 

    R a 

    I3 

    Ia  Ib 

    I2 

    R 3 

    R b 

     ba

     Node Node

     

    I1 = Ia + I2

    21

    1

    VV 

    VV ba

    a

    aa −+=−

     

    R T

    VTH

    b

    ISCb

    R T

    106

     At node b:

    Once the node voltages are known ( Va, Vb ),all the branch currents can be calculated.

    MILLMAN’S THEOREM:

       Any combination of parallel connectedvoltage sources can be represented as asingle equivalent source usingThevenin’s and Norton’s theoremsappropriately.

    where:V1, V2, ..Vn  – Voltages of the individual

    voltage sources.R1, R2,..Rn   – internal resistances of the

    individual voltage sources.VL  – load voltageRL  – load resistor

    DELTA-WYE TRANSFORMATION:

    WYE-DELTA TRANSFORMATION

    R A =321

    32

    R R R 

    R R 

    ++ 

    R B =321

    13

    R R R 

    R R 

    ++ 

    R C =321

    21

    R R R 

    R R 

    ++ 

    Ib = I2 + I3 

    3

    b2ba

    b

    b

    VV 

    VV 

    V

    2

    −+

    −=  

    VL=

    Ln21

    n

    n

    2

    2

    1

    1

    1

    1

    1

    1

    V

    V

    V

    +++

    ++

    ....

    ....

     

    R 1

    V1 

    R 2 

    R LV2 

    VL 

    R 3 

    R 1  R 2 

    1

    32

    1

    R A R B 

    2 3

    R 3 

    R 1  R 2 

    1

    32

    1

    R A R B 

    R C 

    2 3

  • 8/17/2019 Electonics Final Handouts

    54/84

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    55/84

    109

    where:C  – capacitance in FaradA  – area of each plate sq. metersd  –  thickness of the dielectric material in

    metersCAPACITANCE OF “n” PARALLELPLATES CAPACITOR with the sameDIELECTRIC MATERIAL

    and thickness of INSULATION:

    where:C – capacitance in Faradn  – the number of plates

    CAPACITANCE of several PARALLELPLATES CAPACITOR with DIFFERENTDIELECTRIC MATERIAL and THICKNESSof INSULATION:

    PROPERTIES OF VARIOUSINSULATING (DIELECTRIC)

    MATERIALS 

    Vacuum 1

     Air 1.0006

     Asbestos 2

    Bakelite 5

    Cellulose film 5.8

    Marble 7

    Mica 6

    Paper (Dry) 2.2

    Paper (Treated) 3.2

    Glass 6

    Porcelain 5.7Pressboard 6.2

    Quartz, fused 3.5

    Rubber 2.6

    Silica, fused 3.6

    Water 70

    Wax, paraffin 2.2

    Major Types of Capacitors:  1 Electrolytic

    2 Dielectric

    3 Plastic film types

    4 Metallized plastic types

    5 Glass and ceramics

    6 Mica and mica/paper types

    7 Air/vacuum types

    C =d

    Aεε ro ⋅⋅  

    d

    εr 

    d d

    εr  εr 

    igure

    C =d

    Aεε1)(n ro

    ⋅⋅−  

    d1 

    εr1 

    d2  d3 

    εr2  εr3 

    igure

    C =

    321 r

    3

    r

    2

    r

    1

    o

    εd

    εd

    εd

    ++

    ⋅  

    110

    CAPACITANCE OF ANISOLATED SPHERE:

    CAPACITANCE OF A SPHERICALCAPACITOR:

    CAPACITANCE OF COAXIAL CABLE:

    CAPACITANCE BETWEENTWO-PARALLEL WIRE:

    CAPACITORS IN SERIES:

    The same current I  exist in each of capacitors.

    The charge on each capacitor is the sam

    The source voltage VT  is the summatiothe voltages across each capacitor.

    r

    +

    +

    ++

    +

    +

    +

    +

    εr 

    igure

    C = 4π · εo · εr · r 

    r 1 

    +

    εr  

    r 2 

    +

    +

    +

    +Q +-

    -

    -

    -

    --

    -

    igure

    C = 4π·εo·εr· 12

    21

    rr

    rr

    −⋅

     

    igure

    rr

    C =

    1

    2

    ro

    r

    rln

    εε2π ⋅⋅ (Farad/meter)

    C =

    ⎥⎥⎦

    ⎢⎢⎣

    ⎥⎦

    ⎤⎢⎣

    ⎡−+

    ⋅⋅

     1

    2

    2r

    2r

    rεoεπ

    ln

      (F/m)

    IT = I1 = I2 = … In 

    QT = Q1 = Q2 = … Qn 

    VT = V1 + V2 + … Vn 

    igure 

    igure

    V1 

    C1 

    V2  Vn 

    C2  Cn 

    IT 

    VT 

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    56/84

    111

    For a number of capacitors in series,

    For two capacitors in series:

    The total elastance S:

    CAPACITORS IN PARALLEL:

    The total current IT is the sum of all currentsin each capacitor.

    The total charge QT is the sum of all chargesin each capacitor.

    The same voltage V exists across each

    capacitors.

    For a number of capacitors in parallel,

    Computing for the elastance S: 

    SERIES-PARALLEL CIRCUIT:

    PARALLEL-SERIES CIRCUIT: 

    TC

    1=

    1C

    1+

    2C

    1+…

    nC

    CT =21

    21

    CC

    CC

    +⋅

     

    ST = S1 + S2 + … Sn 

    IT = I1 + I2 + … In 

    QT = Q1 + Q2 + … Qn 

    VT = V1 = V2 = Vn 

    CT = C1 + C2 + … Cn 

    TS1 =

    1S1 +

    2S1 +…

    nS1  

    CT =321

    321

    CCC

    ]CC[C

    +++⋅

     

    CT = C1 +32

    32

    CC

    CC

    +⋅

     

    igure

    Cn VT 

    IT 

    I1  I2  In 

    C1  C2 igure

    C2 

    C1 

    C3 

    C2 C1 

    C3 

    igure

    112

    ENERGY STORED IN A CAPACITOR:

    where:

    W  – stored energy in (Joules)C  – capacitance in (Farads)V  – voltage across a capacitor

    in (Volts)

    Q  – charge in (Coulombs)

    REVIEW QUESTIONS

    1.  If the number of valence electronsof an atom is greater than 4, thesubstance is usually

    a.  semiconductorb.  an insulator

    c.  a conductord.  none of the above

    2.  Electric current in a wire is the flowof

    a.  free electronsb.  valence electronsc.  bound of electronsd.  atoms

    3.  EMF in a circuit is a forma.  powerb.  energyc.  charged.  none

    4.  The cgs unit of specific resistanceis

    a.  mho

    b.  ohm-m

    c.  ohm-sq.-md.  ohm-cm

    5.  The resistance of a material is _____ its length.

    a.  directly proportionab.  inversely proportio

    toc.  independent ofd.  none of these

    6.  The value of α, i.e., temperature coefficient resistance depends upon  _______ of the material.

    a.  lengthb.  volumec.  X-sectional aread.  Nature

    temperature

    7.  7. The value of α0o

    C   oconductor is 1 / 236o C. The v

    of α180C   isa.  1 / 218 Cb.  1 / 272 Cc.  1 / 254 Cd.  1 / 265 C

    8.  Electrical appliances are connected in series because

    a.  series circuit complicated

    b.  power loss is greatc.  appliances

    different current rad.  none of these

    9.  Electrical appliances are connein parallel because it

    a.  is a simple circuit

    W = ½ C·V2 = ½ CQ2

     = ½V·Q

  • 8/17/2019 Electonics Final Handouts

    57/84

  • 8/17/2019 Electonics Final Handouts

    58/84

  • 8/17/2019 Electonics Final Handouts

    59/84

  • 8/17/2019 Electonics Final Handouts

    60/84

    Electronics EngineeringReview Course

    Resonance the condition existing in a phase angle in (degrees)

    Electronics EngineeringReview Course

    where: A

  • 8/17/2019 Electonics Final Handouts

    61/84

    121

    Resonance – the condition existing in acircuit containing at least one resistor, aninductor and a capacitor wherein the current

    behaves as if it is purely resistive.

    Resonance characteristics:- total current is in phase with theimpressed voltage- power factor of the circuit is unity.- total reactive power is zero.- imaginary component of the totalimpedance ( or admittance ) in

    complex form is zero.

    SINUSOIDAL SOURCE:

      A source (voltage or current) that variessinusoidally with time.

    where:

    Vm – maximum value (amplitude)w  - angular velocity in (radians/sec)

    t  – time in (seconds)

    θ, β - phase angle in (degrees)T- period in (seconds)f  – frequency in (hertz)

    Converting the sine function to cosine 

    function or vice-versa is done by using the

    trigonometric identities as shown.

    The PHASOR:   A complex number that carries both the

    amplitude and phase angle information ofany given sinusoidal function.

     A sinusoidal wave can be represented by aPhasor.

    TIME DOMAIN:

    Polar Form:

    Rectangular Form:

    T =1 / f

    V

    π 

    π  2π 

    w t

    igure

    v( t ) = Vm cos ( wt + θ )

    v( t ) = Vm sin ( wt +β

     ) 

    w = 2π

     f

    Vmcos(wt+θ) = Vmsin(wt+θ+90o)

    Vmsin(wt+β) = Vmcos(wt+β-90o)

    v( t ) = Vm cos ( wt ± θ )

    V = Vm / ±θo 

    V = a ± jb

    122

    where:

    Vm – maximum value (amplitude)θ  - phase angle in (degrees)a  – real part

     jb  – imaginary part

    The Average Value of DifferentWaveforms: The Effective Value (RMS) of Different

    Waveforms:

    A ave = 0 

    Aave = π2

     

    Am 

    Am

    2ππ

    One Cycle

    0

    Am

    2ππ

    Half- Cycle

    0

    Aave

    Aave = π2

     Am 

    Am

    2ππFull-Wave Rectifier

    0

    Aave

     

    Arms =2

    mA  

    Am 

    2π π 

    Half- Cycle 

    Arms 

    Am 

    2π π 

    Full-Wave Rectifier 

    A rms 

    Am 

    2π π One Cycle 

    0

    A rms 

    Arms =

    2

    mA  

    Arms = 2m

    Am 

    2π π 0 

    Aave 

    Half –Wave Rectifier Full-Cycle

     

    Arms =π

    mA 

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

    III CAPACITOR: R-L SERIES CIRCUIT:

  • 8/17/2019 Electonics Final Handouts

    62/84

    123

    Voltage-Current Relationship of Different

    Passive Circuit Elements:

    I. RESISTOR:

    In time-domain:

    if

    then

    In phasor-domain:

    II. INDUCTOR: 

    In time-domain:

    if  

    then

    In phasor-domain:

    where:

    XL  =   inductive reactance in Ω L =  inductance in Henry 

    i = Im cos (wt + θi ) 

    v = R  

    Im cos (wt +θ

    i )

    V = R  I

    i = Im cos( wt + θi ) 

    v = wLIm 

    cos (wt +θ

    i + 90

    0

    )

    v = L  dt 

    di   

    V = jwLI = XL I

    XL = jwL = j2πfL

    Am 

    2π π Half –Wave Rectifier Full-Cycle 

    Arms 

    Arms =2

    mA  

    igure

    i R

    v

    igure

    I

     R

    V

    i

    v

     L

    I

    V

     L

    124

    III. CAPACITOR:

    In time-domain:

    if  

    then

    In phasor-domain:

    where:

    XC  =  capacitive reactance in Ω C =  capacitance in Farad 

    R-L SERIES CIRCUIT:  

    where:

    Z  – impedance in Ω 

    i = C dt dv

     

    v = Vm cos (wt + θv ) 

    i = wCVm cos (wt + θv + 900)

    V = -jC1

    wI = XC I

    XC = -j C1

    w= -j

    fC2π1

     

    Z =

    2

    L

    2

    XR  +  

    Z = R + jXL

    V =2

    L

    2

    R VV +  

    V/  

    = V  R + jV  L 

    V = I Z

    VL 

    VR  

    V ~

    IR

    L

    VR  

    VL 

    θ 90

    igure

    The current I lags  the voltage V by θ 

    V

     X C  

    I

    igure

    i

    v

    C

    Electronics EngineeringReview Course

    R-C SERIES CIRCUIT: R-L-C SERIES CIRCUIT:

    Electronics EngineeringReview Course

    if VC < VL V I Z I Z I Z

  • 8/17/2019 Electonics Final Handouts

    63/84

    125

    R C SERIES CIRCUIT:

    where:

    Z  – impedance inΩ 

    R L C SERIES CIRCUIT:

    if VC > VL 

    Z =22

    CXR  + 

    Z = R – jXC 

    V = 22R  C

    VV +  

    V/-θ = VR – jVC 

    V = I Z

    VR  

    V~

    I R 

    L

    C

    VL 

    VC 

    igure

    igure

    V~

    IR

    C

    VR  

    VC 

    VC  V 

    θ 90

    VR  

    The current I leads  the voltage V by θ 

    VC - VL

    VC

    V

    I

    θ 

    VR 

    VL

      igure

    Current I leads volta e V b θ 

    Z = 2LC

    2]XX[R  −+  

    V =2

    LC

    2 ]VV[V 

    R −+

     

    V = I Z

    126

    if VC < VL 

    IMPEDANCES IN SERIES:

    IMPEDANCES IN PARALLEL: 

    where:

     Y - Admittance in SiemensG - Conductance in SiemensB - Susceptance in Siemens

    Two Impedances in Parallel:

    Z =2

    CL

    2]XX[R  −+  

    V =2

    CL

    2 ]VV[V 

    −+  

    V = I Z

    igure

    Current I lags 

    volta e V bθ

     

    VR 

    VL

    VL - VC

    VC

    V

    I

    θ 

    Vab 

    Z1  Zn Z2 

    I

    a

    b

      igure

    Vab = V1 + V2 +…Vn 

    Vab = I Z1 + I Z2 +…I Zn 

    Vab = I Zab 

    Zab = Z1 + Z2 +…Zn

    I = I1 + I2 +… In 

    n21ab Z1...

    Z1

    Z1

    Z1 ++=  

    Y =Z1 = G + jB 

    Yab=Y1 + Y2 +…Yn 

    Z

    V

    Z

    V

    Z

    Z

    V

    n

    ab

    2

    ab

    1

    ab

    ab

    ab ...++=

     

    2Z

    1Z

    Z

    1

    Z

    Z +

    ⋅= 2  

    igure

     

    b

    I1  I2 

    Vab Z1  Z2 

    In 

    Zn 

    a I

  • 8/17/2019 Electonics Final Handouts

    64/84

  • 8/17/2019 Electonics Final Handouts

    65/84

    Electronics EngineeringReview Course

    ELECTRICAL MACHINES l  – the average length of the magnetic

    Electronics EngineeringReview Course

    MAGNETIC FLUX INTENSITY: where:

  • 8/17/2019 Electonics Final Handouts

    66/84

    131

    ELECTRICAL MACHINES

    MAGNETIC CIRCUIT:

    MAGNETOMOTIVE FORCE (MMF):

    In SI:

    where:ℑ  – mmf in Ampere-Turns, At

    N – the number of turns ( t )I  – the current in the coil in Amps

    In CGS:

    where:ℑ - mmf in Gilberts

    N – the number of turns ( t )I  – the current in the coil in Amps

    RELUCTANCE:

    where:

    ℜ – reluctance in  At/Wb

    circuit in meters

    A  – the cross-sectional area of the magneticcircuit in sq. meters

    μ – permeability of the materialv  – reluctivity

    μ0 – permeability of free space

    μ0 – 4π 10-7 (H/m)

    μr  – relative permeability

     – flux in Webers

    ℑ – mmf in Ampere-Turns, At

    MAGNETIC FLUX:

    where:In SI: 

    Φ  – Flux in Weber

    In CGS: Φ  – Flux in Maxwells

    MAGNETIC FLUX DENSITY:

    where:

    In SI: B – Wb/sq.meter = Tesla

    In CGS: B – Maxwells/sq.cm = Gauss

    l

    Aμ I N 

    I N Φ

    ⋅⋅⋅=

    ℜ⋅

    =ℜℑ

    =

    A

    Φ Β =

     Iℜ

     N

    Φ 

    igure

    ℑ  = N·I 

    ℑ  = 0.4π·N·I 

    AμμA v 

    Aμ 

    Φ 

    r o ⋅==

    ⋅=

    ℑ=ℜ

      lll 

    132

    where:In SI: H – A-t/meter

    In CGS: H – Oersted

    PERMEABILITY:

    ΦIΡ 

    μ = Henry/meter

    RELATIVE PERMEABILITY:

    μr  = unitless

    PERMEANCE:

    P - Wb/A-t

    FORCE ACTING on a CURRENT-CARRYING CONDUCTOR in aUNIFORM MAGNETIC FIELD:

    F – force in NewtonB  – flux density, normally perpendicular t

    in TeslaI – current in the conductor in AmperesL  – length of the conductor in meters

    θ - the angle between B and I if not 90o

    FORCE between PARALLELCURRENT-CARRYING CONDUCTORS

    where:F – force in NewtonI1, I2 – conductor currents in Amperesl   – length of the conductors in meters

    r  – the distance between the 2 paralleledconductors in meters 

    TRACTIVE FORCE of a MAGNET:

    where:F – force per gap in NewtonB – flux density in Tesla

    A  – area in sq. metersμo  – 4π  10-7 (H/m)

    MAGNETIC FIELD ENERGY:(In the air-gap)

    μ

    ΒI N H =

    ⋅=

    ℑ=

    ll

     

    μμH

    Β μ ro ⋅==

    (unitless) μμ μo

    r =

     AμΦ1

    Pl

    ⋅=

    =

    =

    F = B·I·L sinθ 

    F = 2 10-7

     I1·I2

    F =)(μ2

    AB

    o

    2

    ⋅⋅

     

    W =

    o

    2

    μ2

    AB

    ⋅⋅⋅l

     

    Electronics EngineeringReview Course

    where:W i J l

    Series Magnetic Circuit:  

    Electronics EngineeringReview Course

    Parallel Magnetic Circuit:   d  /dt – the time rate of change of flux

  • 8/17/2019 Electonics Final Handouts

    67/84

    133

    W  – energy in JoulesB – flux density in Tesla

    A  – area in sq. metersμo =  4π  10-7 (H/m)l   – length in meters

    COMPARISON between MAGNETIC andELECTRIC CIRCUITS:

    Magnetic Circuit Electric Circuit

    MMF ℑ   EMF V

    Flux Current I

    Reluctance ℜ   Resistance R

    Permeance P Conductance GReluctivity v Resistivity ρ 

    Permeabilityμ

      Conductivity δ 

    agcT   ℑ+ℑ=ℑ  

    agcT   ΦΦ  ℜ⋅+ℜ⋅=ℑ  

    agcT  ℜ+ℜ=ℜ  

    agcT  Φ=Φ=Φ  

    Magnetic Circuit

    Electric Circuit

     Iℜ

     N

    Φ 

    igure

    V

    I

    R

    I

    Air-gapΦ

    cℜ

    agℜ

    N

    R ag IV

    R C 

    Magnetic Circuit

    Electric Circuitigure

    134

    Faraday’s Law of Electromagnetic

    Induction:

       An emf is induced in a conductor if suchconductor cuts the magnetic lines offorce.

      The magnitude of the induced emf isproportional to the rate of change of flux-linkages.

    AVERAGE INDUCED EMF:

    In SI:

    where:

    N – the number of turns linking Φ - the flux in Weber  

    t – time in seconds 

    linkages

    In CGS:

    where:

    - the flux in Maxwell or  Line 

    The minus sign merely represents that

    voltage is induced.

    EMF Induced in a Short Length

    Straight Conductor:

    In SI:

    where:

    B – the flux density in Tesla

    l  – the length of the conductor in meter

    v – the velocity in meters/second

    In CGS:

    where:

    B – the flux density in Gauss

    l  – the length of the conductor in

    centimeters

    e = -Ndt

    dΦ  (volts)

    e = B  l  v (volts)

    e = -Ndt

    dΦ 

    10-8  (volts)

    e = B  l  v 10

    -8  (volts)

    ΦT 

    Φ1  Φ2 

    R 2 R 1 V

    I2 I1 

    IT 

    Magnetic Circuit

    Electric Circuitigure

    Electronics EngineeringReview Course

    v – the velocity in centimeters/second ℜ - reluctance4 10 7

    Electronics EngineeringReview Course

    ENERGY STORED in the MAGNETICM – the mutual-inductance in Henryk coefficient of coupling (k < 1)

  • 8/17/2019 Electonics Final Handouts

    68/84

    135

    EMF of SELF-INDUCTION:

    where:L – the inductance of the coil in Henry

    di/dt - the rate of change of current inAmps/sec

    SELF-INDUCTANCE:

    where:L – the self -inductance of the coil in HenryN  – number of turnsA  – cross-sectional area of the coil in sq. m

    - flux in Webers

    μo =  4π  10-7 

    μr   – relative permeability of the core

    l - length of the magnetic core in meters

    Inductance of a Coaxial Cable:

    where:L – the inductance in HenryD  – outer diameter

    d  – inner diameter

    Inductance of Two Long CylindricalConductors in Parallel

    where:L –the inductance in HenryD  – distance between the two linesr 1, r 2  – radius of the wires

    e = Ldt 

    di   (volts)

    L =I

    ΦN   (Henry)

    L =l

    ANμμ

    2

    ro

    ⋅⋅  (Henry)

    L =ℜ

    2N  (Henry)

    L = 2 

    10-7

    lnd

    L = 4 

    10-7

    ln

    21rr

    1Weber = 108 Maxwell

    urns of wire

    igure

    D

      igure

    igure

    r2r1

    D

    136

    ENERGY STORED in the MAGNETICFIELD of an INDUCTOR:

    where:W  – energy stored in JoulesL –the inductance in HenryI  – current in the inductor in Amperes

    Mutual Inductance:

    where:

    k  – coefficient of coupling (k < 1)I1  – the primary current in Amperes

    N1  – primary turns N2  – secondary turns L1  – primary inductance in HenryL2  – secondary inductance in Henry

    The DOT Convention:

    Mutual Flux Aiding(Additive Polarity)

    Mutual Flux Opposing(Subtractive Polarity)

    W = ½ L I2  (Joules)

    e2  = N2dt 

    2d Φ = kN2

    dt 

    1d Φ 

    M = k   21 LL ⋅  

    Lta = L1 + L2 + 2 M

    Lto = L1 + L2 – 2 M

    M = 4

    LL tota − 

    igure

    Φ1

    N1

    e1ℜe2

    N2

    I1 

    e2  = Mdt 

    1dI  

    M = k  N2 

    1dI 

    1d Φ  = k  

    ℜ21NN  

    igure

    igure

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

    e = β  l   v 10-8

     

  • 8/17/2019 Electonics Final Handouts

    69/84

    137

    where:

    Lta  – the total-inductance; series-aiding inHenry

    Lto  – the total-inductance; series-opposingin Henry

    M – mutual inductance between the coils

    in Henry 

    Inductance in Series:

    Inductances in Parallel: 

    Inductance in Series-Parallel:

    Inductance in Parallel-Series:

    DC GENERATOR:

       A dc generator is an electrical machine thatconverts mechanical energy to electrical

    energy.

    Average EMF Induced in a Coil :In SI:

    E = N  t

    Φ

     

    LT = L1 + L2 + .. Ln 

    nL

    1

    2L

    1

    1L

    1

    TL

    1...++=

    LT = L1 +32

    32

    LL

    LL

    LT =321

    321

    LLL

    ]LL[L

    +++

     

    igure

    L1  L2  Ln 

    igure

    Ln L1  L2 

    igure

    L3

    L1

    L2

      igure

    L3L1

    L2

    138

    where:E  - Average EMF induced in a coil in

    volts

    N - the number of turns in the coil

    - flux in Webers

    t – time in seconds 

    In CGS:

    where:E  - Average EMF induced in a coil in

    volts

    N - the number of turns in the coil

    - flux in Maxwells or Lines 

    t – time in seconds 

    IInndduucceedd EEMMFF iinn aa CCoonndduuccttoor r  :: 

    In SI:

    where:β - Flux density in Webers/sq.m = Tesla

    l - length of the conductor in meters

    v - velocity in meters/sec

    In CGS:

    where:

    β - Flux density in Linews/sq.cm =Gauss

    l - length of the conductor in

    centimeters

    v - velocity in centimeters/sec

    NOTE:β, l , v must be mutually perpendicul

    not, the equation must be multiplied bysine of an angle between pairs of quantiti

    DIRECTION OF THE INDUCED EMF:(Fleming’s Right Hand Rule)

    Forefinger – represents the direction of tflux (pointing N to S)

    Thumb – represents the direction of motio

    the conductor movesMiddle Finger  – represents the directionthe induced EMF.

    TYPES of ARMATURE WINDING

    I. LAP WINDING:

    E = N 

    t

    Φ 

    10-8 

    e = β 

    v

    β

    yb 

    yf  

    yc 

    yc = m 

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

    Wave Winding 2 mThe generated emf E is thus proportional

  • 8/17/2019 Electonics Final Handouts

    70/84

    139

    where:yb  – back pitch (an odd number)

    yf  – front pitch (an odd number)

    + ⇒  progressive type of winding

    - ⇒ retrogressive type of winding

    Type of Winding

    myc 

    Simplex Lap

    (SL)

    1 1

    Duplex Lap(DL)

    2 2

    Triplex Lap

    (TL)

    3 3

    Quadroplex Lap(QL)

    4 4

    II. WAVE WINDING:

    where:y  – average pitch

    Z – the number of elements or coil sides

    P – number of poles

    C – number of commutator segments

    + ⇒ progressive type of winding

    - ⇒ retrogressive type of winding

    All other terms have been previously

    defined.

    Number of Brushes:

    Type of Winding

    Lap Winding P

    Wave Winding 2

    Number of Armature Parallel Paths:

    Type of Winding a’

    Lap Winding m P

    yb = yf ± 2 

    yf  yb 

    yc 

    yc =

    2P

    mC ± 

    y =P

    2Z ± 

    y =2

    yy f b +  

    140

    DC-GENERATOR VOLTAGE

    EQUATION BETWEEN BRUSHES:

    In SI:

    where:E – generated emf in the armature in

    volts

    P  –the number of poles

     –the flux per pole in Webers 

    Z – the number of armature conductors

    SS  – – tthhee ssppeeeedd iinn  RRPPMM  a’ – number of armature parallel paths

    In CGS:

    where:

     –the flux per pole in Maxwells or

    Lines 

    All other terms have been previously

    defined.

     After the machine has been assembled, a’,P, Z could be taken as a constant, thus

    The generated emf E is thus proportional

    - the flux

    - the speed S 

    TYPES of DC GENERATORS :

    Separately-Excited DC Generator:

    SHUNT GENERATOR: 

    E =)(a'60

    SZΦP

    ⋅⋅⋅⋅

     

    E =)(a'60

    SZΦP

    ⋅⋅⋅⋅

     

    10-8

     

    E = K  

    S

    +

     _ 

    R f  

    If  

    DC E

    R a 

    V

    IL 

    R L

    Po = V IL 

    Pa = E Ia 

    Pa = Po + Losses 

    E = V + Ia R a 

    Ia = IL + If

    EV

    R f  

    R a

    If  

    +

     _ IL Pa 

    Ia R L

    Po

    Electronics EngineeringReview Course

    Electronics EngineeringReview Course

  • 8/17/2019 Electonics Final Handouts

    71/84

    141

    where:Po  – power output in wattsPa  – power developed in the armature in

    watts 

    V  – output (terminal/load) voltage in volts E – generated emf in the armature in voltsIL  – load current in  amperes If   – field current in  amperes Ia   – armature current in amperes RL  – load resistanceRf   – shunt field resistanceRa – armature resistance  

    EXTERNAL CHARACTERISTIC OF ASHUNT GENERATOR:

     A shunt generator is considered as having afairly constant output voltage.

    SERIES GENERATOR:

    where:Rs – series field resistance

     All other terms have been previously defined.

    EXTERNAL CHARACTERISTIC OF ASERIES GENERATOR:

     A series generator could either be used as avoltage booster or a constant currentgenerator.

    If = f R 

    EV

    R s R a +

     _ IL Pa 

    Ia 

    R L

    Po

    Po = V IL 

    Pa = E 

    Ia 

    Pa = Po + Losses 

    E = V + Ia (R a + R s) 

    Ia = IL 

    LLooaadd CCuurrrreenntt 

       L   L  o  o  a  a   d   d   V   V  o  o   l   l   t   t  a  a  g  g

      e  e

    142

    LONG SHUNT

    COMPOUND GENERATOR:

    where:

     All other terms have been previously defined.

    SHORT-SHUNT

    COMPOUND GENERATOR:

     All other terms have been previously defi

    EXTERNAL CHARACTERISTIC

    COMPOUND GENERATORS:

    Po = V IL 

    Pa = E Ia 

    Pa = Po + Losses 

    E = V + Ia (R s + R a) 

    Ia = IL + If  

    If = f R 

    Po = V IL 

    Pa = E Ia 

    Pa = Po + Losses 

    E = V+ IL 

    R s + Ia 

    R a 

    Ia = IL + If  

    If = f 

    SL

    R IV ⋅+ 

    LLooaadd ccuurrrreenntt 

    RRaatteedd 

       L�