effects of the representation of the ... - earth-prints€¦ · effects of the representation of...

1
300 400 500 600 700 -4000 -2000 0 2000 4000 lowpass 0.5 Hz 22 500m 1000m 300 400 500 600 700 -2000 -1000 0 1000 2000 lowpass 0.08 Hz 500m 1000m 300 400 500 600 700 -400 -200 0 200 400 lowpass 0.05 Hz 500m 1000m 300 400 500 600 700 -3000 -2000 -1000 0 1000 2000 lowpass 0.5 Hz 500m 1500m 300 400 500 600 700 -2000 -1000 0 1000 2000 lowpass 0.08 Hz 500m 1500m 300 400 500 600 700 -400 -200 0 200 400 lowpass 0.05 Hz 500m 1500m 300 400 500 600 700 -4000 -2000 0 2000 4000 lowpass 0.5 Hz 500m no discontinuities s 300 400 500 600 700 -2000 -1000 0 1000 2000 lowpass 0.08 Hz 500m no discontinuities 300 400 500 600 700 -400 -200 0 200 400 lowpass 0.05 Hz 500m no discontinuities 600 800 1000 1200 1400 -2000 -1000 0 1000 2000 lowpass 0.5 Hz 84 500m 1000m 600 800 1000 1200 1400 -1000 -500 0 500 1000 lowpass 0.08 Hz 500m 1000m 600 800 1000 1200 1400 -200 -100 0 100 200 lowpass 0.05 Hz 500m 1000m 600 800 1000 1200 1400 -2000 -1000 0 1000 2000 lowpass 0.5 Hz 500m 1500m 600 800 1000 1200 1400 -2000 -1000 0 1000 2000 lowpass 0.08 Hz 500m 1500m 600 800 1000 1200 1400 -200 -100 0 100 200 lowpass 0.05 Hz 500m 1500m 600 800 1000 1200 1400 -2000 -1000 0 1000 2000 lowpass 0.5 Hz 500m no discontinuities 600 800 1000 1200 1400 -1000 -500 0 500 1000 lowpass 0.08 Hz 500m no discontinuities 600 800 1000 1200 1400 -200 -100 0 100 200 lowpass 0.05 Hz 500m no discontinuities Effects of the representation of the crustal structure on seismic wave propagation modeling on the continental scale Irene Molinari (1), Martin Käser (2), Andrea Morelli (1) (1) Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy. (2) Earth and Environmental Sciences, Ludwig-Maximilians-Universität, München, Germany. [email protected], [email protected], [email protected] AIM OF THE WORK Knowledge and representation of Earth's crustal structure is a crucial point when modeling seismic wave propa- gation at the continental scale (Molinari I. & A. Morelli, 2009). Here we review a new a priori crustal model, EPcrust-2009, that integrates various source of informations of the European crustal structure. We focus our attention on the representation of crustal structure in 2D and 3D numerical models that often poses particular problems that are difficult to overcome, such as for example, how to honor the thin shallow layer (sediment) or represent the strong discontinuities in crustal structure through element interfaces of a geomerty respecting mesh. We implement EPcrust-2009 into the ADER-DG method (Dumbser, M. & M. Käser, 2006) and into the spectral el- ement method (Komatitsch & Tromp, 2002) to study the effects of the numerical representation of crustal struc- tures on seismic wave propagation. KNOWLEDGE OF EUROPEAN CRUSTAL STRUCTURE Several models for the European Plate can be found in the literature (Tesauro et all. 2008, Bassin et all. 2000, Grad et all, 2009, Bungum et al., 2004), but none of them has all desired properties respect to resolution, geo- graphical extent, or completeness of specified parameters. New a priori model of the European plate, EPcrust-2009, is based on a new, comprehensive compilation of cur- rently available information from diverse sources, ranging from seismic prospection to receiver functions studies. Most original information refers to P-wave speed, from which we derive S-wave speed and density from scaling relations (Brocher, 2005). The model covers the whole European plate from North Africa to the North Pole (20°N- 90°N) and from the Mid-Atlantic Ridge to the Urals (40°W-70°E). The parameterisation represents the crust in three layers (sediments, upper crust and lower crust), and describes the geometry and the seismologically rel- evant parameters with a resolution of 0.1° x 0.1° on a geographical latitude-longitude grid (target structural resolu- tion is ~100 km). For each grid point and layer a single set of parameters (seismic velocities Vp, Vs and density) and relative error bars, are specified. RE PRESENTATION OF CRUSTAL STRUCTURE IN 2D ADER-DG METHOD Crustal models have very thin layers, for example the sediment layer, that are difficult to honor in numerical meshes. We investigate the effects of different representations of these thin layers on synthetic seismo- grams using triangular meshes for 2D simulations on a vertical section of EPcrust2009. To model seimic wave propagation, we use the Discontinuous Galerkin Finite Element Method (ADER-DG) that achieves high-order accuracy in space and time. With this approach strong and undulating discontinui- ties can be considered more easily by the mesh and modifications of the geometrical properties can be car- ried out rapidly due to an external mesh generation process. EPcrust-2009 Moho depth of Alps region Moho depth (top) and sediment thickness (bottom) in EPcrust2009 Topography, sediment, upper-lower crust and Moho inter- face depth in EPcrust2009 S-wave speed in two sections of the EPcrust2009. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.5-1 km 0.5-1.5 km 0.5-no discontinuities ENVELOPE MISFIT (U component) 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.5-1 km 0.5-1.5 km 0.5-no discontinuities PHASE MISFIT (U component) A a B b 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.5-1 km 0.5-1.5 km 0.5-no discontinuities ENVELOPE MISFIT (V component) 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.0 0.2 0.4 0.6 0.8 1.0 misfit 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0.5-1 km 0.5-1.5 km 0.5-no discontinuities PHASE MISFIT (V component) P-wave speed in sedi- ment layer in Italy and Central Europe A a b B Sediment thickness (km) Comparison of seismograms In order to understand the influence of different mesh representations on recorded data, we calculate the phase and the envelope misfit (Kristekova et al., 2009) between two set of seismograms, keeping the data from 0_5km mesh as the ref- erence dataset. REFERENCES - Bassin, C. Laske, G. & Master G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, 81. - Molinari I. and A.Morelli, Representation of crustal structures and surface-wave modeling, Geophysical Research Abstracts, EGU General Assembly 2009, Vol. 11, EGU2009-0, 2009. - Komatitsch, D & Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation–I . Validation, Geophys. J. Int., 149, 390-412. - Tesauro, M., M.K. Kaban, and S. A. P. L. Cloetingh (2008), EuCRUST-07: A new reference model for the Eu- ropean crust, Geophys. Res. Lett., 35 - Grad, M., Tiira, T., and the ESC Working Group (2009), the Moho depth map of the European Plate, Geo- phys. J. Int. 176, 279-292. http://www.seismo.helsinki.fi/mohomap/ - Dumbser, M., and M. Käser (2006). An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case, Geo- physical Journal International, 167(1), 319-336 - Kristekova M., J. Kristek amd Peter Mozco (2009), Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signal, Geophys. J. Int,. 178, 813-825. - Brocher T. M (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth´s Crust, Bullettin of the Seismological Society of America, Vol. 95, No. 6, pp. 2081-2092. EPcrust2009 section used in the 2D simulations. Red triangles are the reciv- ers on the top of the section. (left) Mesh of the model with MPI partition zones, (right) a snapshot of the wavefield at 200 s. The model has a depth of 2000 km and a length of ~ 6000 km. CONCLUSION Knowledge and representation of the crustal structure is a crucial point in ac- curate simulation of seismic wave propagation at continental distance. We put the new a priori crustal model for the whole European plate, EPcrust2009, to the test comparing numerical seismograms to recorded data. We focus our attention on the representation of very thin and shallow layers in the meshes in order to create the best 3D representation of our European model, that achieve a good compromise between computational time and ac- curacy in the representation of the model. In our 2D test we evaluated the performance of different representations in nu- merical meshes of the sedimentary layer: for the frequency range between 0.04 and 0.3 Hz we can conclude that, if the velocity contrast between the two layers is not so strong and the layer is thin, we can neglect this layer in the mesh without losing in accuracy. 1_5 km mesh no discontinuities mesh 1 km mesh 0_5 km mesh Zooms of the four different meshes considered in this study. Comparison beetwen seismograms obtained from the 0.5km mesh (reference, blu line) and the other 3 different meshes (red lines). We apply a low-pass filter to the segnals with corner frequency of 0.5, 0.08, 0.05 Hz. The seismograms are 2000 s long. Envelope and phase misfit respect to the reference segnal (seismogram from 0.5 km mesh) calculated in a frequency range of 0.04 - 0.3 Hz (Kristezova et al., 2009). FUTURE WORK We plan to refine our 2D test and precisely implement our model in 3D tetrahedral meshes in order to perform accurate simulation with the ADER-DG method. Numerical simulations will assess weaknesses of the model, therefore contributing to its improvement. EPcrust-2009 3D SEISMIC RESPONSE IN SEM-METHOD In order to test our model we compare 3D synthetic seismograms calculated for CRUST2.0+S20RTS (Bassin et al., 2000; Ritsema et al., 1999) and EPcrust2009+S20RTS with real data. We perform the 3D simulations with SPECFEM3D-Globe (Komatitch & Tromp, 2002). Acknowledgements We would like to thank Christian Pelties for the help. We perfom the simulation at supercomputing center in Munich, LRZ and at CINECA supercomputing center, Bologna Italy. (right) Vertical, radial and transversal component of the displacement for three stations bandpassed between corner frequency of 0.005 and 0.04 Hz (25--200 s). (left) plot of the raypath. Maps of meshed region (top) A part of the mesh (bottom) Vp map at 20 km depth as implemented in the mesh T51B-1530

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Effects of the representation of the ... - Earth-prints€¦ · Effects of the representation of the crustal structure on seismic wave propagation modeling on the continental scale

300 400 500 600 700−4000

−2000

0

2000

4000lowpass 0.5 Hz

22

500m1000m

300 400 500 600 700−2000

−1000

0

1000

2000lowpass 0.08 Hz

500m1000m

300 400 500 600 700−400

−200

0

200

400lowpass 0.05 Hz

500m1000m

300 400 500 600 700−3000

−2000

−1000

0

1000

2000lowpass 0.5 Hz

500m1500m

300 400 500 600 700−2000

−1000

0

1000

2000lowpass 0.08 Hz

500m1500m

300 400 500 600 700−400

−200

0

200

400lowpass 0.05 Hz

500m1500m

300 400 500 600 700−4000

−2000

0

2000

4000lowpass 0.5 Hz

500mno discontinuitiess

300 400 500 600 700−2000

−1000

0

1000

2000lowpass 0.08 Hz

500mno discontinuities

300 400 500 600 700−400

−200

0

200

400lowpass 0.05 Hz

500mno discontinuities

600 800 1000 1200 1400−2000

−1000

0

1000

2000lowpass 0.5 Hz

84

500m1000m

600 800 1000 1200 1400−1000

−500

0

500

1000lowpass 0.08 Hz

500m1000m

600 800 1000 1200 1400−200

−100

0

100

200lowpass 0.05 Hz

500m1000m

600 800 1000 1200 1400−2000

−1000

0

1000

2000lowpass 0.5 Hz

500m1500m

600 800 1000 1200 1400−2000

−1000

0

1000

2000lowpass 0.08 Hz

500m1500m

600 800 1000 1200 1400−200

−100

0

100

200lowpass 0.05 Hz

500m1500m

600 800 1000 1200 1400−2000

−1000

0

1000

2000lowpass 0.5 Hz

500mno discontinuities

600 800 1000 1200 1400−1000

−500

0

500

1000lowpass 0.08 Hz

500mno discontinuities

600 800 1000 1200 1400−200

−100

0

100

200lowpass 0.05 Hz

500mno discontinuities

Effects of the representation of the crustal structure on seismic wave propagation modeling on the continental scale Irene Molinari (1), Martin Käser (2), Andrea Morelli (1)

(1) Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy. (2) Earth and Environmental Sciences, Ludwig-Maximilians-Universität, München, [email protected], [email protected], [email protected]

AIM OF THE WORKKnowledge and representation of Earth's crustal structure is a crucial point when modeling seismic wave propa-gation at the continental scale (Molinari I. & A. Morelli, 2009). Here we review a new a priori crustal model, EPcrust-2009, that integrates various source of informations of the European crustal structure.We focus our attention on the representation of crustal structure in 2D and 3D numerical models that often poses particular problems that are difficult to overcome, such as for example, how to honor the thin shallow layer (sediment) or represent the strong discontinuities in crustal structure through element interfaces of a geomerty respecting mesh.We implement EPcrust-2009 into the ADER-DG method (Dumbser, M. & M. Käser, 2006) and into the spectral el-ement method (Komatitsch & Tromp, 2002) to study the effects of the numerical representation of crustal struc-tures on seismic wave propagation.

KNOWLEDGE OF EUROPEAN CRUSTAL STRUCTURESeveral models for the European Plate can be found in the literature (Tesauro et all. 2008, Bassin et all. 2000, Grad et all, 2009, Bungum et al., 2004), but none of them has all desired properties respect to resolution, geo-graphical extent, or completeness of specified parameters. New a priori model of the European plate, EPcrust-2009, is based on a new, comprehensive compilation of cur-rently available information from diverse sources, ranging from seismic prospection to receiver functions studies. Most original information refers to P-wave speed, from which we derive S-wave speed and density from scaling relations (Brocher, 2005). The model covers the whole European plate from North Africa to the North Pole (20°N-90°N) and from the Mid-Atlantic Ridge to the Urals (40°W-70°E). The parameterisation represents the crust in three layers (sediments, upper crust and lower crust), and describes the geometry and the seismologically rel-evant parameters with a resolution of 0.1° x 0.1° on a geographical latitude-longitude grid (target structural resolu-tion is ~100 km). For each grid point and layer a single set of parameters (seismic velocities Vp, Vs and density) and relative error bars, are specified.

REPRESENTATION OF CRUSTAL STRUCTURE IN 2D ADER-DG METHODCrustal models have very thin layers, for example the sediment layer, that are difficult to honor in numerical meshes. We investigate the effects of different representations of these thin layers on synthetic seismo-grams using triangular meshes for 2D simulations on a vertical section of EPcrust2009.To model seimic wave propagation, we use the Discontinuous Galerkin Finite Element Method (ADER-DG) that achieves high-order accuracy in space and time. With this approach strong and undulating discontinui-ties can be considered more easily by the mesh and modifications of the geometrical properties can be car-ried out rapidly due to an external mesh generation process.

EPcrust-2009

Moho depth of Alps region

Moho depth (top) and sediment thickness (bottom) in EPcrust2009

Topography, sediment, upper-lower crust and Moho inter-face depth in EPcrust2009

S-wave speed in two sections of the EPcrust2009.

0.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.5−1 km0.5−1.5 km

0.5−no discontinuitiesENVELOPE MISFIT (U component)

0.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.5−1 km0.5−1.5 km

0.5−no discontinuities PHASE MISFIT (U component)

A a

B b

0.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.01.21.4

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.5−1 km0.5−1.5 km

0.5−no discontinuitiesENVELOPE MISFIT (V component)

0.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950.00.20.40.60.81.0

mis�

t

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.5−1 km0.5−1.5 km

0.5−no discontinuities PHASE MISFIT (V component)

P-wave speed in sedi-ment layer in Italy and Central Europe

A

a

b

B

Sediment thickness (km)

Comparison of seismogramsIn order to understand the influence of different mesh representations on recorded data, we calculate the phase and the envelope misfit (Kristekova et al., 2009) between two set of seismograms, keeping the data from 0_5km mesh as the ref-erence dataset.

REFERENCES- Bassin, C. Laske, G. & Master G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, 81. - Molinari I. and A.Morelli, Representation of crustal structures and surface-wave modeling, Geophysical Research Abstracts, EGU General Assembly 2009, Vol. 11, EGU2009-0, 2009.- Komatitsch, D & Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation–I . Validation, Geophys. J. Int., 149, 390-412.- Tesauro, M., M.K. Kaban, and S. A. P. L. Cloetingh (2008), EuCRUST-07: A new reference model for the Eu- ropean crust, Geophys. Res. Lett., 35- Grad, M., Tiira, T., and the ESC Working Group (2009), the Moho depth map of the European Plate, Geo- phys. J. Int. 176, 279-292. http://www.seismo.helsinki.fi/mohomap/- Dumbser, M., and M. Käser (2006). An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional Isotropic Case, Geo-physical Journal International, 167(1), 319-336- Kristekova M., J. Kristek amd Peter Mozco (2009), Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signal, Geophys. J. Int,. 178, 813-825.- Brocher T. M (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth´s Crust, Bullettin of the Seismological Society of America, Vol. 95, No. 6, pp. 2081-2092.

EPcrust2009 section used in the 2D simulations. Red triangles are the reciv-ers on the top of the section.

(left) Mesh of the model with MPI partition zones, (right) a snapshot of the wavefield at 200 s. The model has a depth of 2000 km and a length of ~ 6000 km.

CONCLUSION

Knowledge and representation of the crustal structure is a crucial point in ac-curate simulation of seismic wave propagation at continental distance.

We put the new a priori crustal model for the whole European plate, EPcrust2009, to the test comparing numerical seismograms to recorded data. We focus our attention on the representation of very thin and shallow layers in the meshes in order to create the best 3D representation of our European model, that achieve a good compromise between computational time and ac-curacy in the representation of the model.In our 2D test we evaluated the performance of different representations in nu-merical meshes of the sedimentary layer: for the frequency range between 0.04 and 0.3 Hz we can conclude that, if the velocity contrast between the two layers is not so strong and the layer is thin, we can neglect this layer in the mesh without losing in accuracy.

1_5 km mesh no discontinuities mesh1 km mesh0_5 km mesh

Zooms of the four different meshes considered in this study.

Comparison beetwen seismograms obtained from the 0.5km mesh (reference, blu line) and the other 3 different meshes (red lines). We apply a low-pass filter to the segnals with corner frequency of 0.5, 0.08, 0.05 Hz. The seismograms are 2000 s long.

Envelope and phase misfit respect to the reference segnal (seismogram from 0.5 km mesh) calculated in a frequency range of 0.04 - 0.3 Hz (Kristezova et al., 2009).

FUTURE WORKWe plan to refine our 2D test and precisely implement our model in 3D tetrahedral meshes in order to perform accurate simulation with the ADER-DG method. Numerical simulations will assess weaknesses of the model, therefore contributing to its improvement.

EPcrust-2009 3D SEISMIC RESPONSE IN SEM-METHODIn order to test our model we compare 3D synthetic seismograms calculated for CRUST2.0+S20RTS (Bassin et al., 2000; Ritsema et al., 1999) and EPcrust2009+S20RTS with real data. We perform the 3D simulations with SPECFEM3D-Globe (Komatitch & Tromp, 2002).

AcknowledgementsWe would like to thank Christian Pelties for the help.We perfom the simulation at supercomputing center in Munich, LRZ and at CINECA supercomputing center, Bologna Italy.

(right) Vertical, radial and transversal component of the displacement for three stations bandpassed between corner frequency of 0.005 and 0.04 Hz (25--200 s). (left) plot of the raypath.

Maps of meshed region

(top) A part of the mesh (bottom) Vp map at 20 km depth as implemented in the mesh

T51B-1530