ee141- spring 2005bwrcs.eecs.berkeley.edu/classes/icdesign/ee141_s05/lectures/lecture4-mos.pdfpmos...

20
EE141 The MOS Transistor MOS Transistor Model EE141- Spring 2005 Lecture 4 EE141 Today’s lecture Basic MOS transistor operation Large-signal MOS model for manual analysis The CMOS inverter at a first glance

Upload: others

Post on 25-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    EE141

    The MOS TransistorMOS Transistor Model

    EE141- Spring 2005Lecture 4

    EE141

    Today’s lecture

    Basic MOS transistor operationLarge-signal MOS model for manual analysisThe CMOS inverter at a first glance

  • 2

    EE141

    Important!

    Labs start next weekYou must show up in one of the lab sessions next weekIf you don’t show up you will be dropped from the class» Unless you let me know that you still want to be in

    the classHomework 2 due next Thursday, February 3.

    EE141

    What is a Transistor?

    VGS ≥ VTRon

    S D

    A Switch!

    |VGS|

    A MOS Transistor

  • 3

    EE141

    Switch Model of CMOS Transistor

    Ron

    |VGS| < |VT||VGS| > |VT|

    |VGS|

    EE141

    NMOS and PMOS

    V GS0

    NMOS Transistor

    S D

    G

    S D

    G

  • 4

    EE141

    The MOS Transistor

    Polysilicon Aluminum

    EE141

    MOS Transistors -Types and Symbols

    D

    S

    G

    D

    S

    G

    G

    S

    D D

    S

    G

    NMOS Enhancement NMOS

    PMOS

    Depletion

    Enhancement

    B

    NMOS withBulk Contact

  • 5

    EE141

    Threshold Voltage: Concept

    n+

    p-substrate

    DSG

    B

    VGS+

    Depletionregion

    n-channel

    n+

    EE141

    The Threshold Voltage

    Threshold

    Fermi potential

    2φF is approximately - 0.6V for p-type substratesγ – the body factorVT0 is approximately 0.45V for our process

  • 6

    EE141

    The Body Effect

    -2.5 -2 -1.5 -1 -0.5 00.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    0.85

    0.9

    VBS

    (V)

    VT (V

    )

    EE141

    The Drain CurrentCharge in the channel is controlled by the gate voltage:

    Drain current is proportional to charge and velocity:

  • 7

    EE141

    The Drain Current

    Combining velocity and charge:

    Integrating over the channel:

    Transconductance:

    EE141

    Transistor in Linear

    n+n+

    p-substrate

    D

    SG

    B

    VGS

    xL

    V(x) +–

    VDS

    ID

    MOS transistor and its bias conditions

    Linear (Resistive) mode

  • 8

    EE141

    Transistor in Saturation

    n+n+

    S

    G

    VGS

    D

    VDS > VGS - VT

    VGS - VT+-

    Pinch-off

    EE141

    Saturation

    For VGD < VT, the drain current saturates

    Including channel-length modulation

    ( )22 TGSn

    D VVLWkI −

    ′=

    ( ) ( )DSTGSnD VVVLWkI λ+−

    ′= 1

    22

  • 9

    EE141

    Modes of Operation

    Cutoff:

    VGS < VT ID = 0

    Resistive:

    VT < VGS ; VGS − VT > VDS

    ( )22 TGSn

    D VVLWkI −

    ′=

    Saturation:

    VT < VGS ; VGS − VT < VDS

    ( )

    −−

    ′=

    22

    2DS

    DSTGSn

    DVVVV

    LWkI

    EE141

    Current-Voltage RelationsA Good Ol’ Transistor

    QuadraticRelationship

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10

    -4

    VDS (V)

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Resistive Saturation

    VDS = VGS - VT

  • 10

    EE141

    A model for manual analysis

    EE141

    Current-Voltage RelationsThe Deep-Submicron Era

    LinearRelationship

    -4

    VDS (V)0 0.5 1 1.5 2 2.5

    0

    0.5

    1

    1.5

    2

    2.5x 10

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Early Saturation

  • 11

    EE141

    Velocity Saturation

    ξ (V/µm)ξc = 1.5

    υn

    (m/s

    )υsat = 105

    Constant mobility (slope = µ)

    Constant velocity

    EE141

    Velocity Saturation

    IDLong-channel device

    Short-channel device

    VDSVDSAT VGS - VT

    VGS = VDD

  • 12

    EE141

    ID versus VGS

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10

    -4

    VGS(V)

    I D(A

    )

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    -4

    VGS(V)I D

    (A)

    quadratic

    quadratic

    linear

    Long Channel Short Channel

    EE141

    ID versus VDS-4

    VDS(V)0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    0 0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6x 10-4

    VDS(V)

    I D(A

    )

    VGS= 2.5 V

    VGS= 2.0 V

    VGS= 1.5 V

    VGS= 1.0 V

    Resistive Saturation

    VDS = VGS - VT

    Long Channel Short Channel

  • 13

    EE141

    Including Velocity Saturation

    Approximate velocity:

    And integrate current again:

    In deep submicron, there are four regions of operation:(1) cutoff, (2) resistive, (3) saturation and (4) velocity saturation

    EE141

    Regions of Operation

    Long Channel Short Channel

  • 14

    EE141

    An Unified Modelfor Manual Analysis

    S D

    G

    B

    EE141

    Regions of Operation

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    -4

    DSV (V)

    I D(A

    )

    VelocitySaturatedLinear

    Saturated

    VDSAT=VGT

    VDS=VDSAT

    VDS=VGT

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5x 10

    -4

    DSV (V)DSV (V)

    I D(A

    )

    VelocitySaturatedLinear

    Saturated

    VDSAT=VGT

    VDS=VDSAT

    VDS=VGT

  • 15

    EE141

    A PMOS Transistor

    -2.5 -2 -1.5 -1 -0.5 0-1

    -0.8

    -0.6

    -0.4

    -0.2

    0x 10

    -4

    VDS (V)

    I D(A

    )

    Assume all variablesnegative!

    VGS = -1.0V

    VGS = -1.5V

    VGS = -2.0V

    VGS = -2.5V

    EE141

    Transistor Model for Manual Analysis

  • 16

    EE141

    The Transistor as a Switch

    VGS ≥ VTRon

    S D

    ID

    VDS

    VGS = VD D

    VDD/2 VDD

    R0

    Rmid

    EE141

    The Transistor as a Switch

    0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6

    7x 10

    5

    VDD

    (V)

    Req

    (Ohm

    )

  • 17

    EE141

    The Transistor as a Switch

    EE141

    The CMOS Inverter: A First Glance

    Vin Vout

    CL

    VDD

  • 18

    EE141

    CMOS Inverter

    Polysilicon

    In Out

    VDD

    GND

    PMOS 2λ

    Metal 1

    NMOS

    OutIn

    VDD

    PMOS

    NMOS

    Contacts

    N Well

    EE141

    Two Inverters

    Connect in Metal

    Share power and ground

    Abut cells

    VDD

  • 19

    EE141

    CMOS InverterFirst-Order DC Analysis

    VOL = 0VOH = VDD

    VM = f(Rn, Rp)

    VDD VDD

    Vin 5 VDD Vin 5 0

    VoutVout

    Rn

    Rp

    EE141

    CMOS Inverter: Transient Response

    tpHL = f(Ron.CL)= 0.69 RonCL

    V outVout

    R n

    R p

    V DDV DD

    V in 5 V DDV in 5 0

    (a) Low-to-high (b) High-to-low

    CLCL

  • 20

    EE141

    CMOS Properties

    Full rail-to-rail swingSymmetrical VTCPropagation delay function of load capacitance and resistance of transistorsNo static power dissipationDirect path current during switching

    EE141

    Future Perspectives

    25 nm MOS transistor (Folded Channel)