ees dynamic earth study slides

Upload: brandon-miller

Post on 03-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 EES Dynamic Earth Study Slides

    1/114

    Introducing Geology and anOverview of Important Concepts

    Physical Geology: Earth Revealed 6/e,

    Chapter 1 

  • 8/13/2019 EES Dynamic Earth Study Slides

    2/114

    Geology in Today’s World • Geology - The scientific study of the Earth

     –  Physical Geology is the study of Earth’s materials,

    changes of the surface and interior of the Earth, and the

    forces that cause those changes

     –  The study of Geology includes these subsystems of Earth: –  Atmosphere

     –  Biosphere

     –  Hydrosphere

     –  Lithosphere

     –  Mantle

     –  Core

  • 8/13/2019 EES Dynamic Earth Study Slides

    3/114

    Specialties of Geology related to the subsystems of Earth include:

    GeochronologyPaleontologyGeochemistryMineralogy

    Planetary GeologyEnvironmental GeologyHydrogeologyGeophysicsPetroleum Geology

    Structural GeologyStratigraphySeismologyOceanography

  • 8/13/2019 EES Dynamic Earth Study Slides

    4/114

    Practical Aspects of Geology 

    •  Natural Resources 

     –  All manufactured objects

    depend on Earth’s resources 

     –  Localized concentrations ofuseful geological resources

    are mined or extracted

     – If it can’t be grown, it must

     be mined

     –  Most resources are limited in

    quantity and non-renewable 

  • 8/13/2019 EES Dynamic Earth Study Slides

    5/114

    Resource Extraction andEnvironmental Protection 

    • Coal Mining   –  Careless mining can release

    acids into groundwater

    •  Petroleum Resources

     –  Removal, transportation and

    waste disposal can damage the

    environment 

    •  Dwindling resources canencourage disregard forecological damage caused byextraction activities

    Alaska pipeline

  • 8/13/2019 EES Dynamic Earth Study Slides

    6/114

    Geologic Hazards •  Earthquakes 

     –  Shaking can damage buildings and break

    utility lines (electric, gas,

    water, sewer)

    • Volcanoes –  Ash flows and mudflows

    can overwhelm populated

    areas 

    •  Landslides, floods, andwave erosion

  • 8/13/2019 EES Dynamic Earth Study Slides

    7/114

    Physical Geology Concepts 

    •  Earth’s Heat Engines 

     –  External (energy from the Sun)

    • Primary driver of atmospheric (weather) and

    hydrospheric circulation

    • Controls weathering of rocks at Earth’s surface 

     –  Internal (heat moving from hot interior to

    cooler exterior)

    • Primary driver of most geospheric phenomena

    (volcanism, magmatism, tectonism)

  • 8/13/2019 EES Dynamic Earth Study Slides

    8/114

    Earth’s Interior 

    • Compositional Layers

     –  Crust  (~3-70 km thick)

    • Very thin outer rocky shell of Earth

     –  Continental crust - thicker and less dense

     –  Oceanic crust - thinner and more dense

     –  Mantle (~2900 km thick)

    • Hot solid that flows slowly over time;

    Fe-, Mg-, Si-rich minerals

     –  Core (~3400 km radius)

    • Outer core - metallic liquid;mostly iron

    • Inner core - metallic solid; mostly iron

  • 8/13/2019 EES Dynamic Earth Study Slides

    9/114

    Earth’s Interior 

    • Mechanical Layers 

     –  Lithosphere (~100 km thick)

    • Rigid/brittle outer shell of Earth• Composed of both crust and

    uppermost mantle

    • Makes up Earth’s tectonic “plates” 

     –  Asthenosphere 

    • Plastic (capable of flow) zone on

    which the lithosphere “floats” 

  • 8/13/2019 EES Dynamic Earth Study Slides

    10/114

    Theory of Plate Tectonics 

    • Continental Drift Hypothesis  –  Originally proposed in early 20th century to

    explain the “fit of continents”, common rock

    types and fossils across ocean basins, etc.

     –  Insufficient evidence found for driving

    mechanism; hypothesis initially rejected

    •  Plate Tectonics Theory  –  Originally proposed in the late 1960s

     –  Included new understanding of the seafloor

    and explanation of driving force –  Describes lithosphere as being broken into

     plates that are in motion

     –  Explains origin and locations of such things as

    volcanoes, fault zones and mountain belts

  • 8/13/2019 EES Dynamic Earth Study Slides

    11/114

    Distribution of Major “Ring

    of Fire” Volcanoes 

  • 8/13/2019 EES Dynamic Earth Study Slides

    12/114

    Tectonic Plate Boundaries 

    •  Divergent  boundaries –  Plates move apart

     –  Magma rises, cools and forms new lithosphere

     –  Typically expressed as mid-oceanic ridges 

    • Transform boundaries –  Plates slide past one another

     –  Fault zones and earthquakes mark boundary

     –  San Andreas fault in California

    • Convergent  boundaries –  Plates move toward each other

     –  Mountain belts and volcanoes common

     –  Oceanic plates may sink into mantle along a subduction

     zone, typically marked by a deep ocean trench

  • 8/13/2019 EES Dynamic Earth Study Slides

    13/114

    THE “BIG 3” GROUPS OF ROCKS 

    IGNEOUS – form from the cooling,crystallization & solidification of magma

    METAMORPHIC – form as a result ofincreases in P & T and the interaction of fluidsresulting in mineralogical changes

    SEDIMENTARY – form from the breakdown ofpre-existing rocks or as chemical precipitatesfrom a fluid

  • 8/13/2019 EES Dynamic Earth Study Slides

    14/114

    ROCK CYCLE - Relates Igneous, Metamorphic, andSedimentary rocks to one another and to the processes

    which „recycle‟ earth materials. 

    Internal processes – magmatism & metamorphism

    External processes – weathering, transportation, deposition 

  • 8/13/2019 EES Dynamic Earth Study Slides

    15/114

    THE ROCK CYCLE 

    Igneous rocks

    basalt, granite

    Sedimentary rocks

    limestone, conglomerate

    Metamorphic rocks

    gneiss, quartzite

  • 8/13/2019 EES Dynamic Earth Study Slides

    16/114

    PLATE TECTONICS  AND THE ROCK CYCLE 

    How are the RockCycle and PlateTectonics related?

    Plate Tectonic

    processes result inthe formation ofcertain rock types in particular areas.

    These rocks can berecycled in bothcontinental andoceanic areas 

  • 8/13/2019 EES Dynamic Earth Study Slides

    17/114

    • The perspective of geologic time

    requires a shift in our usual way ofthinking. 

    • “Deep” Time  –  Most geologic processes occur gradually over millions

    of years –  Changes typically imperceptible over the span of a

    human lifetime

     –  Current best estimate for age of Earth is ~4.55 billion 

    years

    Geologic Time 

    The geologic time scale is the result ofthe collaboration of many earth scientistsworking together to construct a chronologyof events on Earth.

  • 8/13/2019 EES Dynamic Earth Study Slides

    18/114

  • 8/13/2019 EES Dynamic Earth Study Slides

    19/114

    James Hutton’s Principle of Uniformitarianism holds thatpresent day processes have operated throughout Earth’s

    history. Therefore, we can better understand past events by

    studying modern processes.

    "The present is the key to the past"

    Uniformitarianism 

  • 8/13/2019 EES Dynamic Earth Study Slides

    20/114

    Earth’s Interior andGeophysical Properties

    Chapter 2 

    S

  • 8/13/2019 EES Dynamic Earth Study Slides

    21/114

    Earth's Internal Structure

    Compositional

    Differences:

    1.Crust – oceanic (basalt) &

    continental (~granite)

    2. Mantle (peridotite)

    3. Core - inner & outer (Fe-Ni)

    Differences in physical

    properties-behavior:

    1. Lithosphere –

     crust & uppermantle (brittle)

    2. Asthenosphere – upper

    mantle (plastic)

  • 8/13/2019 EES Dynamic Earth Study Slides

    22/114

    Introduction • Deep parts of Earth must be

    studied indirectly

     –  Direct access is only available to

    crustal rocks and small upper

    mantle fragments brought up by

    volcanic eruptions or slapped

    onto continents from subductingoceanic plates

     –  Deepest hole ever drilled is 12

    km deep and did not reach the

    mantle• Geophysics is the branch of

    geology that studies the interior

    of the Earth

  • 8/13/2019 EES Dynamic Earth Study Slides

    23/114

    Evidence from Seismic Waves 

    • Seismic waves or vibrations from a

    large earthquake (or nuclear bomb

     blast) will pass through the entire

    Earth

    • Seismic reflection is the return of

    some waves to the surface after

     bouncing off a rock boundary

     –  Two materials of different densities

    separated by a sharp boundary will lead

    to reflection of seismic waves off the boundary

    • Seismic refraction is the bending of

    seismic waves as they pass from one

    material to another with different

    seismic wave velocities

  • 8/13/2019 EES Dynamic Earth Study Slides

    24/114

    Earth’s Internal Structure 

    • Seismic waves have been usedto determine the three main

    zones within the Earth: the

    crust , mantle and core

    • The crust  is the outer layer of

    rock that forms a thin skin on

    Earth’s surface 

    • The mantle is a thick shell of

    dense rock that separates the

    crust above from the core below

    • The core is the metallic central

    zone of the Earth

  • 8/13/2019 EES Dynamic Earth Study Slides

    25/114

    The Crust • Seismic wave studies have indicated that

    the crust is thinner and denser beneath

    the oceans than on the continents

    • Different seismic wave velocities in

    oceanic (7 km/sec) vs. continental (~6

    km/sec) crustal rocks are indicative of

    different compositions

    • Oceanic crust is mafic, composed

     primarily of basalt and gabbro

    • Continental crust is felsic, with an

    average composition similar to granite

    Table 2.1

  • 8/13/2019 EES Dynamic Earth Study Slides

    26/114

    The Mantle • Seismic wave studies have indicated that

    the mantle, like the crust is made of solid

    rock with only isolated pockets of magma

    • Higher seismic wave velocity (8 km/sec)

    of mantle vs. crustal rocks indicative of

    denser, ultramafic composition

    • Crust and upper mantle together form thelithosphere, the brittle outer shell of the Earth that

    makes up the tectonic plates

     –  Lithosphere averages about 70 km thick

     beneath oceans and 125-250 km thick beneath

    continents

    • Just beneath the lithosphere, seismic wave speeds

    abruptly decrease in a plastic low-velocity zone 

    called the asthenosphere 

  • 8/13/2019 EES Dynamic Earth Study Slides

    27/114

    The Core • Seismic wave studies have provided primary

    evidence for existence and nature of Earth’s core

    • Specific areas on the opposite side of the Earthfrom large earthquakes do not receive seismic

    waves, resulting in seismic shadow zones

    Th C

  • 8/13/2019 EES Dynamic Earth Study Slides

    28/114

    The Core •  P-wave shadow zone (103°-142° from epicenter)explained by refraction of waves encountering

    core-mantle boundary

    • S-wave shadow zone (≥103° from epicenter)

    suggests outer core is a liquid

    • Careful observations of P-wave refraction patterns

    indicate inner core is solid

  • 8/13/2019 EES Dynamic Earth Study Slides

    29/114

    The Core 

    • Core composition is inferred from the

    calculated density, physical and electro-

    magnetic properties, and composition of  

    meteorites 

     –   Iron metal (liquid in outer core and solid ininner core) best fits observed properties 

     –  Iron is the only metal common in meteorites

    • Core-mantle boundary (D” layer) is

    marked by great changes in seismic

    velocity, density and temperature

     –  Hot core may melt lowermost mantle or react

    chemically to form iron silicates in this seismic

    ultralow-velocity zone (ULVZ)

  • 8/13/2019 EES Dynamic Earth Study Slides

    30/114

  • 8/13/2019 EES Dynamic Earth Study Slides

    31/114

    Gravity Measurements • Gravitational force between two

    objects varies with the masses of theobjects and the distance between

    them

    • Gravity meters are extremely

    sensitive instruments that detectchanges in gravity at the Earth’s

    surface related to total mass beneath

    any given point

     –  Gravity is slightly higher ( positive

     gravity anomaly) over dense materials(metallic ore bodies, mafic rocks) and

    slightly lower (negative gravity

    anomaly) over less dense materials

    (caves, water, magma, sediments, felsic

    rocks)

    E h’ M i Fi ld

  • 8/13/2019 EES Dynamic Earth Study Slides

    32/114

    Earth’s Magnetic Field • A region of magnetic force - a magnetic field  -

    surrounds Earth –  Field has north and south magnetic poles – Earth’s magnetic field is what a compass detects 

     –  Recorded by magnetic minerals (e.g., magnetite) in

    igneous rocks as they cool below their Curie point  

    •  Magnetic reversals are times when the polesof Earths magnetic field switch –  Switches in the magnetism recorded in magnetic minerals

     –  Have occurred many times in the past; timing appears

    chaotic

     –  After the next reversal, a compass needle will pointtowards the south magnetic pole

    •  Paleomagnetism, the study of ancient

    magnetic fields in rocks, allows reconstruction

    of plate motions over time

    Magnetic Anomalies

  • 8/13/2019 EES Dynamic Earth Study Slides

    33/114

    Magnetic Anomalies 

    • Local increases or decreases in the

    Earth’s magnetic field strength are

    known as magnetic anomalies –  Positive and negative magnetic anomalies

    represent larger and smaller than average local

    magnetic field strengths, respectively

    •  Magnetometers are used to measure

    local magnetic field strength –  Used as metal detectors in airports

     –  Can detect metallic ore deposits, igneous rocks

    (positive anomalies), and thick layers of non-

    magnetic sediments (negative anomaly) beneathEarth’s surface 

    H t Withi th E th

  • 8/13/2019 EES Dynamic Earth Study Slides

    34/114

    Heat Within the Earth • The temperature increase with depth into the Earth

    is called the geothermal gradient

     –  Tapers off sharply beneath lithosphere –  Due to steady pressure increase with depth,

    increased temperatures produce little melt

    (mostly within Asthenosphere) other than in

    the outer core

    •  Heat flow is the gradual loss of heat throughEarth’s surface 

     –  Heat sources include original heat (from

    accretion and compression as Earth formed)

    and radioactive decay within the Earth

     –  Locally higher where magma is near surface –  Same magnitude, but with different sources, in

    the oceanic (from mantle) and continental crust

    (radioactive decay within the crust)

  • 8/13/2019 EES Dynamic Earth Study Slides

    35/114

    End of Chapter 2

  • 8/13/2019 EES Dynamic Earth Study Slides

    36/114

    The Sea Floor

    Physical Geology: Earth Revealed

    Chapter 3 

  • 8/13/2019 EES Dynamic Earth Study Slides

    37/114

    The Water Planet 

    • Over 70% of the surface of the

    Earth is covered by the oceans

    • Until the second half of the 20th

    century, very little was knownabout the floor of the open ocean 

    • Oceans originated primarily from

    volcanic degassing  of water vapor

    from the interior of the primordial Earth

     –  Small additional amount of water may have

    come from comets impacting Earth

  • 8/13/2019 EES Dynamic Earth Study Slides

    38/114

    Studying the Sea Floor 

    • Although sea floor rocksare widespread, they are

    difficult to study

    • Sea floor rocks and

    sediments can be sampledusing rock dredges,

     seafloor drilling , or

     submersibles

    • Indirect observations of

    the sea floor are also made

    with sonar  and similar

    systems

    F t f th S Fl

  • 8/13/2019 EES Dynamic Earth Study Slides

    39/114

    Features of the Sea Floor •  Passive continental margins have a continental shelf , continental

     slope, and continental rise descending to the extremely flat deep

    ocean floor of the abyssal plain •  Active continental margins, which are associated with numerous

    earthquakes and active volcanoes, have continental shelves and

    slopes, but the slope extends down into a deep oceanic trench

    • A mid-oceanic ridge system encircles the globe, typicallyrunning down the center of an ocean, and numerous conical

     seamounts rise from the ocean floor  

    Continental Shelves and Slopes

  • 8/13/2019 EES Dynamic Earth Study Slides

    40/114

    Continental Shelves and Slopes • Continental shelves are gently seaward-

    sloping (0.1°) shallow submarine platforms

    at the edges of continents –  Range in width from a few km to > 500 km

     –  Typically covered with young sediments

    • Continental slopes are relatively steep

    slopes (typically 4-5°, but locally may be

    much steeper) that extend down from the

    edge of the continental shelf to the deep

    sea floor

    • Submarine canyons are V-shaped valleys

    that run across continental shelves and

    down continental slopes

     –  Deliver continental sediments to abyssal fans on

    deep sea floor, sometimes by turbidity currents 

    25x vertical exaggeration 

     No vertical exaggeration

    C ti t l Ri d Ab l Pl i

  • 8/13/2019 EES Dynamic Earth Study Slides

    41/114

    Continental Rises and Abyssal Plains 

    • Continental rises are gently seaward-

    sloping (0.5°) wedges of sedimentsextending from the base of the

    continental slope to the deep sea floor –  Sediment deposited by turbidity and contour currents 

     –  Typically end in abyssal plains at depth of about 5 km

     –  Lie upon oceanic crust

    •  Abyssal plains are extremely flat layers

    of sediment burying more rugged

    oceanic crust –  Flattest features on Earth, some with slopes

  • 8/13/2019 EES Dynamic Earth Study Slides

    42/114

    Oceanic Trenches • An oceanic trench is a narrow,

    deep trough parallel to the edgeof a continent or an island arc –  Deepest parts of the oceans

     –   Benioff zone earthquake foci begin at

    trenches and dip landward under continents

    or island arcs –  Volcanoes found above upper part of Benioff

    zone are arranged in long belts parallel to

    trenches

     –  Marked by very low heat flow and large

    negative gravity anomalies 

    Mid O i Rid

  • 8/13/2019 EES Dynamic Earth Study Slides

    43/114

    Mid-Oceanic Ridges 

    • The mid-oceanic ridge is a giant

    undersea mountain range thatextends around the world like the

    seams on a baseball

     –  Made mostly of young basalt flows

     –  More than 80,000 km long, 1,500-2,500km wide, and rises 2-3 km above ocean

    floor

     –  A rift valley, 1-2 km deep, runs down the

    crest of the ridge

     –  Shallow focus earthquakes common –  Extremely high heat flow

     –  Often marked by line of hot springs,

    supporting unique biological communities

     –  Offset along fracture zones 

  • 8/13/2019 EES Dynamic Earth Study Slides

    44/114

    Seamounts Guyots and Reefs

  • 8/13/2019 EES Dynamic Earth Study Slides

    45/114

    Seamounts, Guyots, and Reefs • Conical undersea mountains that

    rise ≥1000 m above the seafloor are

    called seamounts  –  Isolated basaltic volcanoes along mid-

    oceanic ridges and out in abyssal plains

     –  Chains of seamounts form aseismic

    ridges • Guyots are flat-topped seamounts,

    apparently cut by wave action, and

    commonly capped with coral reefs 

     –   Reefs are wave-resistant ridges of coral

    and other calcareous organisms that may

    encircle islands ( fringing reefs), parallel

    coastlines (barrier reefs), or rim circular

    lagoons (atolls)

  • 8/13/2019 EES Dynamic Earth Study Slides

    46/114

     fringing reef   barrier reef   atoll  

     Reefs  are wave-resistant ridges of coral and other

    calcareous organisms that may encircle islands

  • 8/13/2019 EES Dynamic Earth Study Slides

    47/114

    C iti f th O C t

  • 8/13/2019 EES Dynamic Earth Study Slides

    48/114

    Composition of the Ocean Crust 

    • Seismic surveys suggest oceanic crust  is

    ~7 km thick and comprised of threelayers –  First layer is marine sediment  of various composition

    and thickness

     –  Second layer is pillow basalt  overlying basaltic dikes 

    (extensively sampled)

     –  Third layer is thought to be composed of sill-like

     gabbro intrusions (not directly sampled)

    • Ophiolites are rock sequences in

    mountain chains on land that are thought

    to represent slivers of ocean crust anduppermost mantle –  Composed of layers 1-3 overlying ultramafic rock

    Oceanic crust Ophiolite sequence

  • 8/13/2019 EES Dynamic Earth Study Slides

    49/114

    Age of the Sea Floor and the

    Theory of Plate Tectonics •  All  rocks and sediments of the deep sea floor

    are less than 200 million years old

     – In contrast, continents preserve rocks up to 4

     billion years in age

    • Explanation of the young age and formation

    mechanisms of oceanic crust is a crucial part

    of the Theory of Plate Tectonics 

  • 8/13/2019 EES Dynamic Earth Study Slides

    50/114

    End of Chapter 3

  • 8/13/2019 EES Dynamic Earth Study Slides

    51/114

    Plate Tectonics

    Physical Geology: Earth Revealed 6/e,

    Chapter 4 

    Plate Tectonics

  • 8/13/2019 EES Dynamic Earth Study Slides

    52/114

    Plate Tectonics • Basic idea of plate tectonics theory is that Earth’s

    surface is divided into a few large, plates that move

    slowly and change in size

    • Intense geologic activity is concentrated at plate

    boundaries, where plates move away, toward or past

    each other• Theory born in late 1960s by combining hypotheses of

    continental drift  and seafloor spreading  

    Early Case for Continental Drift

  • 8/13/2019 EES Dynamic Earth Study Slides

    53/114

    Early Case for Continental Drift • Puzzle-piece fit of coastlines

    (Africa and South America) has

    long been noticed • In the early 1900s, Alfred Wegener  

    noted that South America, Africa,

    India, Antarctica, and Australia

    (Gondwanaland) have almostidentical late Paleozoic rocks and

     fossils 

     –  Glossopteris (plant), Lystrosaurus 

    and Cynognathus (animals) fossils

    found on all five continents

     –   Mesosaurus (reptile) fossils found in

    Brazil and South Africa only

    E l C f C ti t l D ift

  • 8/13/2019 EES Dynamic Earth Study Slides

    54/114

    Early Case for Continental Drift • Wegener reassembled continents into

    the supercontinent Pangea • Pangea initially separated into

     Laurasia  and Gondwanaland  

     –   Laurasia - northern supercontinent

    containing North America and Asia,

    minus India

     –  Gondwanaland  - southern supercontinent

    containing South America, Africa, India,

    Antarctica, and Australia

    • Late Paleozoic glaciation patterns onsouthern continents best explained by

    their reconstruction into

    Gondwanaland

    Early Case for Continental Drift

  • 8/13/2019 EES Dynamic Earth Study Slides

    55/114

    Early Case for Continental Drift 

    • Coal beds of North America and

    Europe support reconstruction intoLaurasia

    • Reconstructed paleoclimate belts

    indicated polar wandering, potential

    evidence for continental drift over

    time

    • Continental drift hypothesis

    initially rejected because Wegener

    could not come up with a viable

    driving force or mechanism for drift  

     –  Could not plow continentsthrough the sea floor rocks, as

    he proposed

    Paleomagnetism and

  • 8/13/2019 EES Dynamic Earth Study Slides

    56/114

    Paleomagnetism andContinental Drift Revived 

    • Studies of  rock magnetism allowed

    determination of magnetic pole

    locations (close to geographic poles) 

    through time

    •  Paleomagnetism uses mineralmagnetic alignment direction and

    dip angle to determine the direction

    and distance to the magnetic pole

     –  Steeper dip angles (inclination) indicaterocks formed closer to the north

    magnetic pole (90° at poles, 0° at

    equator) - indicates latitude

    Paleomagnetism and Continental Drift

  • 8/13/2019 EES Dynamic Earth Study Slides

    57/114

    gRevived 

    •  Apparent polar wandering  curves for

    different continents suggest different

    north pole positions for the same

    time relative to one another

    • Reconstruction of super- continentsusing paleomagnetic information fits

    Africa and South America like puzzle

    pieces

     –  Improved fit results in rock units (and

    glacial ice flow directions) precisely

    matching up across continent margins

    Seafloor Spreading

  • 8/13/2019 EES Dynamic Earth Study Slides

    58/114

    Seafloor Spreading • In 1962, Harry Hess

    proposed seafloorspreading –  Seafloor moves away from the

    mid-oceanic ridge (MOR) due to

    mantle convection 

     –  Convection is circulation driven byrising hot material and/or sinking

    cooler material

     –  Evidence: thickness of sediments,

    seamounts, guyots, trenches

    • Hot mantle rock rises under

    MOR –  Ridge elevation, high heat flow,

    and abundant basaltic volcanism

    are evidence for this

    Seafloor Spreading 

  • 8/13/2019 EES Dynamic Earth Study Slides

    59/114

    p g• Seafloor rocks, and mantle rocks beneath them (lithosphere), cool and become

    more dense with distance from MOR  

    • When sufficiently cool and dense, these rocks sink back into the mantle at

    subduction zones 

     –  Junction between subducting cold oceanic rocks and overlying less dense

    plate forms oceanic trenches (very low heat flow), earthquakes (Benioff

    zones) and generation of magmas associated with subduction zones

    • Explains overall young age of sea floor (

  • 8/13/2019 EES Dynamic Earth Study Slides

    60/114

    Plates and Plate Motion 

    • Tectonic plates are composed of

    the relatively rigid lithosphere

     –  Lithospheric thickness and age of

    seafloor increase with distance 

    from mid-oceanic ridge

    • Plates “float” upon ductile or plastic

    asthenosphere 

    • Plates interact at their boundaries

    • Classified by relative plate motion

     –  Plates move apart at divergent  boundaries,

    together at convergent  boundaries, and slide

    past one another at transform boundaries

    Evidence of Plate Motion• Marine magnetic anomalies -

  • 8/13/2019 EES Dynamic Earth Study Slides

    61/114

    Evidence of Plate Motion  Marine magnetic anomalies -bands of stronger and weaker

    than average magnetic field

    strength  –  Parallel MOR

     –  Field strength related to basalts

    magnetized with same and

    opposite polarities of current

    (normal polarity) global magneticfield

     –  Symmetric “bar-code” anomaly

    pattern reflects plate motion away

    from ridge coupled with magnetic

    field reversals• Seafloor age increases with distance 

    from MOR

     –   Rate of plate motion - distance

    from ridge divided by age

    Evidence of Plate Motion

  • 8/13/2019 EES Dynamic Earth Study Slides

    62/114

    Evidence of Plate Motion •  Mid-oceanic ridges are offset

    along fracture zones 

     –  The segment of the fracture zonebetween the offset ridge crests is a

    seismically active transform fault  

     –  Relative motion along fault is result

    of seafloor spreading from adjacent

    ridges• Plate motion can be directly

    measured using satellites, radar,

    lasers and global positioning

    systems  –  Measurements accurate to within 1cm

     –  Motion rates closely match those

    predicted using seafloor magnetic

    anomalies

  • 8/13/2019 EES Dynamic Earth Study Slides

    63/114

    Divergent Plate Boundaries 

  • 8/13/2019 EES Dynamic Earth Study Slides

    64/114

    g• At divergent plate boundaries,

    plates move away from each

    other  –  Can occur in the middle of the ocean

    or within a continent

     –  Divergent motion eventually creates a

    new ocean basin

    • Marked by rifting , basaltic

    volcanism, and uplift –  During rifting, crust is stretched and

    thinned

     –  Graben valleys mark rift zones

     –  Volcanism common as magma rises

    through thinner crust along normal

    faults

     –  Uplift is due to thermal expansion of

    hot rock

    Transform Plate Boundaries

  • 8/13/2019 EES Dynamic Earth Study Slides

    65/114

    Transform Plate Boundaries • At transform plate boundaries,

    plates slide horizontally past one

    another

     –  Marked by transform faults 

     –  Transform offsets of the MOR

    allow a series of straight-line

    segments to approximate the

    curved boundaries required by

    a spheroidal Earth 

    Convergent PlateB d i

  • 8/13/2019 EES Dynamic Earth Study Slides

    66/114

    gBoundaries 

    • At convergent plate boundaries, plates move

    toward one another

    • Nature of boundary depends on plates

    involved (oceanic vs. continental)

     –  Ocean-ocean plate convergence 

    • Marked by ocean trench, Benioff

     zone, and volcanic island arc  –  Ocean-continent plate convergence 

    • Marked by ocean trench, Benioff

    zone, volcanic arc, and mountain belt  

     –  Continent-Continent plate convergence 

    • Marked by mountain belts and thrust

     faults

    Movement of Plate

  • 8/13/2019 EES Dynamic Earth Study Slides

    67/114

    Boundaries •  Plate boundaries move over time

     –  MOR crests can migrate toward or awayfrom subduction zones or abruptly jump

    to new positions

     –  Convergent boundaries can migrate if

    subduction angle steepens or overlying

    plate has a trenchward motion

    •  Back-arc spreading  may occur, but is

    poorly understood

     –  Transform boundaries can shift as slivers

    of plate shear off

    • San Andreas fault shifted eastward

    about 5 m.y. ago and may do so again 

    What Causes Plate Motions?

  • 8/13/2019 EES Dynamic Earth Study Slides

    68/114

    What Causes Plate Motions? 

    • Causes of plate motion not yet fully

    understood, but any proposed

    mechanism must explain why:

     –  MOR are hot and elevated, while

    trenches are cold and deep

     –  Ridge crests have tensional cracks

     –  The leading edges of some platesare subducting sea floor, while

    others are continents (which

    cannot subduct)

    •  Mantle convection may be the cause

    or an effect of circulation set up by

    ridge-push and/or slab-pull  

  • 8/13/2019 EES Dynamic Earth Study Slides

    69/114

    Mantle Plumes and Hot Spots 

  • 8/13/2019 EES Dynamic Earth Study Slides

    70/114

    p –  Large mantle plumes may dome

    up and break or rift apart the

    overlying plate• 3 rifts form at 120° angles, 2

    continue to rift and 1 fails (the

    failed rift arm is called an

    aulacogen; ex. East African Rift

    Zone)• Characterized by flood basalt

    eruptions

    • If rifting continues, seas may form

    (ex: Red Sea and Gulf of Aden)

    • Rifting apart of continental landmasses can occur

     –  New divergent boundaries may form if

    several hot spots link up and break

    apart continents

  • 8/13/2019 EES Dynamic Earth Study Slides

    71/114

    Plate Tectonics and Ore Deposits

  • 8/13/2019 EES Dynamic Earth Study Slides

    72/114

    p• Metallic ore deposits are often located near

    plate boundaries

     –  Commonly associated with igneous activity

    • Divergent plate boundaries often marked by

    lines of hot springs on sea floor

     –  Mineral-rich hot springs (black smokers)

    deposit metal ores on sea floor after hittingcold water

    • Subducting plates at convergent boundaries

    may produce metal-rich magmatic fluids

     –  Different metallic ores originate atdifferent depths along the subducting plate

  • 8/13/2019 EES Dynamic Earth Study Slides

    73/114

    End of Chapter 4

  • 8/13/2019 EES Dynamic Earth Study Slides

    74/114

    Mountain Belts and theContinental Crust

    Chapter 5 

    Mountain Belts and Earth’s Subsystems 

  • 8/13/2019 EES Dynamic Earth Study Slides

    75/114

    •  Mountain belts - chains of mountain

    ranges - 1000s of km long

     –  Commonly located at or near theedges of continental landmasses

     –  Composed of multiple mountain

    ranges

    • Mountain belts are part of the geosphere 

     –  Form and grow, by tectonic and

    volcanic processes, over tens of

    millions of years

    • As mountains grow higher, erosion by

    running water and ice (hydrosphere)occur at higher rates

    • Air (atmosphere) rising over mountain

    ranges directly results in precipitation

    and erosion

  • 8/13/2019 EES Dynamic Earth Study Slides

    76/114

  • 8/13/2019 EES Dynamic Earth Study Slides

    77/114

    Rock Patterns in Mountain Belts 

  • 8/13/2019 EES Dynamic Earth Study Slides

    78/114

    •  Mountain belts typically contain thick

    sequences of folded and faulted sedimentary

    rocks, often of marine origin. May also

    contain great thicknesses of volcanic rock

    • Fold and thrust belts are common, indicating

    large amounts of crustal shortening and

    thickening has taken place under

    compressional  forces

     –  Mountain belts are common at

    convergent boundaries

     –  May contain large amounts of

    metamorphic rock

    • Erosion-resistant batholiths may be leftbehind as mountain ranges after long

    periods of erosion

    • Intensity of deformation, folding, faulting,

    metamorphism & plutonism increases as

    move across the mt belt to the craton

    Rock Patterns in Mountain Belts

  • 8/13/2019 EES Dynamic Earth Study Slides

    79/114

    Rock Patterns in Mountain Belts 

    • Erosion-resistant batholiths may be left behind as mountain ranges

    after long periods of erosion

    • Localized tension in uplifting mountain belts can result in normal

     faulting

     –   Horsts and grabens can produce mountains and valleys,

    respectively

    •  Earthquakes common along faults in mountain ranges

    Evolution of Mountain Belts 

  • 8/13/2019 EES Dynamic Earth Study Slides

    80/114

    • Rocks (sedimentary and volcanic) that

    will later be uplifted into mountains are

    deposited during accumulation stage

     –  Typically occurs in marine

    environment along continental

    margins, and convergent plate

    boundaries

    • Mountains are uplifted at convergent

    boundaries during the orogenic stage

     –  May be the result of ocean-continent ,

    arc-continent , or continent-continent convergence

    Evolution of Mountain Belts 

  • 8/13/2019 EES Dynamic Earth Study Slides

    81/114

    • After convergence stops, a long period

    of erosion, uplift and block-faulting  

    occurs

     –  As erosion removes overlying rock,

    the crustal root  of a mountain

    range rises by isostatic adjustment

     –  Tension in uplifting and spreadingcrust results in normal faulting

    and production of  fault-block

    mountain ranges (Teton Mts, WY) 

    Growth of Continents 

  • 8/13/2019 EES Dynamic Earth Study Slides

    82/114

    • Continents grow larger as mountain belts

    evolve along their margins 

     –  Accumulation and igneous activity(volcanic arcs added to continents

    during convergence) add new

    continental crust beyond old

    coastlines  –  New accreted terranes can be added

    with each episode of convergence

    • Western North America (especially

    Alaska) comprised of many terranes 

     –  Numerous terranes, of gradually

    decreasing age, surround older

    cratons that form the cores of the

    continents

    Evolution of Mountain Belts 

  • 8/13/2019 EES Dynamic Earth Study Slides

    83/114

    • Basin-and-Range province of western

    North America may be the result of

    delamination

     –  Overthickened mantle lithosphere

    beneath old orogenic mountain belt

    may break off and sink ( founder ) into

    asthenosphere

     –  Resulting inflow of hot asthenosphere 

    can stretch and thin overlying crust,

    producing normal faults under tension 

  • 8/13/2019 EES Dynamic Earth Study Slides

    84/114

    End of Chapter 5

  • 8/13/2019 EES Dynamic Earth Study Slides

    85/114

    Geologic StructuresPhysical Geology: Earth Revealed

    Chapter 6 

    Geologic Structures

  • 8/13/2019 EES Dynamic Earth Study Slides

    86/114

    Geologic Structures • Geologic structures are dynamically-produced patterns or arrangements of rock

    or sediment that result from forces within the Earth

     –  Rocks change shape and orientation (strain) in response to applied stress

     –  Structural geology is the study of the shapes, arrangement, and

    interrelationships of bedrock units and the forces that cause them

    St d St i

  • 8/13/2019 EES Dynamic Earth Study Slides

    87/114

    Stress and Strain 

    • Stress is a force per unit area  –  The three basic types of stress are

    compressive, tensional  and shear  

    • Strain is a change in size or

    shape in response to stress –  Structures produced are examples

    of strain that are indicative of the

    type of stress and its rate of

    application, as well the physical properties of the rock or sediment

     being stressed

    Rock Responses to Stress and Strain

  • 8/13/2019 EES Dynamic Earth Study Slides

    88/114

    Rock Responses to Stress and Strain 

    • Rocks behave as elastic, ductile or  brittlematerials depending on:

     –  amount and rate of stress application

     –  type of rock

     –  temperature and pressure

    • If deformed materials return to original shapeafter stress removal, they are behaving

    elastically 

    • However, once the stress exceeds the elastic

    limit  of a rock, it deforms permanently

     –  ductile deformation involves bending

     plastically 

     –  brittle deformation involves fracturing  

    Structures and Geologic Maps 

  • 8/13/2019 EES Dynamic Earth Study Slides

    89/114

    • Rock structures are determinedon the ground by geologists

    observing rock outcrops 

     –  Outcrops are places where bedrock

    is exposed at the surface

    • Geologic maps use standardized

    symbols and patterns to represent

    rock types and geologic structures,

    such as tilted beds, joints, faults 

    and folds 

    Orientation of Geologic Structures 

  • 8/13/2019 EES Dynamic Earth Study Slides

    90/114

    • Geologic structures are most

    obvious in sedimentary rocks when

    stresses have altered their

    originally horizontal orientation

    • Tilted beds, joints, and faults are

     planar features whose orientation is

    described by their strike and dip  –  Strike is the compass direction of a

    line formed by the intersection of an

    inclined plane with a horizontal plane

     –   Dip is the direction and angle

    downward from a horizontal plane to

    an inclined plane

    Types of Geologic Structures F ld b d i l d k

  • 8/13/2019 EES Dynamic Earth Study Slides

    91/114

    •  Folds are bends in layered rock

     –  Represent rock strained in a ductile 

    manner, under compression stress

    • The axial plane divides a fold into its two limbs

     –  The surface trace of an axial plane is

    called the hinge line (or  axis) of the

    fold 

    •  Anticlines are upward-arching folds –  oldest

    rocks in the center of fold

    • Synclines are downward-arching folds –  

    youngest rocks in the center of fold

    Types of Folds 

  • 8/13/2019 EES Dynamic Earth Study Slides

    92/114

    yp

    •  Plunging folds are folds in which the hinge line is not horizontal

     –  Where surfaces have been leveled by erosion, plunging folds form V- or

    horseshoe-shaped patterns of exposed rock layers (beds)

    • Open folds have limbs that dip gently, whereas isoclinal folds have parallel

    limbs • Overturned folds have limbs that dip in the same directions, and recumbent

     folds are overturned to the point of being horizontal 

    Structural Domes and Basins 

  • 8/13/2019 EES Dynamic Earth Study Slides

    93/114

    •  Domes are structures in which the

     beds dip away from a central point.

    Oldest beds are in the center of the

    dome.

     –  Sometimes called doubly

     plunging anticlines

    •  Basins are structures in which the

     beds dip toward a central point.

    Youngest beds are in the center of a

     basin.

     –  Sometimes called doubly

     plunging synclines

    Structural Dome

    Structural Basin

    Domenear

    Casper,

    WY

    Fractures in Rock  

  • 8/13/2019 EES Dynamic Earth Study Slides

    94/114

    •  Joints are fractures or cracks in

     bedrock along which essentiallyno movement has occurred –  Multiple parallel joints are called joint

     sets 

    •  Faults are fractures in bedrockalong which movement has

    occurred

     – Considered “active” if movement has occurredalong them within the last 11,000 years (since

    the last ice age)

     –  Categorized by type of movement as dip-slip,

     strike-slip, or oblique-slip 

    Types of Faults Dip slip faults have movement

  • 8/13/2019 EES Dynamic Earth Study Slides

    95/114

     Dip-slip faults have movement

     parallel to the dip of the fault plane

     –  Most common types are normal andreverse 

    • In normal faults, the hanging-wall block  has

    moved down relative to the footwall block  

    • In reverse faults, the hanging-wall block has

    moved up relative to the footwall block

     –  Fault blocks, bounded by normal faults,

    that drop down or are uplifted are

    known as grabens and horsts,

    respectively• Grabens associated with divergent plate

     boundaries are called rifts 

    Types of Faults

  • 8/13/2019 EES Dynamic Earth Study Slides

    96/114

    Types of Faults  –  Thrust faults are reverse faults with dip

    angles less than 30° from horizontal

  • 8/13/2019 EES Dynamic Earth Study Slides

    97/114

  • 8/13/2019 EES Dynamic Earth Study Slides

    98/114

    End of Chapter 6

  • 8/13/2019 EES Dynamic Earth Study Slides

    99/114

    EarthquakesPhysical Geology: Earth Revealed, 6/e

    Chapter 7 

    Earthquakes • An earthquake is a trembling or shaking of the

  • 8/13/2019 EES Dynamic Earth Study Slides

    100/114

    • An earthquake is a trembling or shaking of the

    ground caused by the sudden release of elastic

    energy stored in the rocks beneath Earth’s surface 

     –  Tectonic forces within the Earth produce

    stresses on rocks that eventually exceed their

    elastic limits, resulting in brittle failure

    • Energy is released during earthquakes in the form

    of  seismic waves –  Released from a position along a break

     between two rock masses (fault)

    •  Elastic rebound theory explains the occurrence of

    earthquakes as a sudden release of strain

     progressively stored in rocks that bend until they

    finally break and move along a fault releasing the

    stored elastic energy

    Seismic Waves Th i t ithi th E th h i i

  • 8/13/2019 EES Dynamic Earth Study Slides

    101/114

    • The point within the Earth where seismic

    waves originate is called the focus (or

    hypocenter ) of the earthquake, and is the point of initial breakage and movement

    along a fault

    • The point on the Earth’s surface directly

    above the focus is known as the epicenter  

    • Two types of waves are produced during

    earthquakes: body waves and surface

    waves 

     –   Body waves are seismic waves that travel

    outward from the focus in all directionsthrough Earth’s interior  

     –  Surface waves are seismic waves that travel

    along Earth’s surface away from the epicenter  

    Body Waves 

  • 8/13/2019 EES Dynamic Earth Study Slides

    102/114

    •  P waves are compressional (or longitudinal)

     body waves in which rock vibrates back and

    forth parallel  to the direction of wave propagation

     –  Fast (4 to 7 kilometers per second) wave that is the

    first or primary wave to arrive at a recording station

    following an earthquake

     –  Can pass through solids and fluids (liquids or gases)

    • S waves are shearing (or transverse) body

    waves in which rock vibrates back and forth

     perpendicular  to the direction of wave

     propagation –  Slower (2 to 5 kilometers per second) wave that is

    the secondary wave to arrive at a recording station

    following an earthquake

     –  Can pass only through solids

    Surface Waves 

  • 8/13/2019 EES Dynamic Earth Study Slides

    103/114

    • Slowest type of seismic waves

    set off by earthquakes •  Love waves involve only side-to-

     side motion of the ground surface

     – Can’t travel through fluids 

    •  Rayleigh waves behave like

    ocean waves, and cause the

    ground to move in an elliptical

     path opposite the direction ofwave motion

     –  Extremely destructive to buildings

  • 8/13/2019 EES Dynamic Earth Study Slides

    104/114

    Locating Earthquakes 

  • 8/13/2019 EES Dynamic Earth Study Slides

    105/114

    • P- and S-waves start out from the

    focus of an earthquake at sametime but separate because they

    move with different velocities

    • Faster P-waves get farther ahead

    of slower S-waves with distance

    and time from the earthquake

    • Travel-time curves can be used to

    determine the distance to thefocus based on the time gap

     between first P- and S-wave

    arrivals

    Locating Earthquakes 

  • 8/13/2019 EES Dynamic Earth Study Slides

    106/114

    • Travel-time curve can be used

    to determine the distance to

    the focus based on the timegap between first P- and S-

    wave arrivals

    • Plotting distances from 3stations on a map, as circles

    with radii equaling the

    distance from the quake, will

    show the location of theepicenter

    Measuring the “Size” ofE th k

  • 8/13/2019 EES Dynamic Earth Study Slides

    107/114

    Earthquakes • Size of earthquakes is measured in two

    ways, intensity and magnitude•  Intensity is a measure of the damage that

    an earthquake causes to people and

     buildings 

     –   Modified Mercalli scale

    •  Magnitude is a measure of the amount ofenergy released by an earthquake

     –   Richter scale (log scale)

    • Moment magnitude is a more objective

    way of measuring energy released by a

    major earthquake

     –  Uses rock strength, surface area of

    fault rupture, and amount of

    movement

     –  Smaller quakes more common than

    larger ones

  • 8/13/2019 EES Dynamic Earth Study Slides

    108/114

    Effects of Earthquakes 

  • 8/13/2019 EES Dynamic Earth Study Slides

    109/114

    • Earthquakes produce several types of

    effects, all of which can cause loss of property and human life

     –  Ground motion is the familiar trembling and

    shaking of the land during an earthquake

    • Can topple buildings and bridges

     –   Fire is a problem just after earthquakes because of broken gas and water mains and

    fallen electrical wires

     –   Landslides can be triggered by ground shaking,

     particularly in larger quakes

     –   Liquefaction occurs when water-saturated soilor sediment sloshes like a liquid during a quake

     –   Permanent displacement of the land surface 

    can also occur, leaving fractures and scarps

    Tsunami 

  • 8/13/2019 EES Dynamic Earth Study Slides

    110/114

    • Very large sea waves, caused by

    sudden upward or downwardmovement of the sea floor during

    submarine earthquakes, are known

    as Tsunami (seismic sea waves)

     –  Tsunami are generally produced by

    magnitude 8+ earthquakes (“great”earthquakes)

     –  May also be generated by large

    undersea landslides or volcanic

    explosions

     –  Travel across open ocean at speeds of

    >700 km/hr

     –  Reach great heights in coastal areas

    with gently sloping seafloor and

    funnel-shaped bays

    World Earthquake Distribution 

  • 8/13/2019 EES Dynamic Earth Study Slides

    111/114

    • Most earthquakes are concentrated in

    narrow geographic belts which mark

    the tectonic plate boundaries

    • Most important concentrations are in

    the circum-Pacific and Mediterranean-

     Himalayan belts

    • Shallow-focus earthquakes are also

    common along the crests of mid-

    oceanic ridges

    •  Nearly all intermediate- and deep-focus

    earthquakes occur in Benioff zones (zones of inclined seismic activity

    marking location of descending oceanic

     plate at subduction zones) 

    Earthquakes and Plate Tectonics 

  • 8/13/2019 EES Dynamic Earth Study Slides

    112/114

    • Earthquakes are caused by plate inter-actions

    along tectonic plate boundaries

    • Plate boundaries are identified and defined  

     by earthquakes 

    • Earthquakes occur at each of the three types

    of plate boundaries: divergent , transform, and

    convergent   –  At divergent boundaries, tensional forces 

     produce shallow-focus quakes on normal

     faults 

     –  At transform boundaries, shear forces 

     produce shallow-focus quakes along strike-slip faults 

     –  At convergent boundaries, compressional

     forces produce shallow- to deep-focus

    quakes along reverse and thrust faults 

    Earthquake Prediction and SeismicRisk

  • 8/13/2019 EES Dynamic Earth Study Slides

    113/114

    Risk  • Accurate and consistent short-term

    earthquake prediction is not yet possible,three methods assist in determining the

     probability that an earthquake will occur: 

     –  Measurement of changes in rock properties,

    such as magnetism, electrical resistivity, seismic

    velocity, and porosity, which may serve as precursors to earthquakes

     –  Studies of the slip rate along fault zones

     –   Paleoseismology studies that determine where

    and when earthquakes have occurred and their

    size• Average intervals between large earthquakes and

    the time since the last one occurred can also be

    used to assess the risk (over a given period of

    time) that a large quake will occur

  • 8/13/2019 EES Dynamic Earth Study Slides

    114/114

    End of Chapter 7