ee101: op amp circuits (part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 ·...

112
EE101: Op Amp circuits (Part 2) M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay

Upload: others

Post on 28-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

EE101: Op Amp circuits (Part 2)

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 3: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 4: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 5: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 6: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 7: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 8: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

Consider a bridge circuit for sensing temperature, pressure, etc., with Ra = Rb = Rc = R .

Rd = R + ∆R varies with the quantity to be measured. Typically, ∆R is a small fraction of R.

The bridge converts ∆R to a signal voltage which can then be suitably amplified and used fordisplay or control.

Assuming that the amplifier has a large input resistance,

v1 =R

R + RVCC =

1

2VCC .

v2 =(R + ∆R)

R + (R + ∆R)VCC =

1

2

1 + x

1 + x/2VCC ≈

1

2(1 + x) (1− x/2) VCC =

1

2(1 + x/2) VCC ,

where x = ∆R/R .

For example, with VCC = 15 V , R = 1 k, ∆R = 0.01 k ,

v1 = 7.5 V ,

v2 = 7.5 + 0.0375 V .

M. B. Patil, IIT Bombay

Page 9: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 10: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 11: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 12: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 13: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 14: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-mode and differential-mode voltages

Amplifier

Rc

Rd

Ra

Rb

VCC

Vo

v1

v2

v1 = 7.5 V , v2 = 7.5 + 0.0375 V .

The amplifier should only amplify v2 − v1 = 0.0375 V (since that is the signal arising from ∆R).

Definitions:

Given v1 and v2,

vc =1

2(v1 + v2) = common-mode voltage,

vd = (v2 − v1) = differential-mode voltage.

v1 and v2 can be rewritten as,

v1 = vc − vd/2 , v2 = vc + vd/2 .

In the above example, vc ≈ 7.5 V , vd = 37.5 mV .

Note that the common-mode voltage is quite large compared to the differential-mode voltage.

This is a common situation in transducer circuits.

M. B. Patil, IIT Bombay

Page 15: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-Mode Rejection Ratio

Amplifier vo

v−

v+

v− = vc − vd/2

v+ = vc + vd/2

An ideal amplifier would only amplify the difference (v+ − v−) , giving

vo = Ad (v+ − v−) = Ad vd ,

where Ad is called the “differential gain” or simply the gain (AV ).

In practice, the output can also have a common-mode component:

vo = Ad vd + Ac vc ,

where Ac is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the

Common-Mode Rejection Ratio (CMRR):

CMRR =Ad

Ac.

For the 741 Op Amp, the CMRR is 90 dB (' 30,000), which may be considered to be infinite in

many applications. In such cases, mismatch between circuit components will determine the overall

common-mode rejection performance of the circuit.

M. B. Patil, IIT Bombay

Page 16: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-Mode Rejection Ratio

Amplifier vo

v−

v+

v− = vc − vd/2

v+ = vc + vd/2

An ideal amplifier would only amplify the difference (v+ − v−) , giving

vo = Ad (v+ − v−) = Ad vd ,

where Ad is called the “differential gain” or simply the gain (AV ).

In practice, the output can also have a common-mode component:

vo = Ad vd + Ac vc ,

where Ac is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the

Common-Mode Rejection Ratio (CMRR):

CMRR =Ad

Ac.

For the 741 Op Amp, the CMRR is 90 dB (' 30,000), which may be considered to be infinite in

many applications. In such cases, mismatch between circuit components will determine the overall

common-mode rejection performance of the circuit.

M. B. Patil, IIT Bombay

Page 17: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-Mode Rejection Ratio

Amplifier vo

v−

v+

v− = vc − vd/2

v+ = vc + vd/2

An ideal amplifier would only amplify the difference (v+ − v−) , giving

vo = Ad (v+ − v−) = Ad vd ,

where Ad is called the “differential gain” or simply the gain (AV ).

In practice, the output can also have a common-mode component:

vo = Ad vd + Ac vc ,

where Ac is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the

Common-Mode Rejection Ratio (CMRR):

CMRR =Ad

Ac.

For the 741 Op Amp, the CMRR is 90 dB (' 30,000), which may be considered to be infinite in

many applications. In such cases, mismatch between circuit components will determine the overall

common-mode rejection performance of the circuit.

M. B. Patil, IIT Bombay

Page 18: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Common-Mode Rejection Ratio

Amplifier vo

v−

v+

v− = vc − vd/2

v+ = vc + vd/2

An ideal amplifier would only amplify the difference (v+ − v−) , giving

vo = Ad (v+ − v−) = Ad vd ,

where Ad is called the “differential gain” or simply the gain (AV ).

In practice, the output can also have a common-mode component:

vo = Ad vd + Ac vc ,

where Ac is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the

Common-Mode Rejection Ratio (CMRR):

CMRR =Ad

Ac.

For the 741 Op Amp, the CMRR is 90 dB (' 30,000), which may be considered to be infinite in

many applications. In such cases, mismatch between circuit components will determine the overall

common-mode rejection performance of the circuit.

M. B. Patil, IIT Bombay

Page 19: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 20: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 21: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 22: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 23: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 24: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i+

i−

R4

R3

Vi1

Vi2

RL

R2

R1

i1

Vo

Method 1:

Large input resistance of Op Amp → i+ = 0, V+ =R4

R3 + R4Vi2 .

Since V+ − V− ≈ 0, i1 =1

R1(Vi1 − V−) ≈

1

R1(Vi1 − V+) .

i− ≈ 0→ Vo = V− − i1 R2 ≈ V+ −R2

R1(Vi1 − V+) .

Substituting for V+ and selecting R3/R4 = R1/R2, we get (show this),

Vo =R2

R1(Vi2 − Vi1) .

The circuit is a “difference amplifier.”

M. B. Patil, IIT Bombay

Page 25: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

AND

Case 2Case 1

R4 R4R4

R3 R3R3

Vi1

Vi2

Vi1

Vi2

RL RL RL

R2 R2R2

R1 R1R1

Vo1 Vo2Vo

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1: Inverting amplifier (note that V+ = 0 V ).

→ Vo1 = −R2

R1Vi1 .

Case 2: Non-inverting amplifier, with Vi =R4

R3 + R4Vi2 .

→ Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 .

The net result is,

Vo = Vo1 + Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 −

R2

R1Vi1 =

R2

R1(Vi2 − Vi1) , if R3/R4 = R1/R2.

M. B. Patil, IIT Bombay

Page 26: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

AND

Case 2Case 1

R4 R4R4

R3 R3R3

Vi1

Vi2

Vi1

Vi2

RL RL RL

R2 R2R2

R1 R1R1

Vo1 Vo2Vo

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1: Inverting amplifier (note that V+ = 0 V ).

→ Vo1 = −R2

R1Vi1 .

Case 2: Non-inverting amplifier, with Vi =R4

R3 + R4Vi2 .

→ Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 .

The net result is,

Vo = Vo1 + Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 −

R2

R1Vi1 =

R2

R1(Vi2 − Vi1) , if R3/R4 = R1/R2.

M. B. Patil, IIT Bombay

Page 27: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

AND

Case 2Case 1

R4 R4R4

R3 R3R3

Vi1

Vi2

Vi1

Vi2

RL RL RL

R2 R2R2

R1 R1R1

Vo1 Vo2Vo

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1: Inverting amplifier (note that V+ = 0 V ).

→ Vo1 = −R2

R1Vi1 .

Case 2: Non-inverting amplifier, with Vi =R4

R3 + R4Vi2 .

→ Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 .

The net result is,

Vo = Vo1 + Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 −

R2

R1Vi1 =

R2

R1(Vi2 − Vi1) , if R3/R4 = R1/R2.

M. B. Patil, IIT Bombay

Page 28: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

AND

Case 2Case 1

R4 R4R4

R3 R3R3

Vi1

Vi2

Vi1

Vi2

RL RL RL

R2 R2R2

R1 R1R1

Vo1 Vo2Vo

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1: Inverting amplifier (note that V+ = 0 V ).

→ Vo1 = −R2

R1Vi1 .

Case 2: Non-inverting amplifier, with Vi =R4

R3 + R4Vi2 .

→ Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 .

The net result is,

Vo = Vo1 + Vo2 =

(1 +

R2

R1

)(R4

R3 + R4

)Vi2 −

R2

R1Vi1 =

R2

R1(Vi2 − Vi1) , if R3/R4 = R1/R2.

M. B. Patil, IIT Bombay

Page 29: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

1 k

1 k

10 k

10 k

1 k 1 k

1 k 1 k

Bridge Difference amplifier

R4

R3 RL

R2

R1

Rc

Rd

Ra

Rb

Vo

VCC

v1

v2

The resistance seen from v2 is (R3 + R4) which is small enough to cause v2 to change.

This is not desirable.

→ need to improve the input resistance of the difference amplifier.

We will discuss an improved difference amplifier later. Before we do that, let us

discuss another problem with the above difference amplifier which can be important

for some applications (next slide).

M. B. Patil, IIT Bombay

Page 30: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

1 k

1 k

10 k

10 k

1 k 1 k

1 k 1 k

Bridge Difference amplifier

R4

R3 RL

R2

R1

Rc

Rd

Ra

Rb

Vo

VCC

v1

v2

The resistance seen from v2 is (R3 + R4) which is small enough to cause v2 to change.

This is not desirable.

→ need to improve the input resistance of the difference amplifier.

We will discuss an improved difference amplifier later. Before we do that, let us

discuss another problem with the above difference amplifier which can be important

for some applications (next slide).

M. B. Patil, IIT Bombay

Page 31: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

1 k

1 k

10 k

10 k

1 k 1 k

1 k 1 k

Bridge Difference amplifier

R4

R3 RL

R2

R1

Rc

Rd

Ra

Rb

Vo

VCC

v1

v2

The resistance seen from v2 is (R3 + R4) which is small enough to cause v2 to change.

This is not desirable.

→ need to improve the input resistance of the difference amplifier.

We will discuss an improved difference amplifier later. Before we do that, let us

discuss another problem with the above difference amplifier which can be important

for some applications (next slide).

M. B. Patil, IIT Bombay

Page 32: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

1 k

1 k

10 k

10 k

1 k 1 k

1 k 1 k

Bridge Difference amplifier

R4

R3 RL

R2

R1

Rc

Rd

Ra

Rb

Vo

VCC

v1

v2

The resistance seen from v2 is (R3 + R4) which is small enough to cause v2 to change.

This is not desirable.

→ need to improve the input resistance of the difference amplifier.

We will discuss an improved difference amplifier later. Before we do that, let us

discuss another problem with the above difference amplifier which can be important

for some applications (next slide).

M. B. Patil, IIT Bombay

Page 33: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 34: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 35: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 36: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 37: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 38: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Difference amplifier

R3 = R1

R4 = R2

RL

R2

R1 vo

vi1

vi2

vi1 = vc − vd/2

vi2 = vc + vd/2

Consider the difference amplifier with R3 = R1 , R4 = R2 → Vo =R2

R1(vi2 − vi1) .

The output voltage depends only on the differential-mode signal (vi2 − vi1),

i.e., Ac (common-mode gain) = 0.

In practice, R3 and R1 may not be exactly equal. Let R3 = R1 + ∆R .

vo =R2

R1 + ∆R + R2

(1 +

R2

R1

)vi2 −

R2

R1vi1

'R2

R1(vd − x vc ) , with x =

∆R

R1 + R2(show this)

|Ac | = xR2

R1 |Ad | =

R2

R1.

However, since vc can be large compared to vd , the effect of Ac cannot be ignored.

M. B. Patil, IIT Bombay

Page 39: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 40: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 41: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 42: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 43: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 44: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 45: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Improved difference amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3

R1

i1Vo

Vo1

Vo2

V+ ≈ V− → VA = Vi1 , VB = Vi2 ,→ i1 =1

R1(Vi1 − Vi2) .

Large input resistance of A1 and A2 ⇒ the current through the two resistors marked R2 is alsoequal to i1.

Vo1 − Vo2 = i1(R1 + 2 R2) =1

R1(Vi1 − Vi2) (R1 + 2 R2) = (Vi1 − Vi2)

(1 +

2 R2

R1

).

Finally, Vo =R4

R3(Vo2 − Vo1) =

R4

R3

(1 +

2 R2

R1

)(Vi2 − Vi1) .

This circuit is known as the “instrumentation amplifier.”

M. B. Patil, IIT Bombay

Page 46: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3R1i1

Vo1

Vo2

Vo

Rc

Rd

Ra

Rb

v1

v2

VCC

The input resistance seen from Vi1 or Vi2 is large (since an Op Amp has a large inputresistance).

→ the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v1 and v2 in the bridge circuit will remain essentially the samewhen the bridge circuit is connected to the instrumentation amplifier.

M. B. Patil, IIT Bombay

Page 47: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3R1i1

Vo1

Vo2

Vo

Rc

Rd

Ra

Rb

v1

v2

VCC

The input resistance seen from Vi1 or Vi2 is large (since an Op Amp has a large inputresistance).

→ the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v1 and v2 in the bridge circuit will remain essentially the samewhen the bridge circuit is connected to the instrumentation amplifier.

M. B. Patil, IIT Bombay

Page 48: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3R1i1

Vo1

Vo2

Vo

Rc

Rd

Ra

Rb

v1

v2

VCC

The input resistance seen from Vi1 or Vi2 is large (since an Op Amp has a large inputresistance).

→ the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v1 and v2 in the bridge circuit will remain essentially the samewhen the bridge circuit is connected to the instrumentation amplifier.

M. B. Patil, IIT Bombay

Page 49: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3R1i1

Vo1

Vo2

Vo

Rc

Rd

Ra

Rb

v1

v2

VCC

The input resistance seen from Vi1 or Vi2 is large (since an Op Amp has a large inputresistance).

→ the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v1 and v2 in the bridge circuit will remain essentially the samewhen the bridge circuit is connected to the instrumentation amplifier.

M. B. Patil, IIT Bombay

Page 50: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

Vi2

Vi1

RL

R4

R2

R2

R3R1i1

Vo1

Vo2

Vo

Rc

Rd

Ra

Rb

v1

v2

VCC

The input resistance seen from Vi1 or Vi2 is large (since an Op Amp has a large inputresistance).

→ the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v1 and v2 in the bridge circuit will remain essentially the samewhen the bridge circuit is connected to the instrumentation amplifier.

M. B. Patil, IIT Bombay

Page 51: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

vi1

vi2

RL

R2

R2’

R4

R1

R3

i1

vo1

vo

vo2

vi1 = vc − vd/2

vi2 = vc + vd/2

As we have seen earlier, vi1 and vi2 can have a large common-mode component (vc ).

What is the effect of vc on the amplifier output vo?

v+ ≈ v− ⇒ vA = vc − vd/2 , vB = vc + vd/2 .

i1 =1

R1(vA − vB ) =

1

R1((vc − vd/2)− (vc + vd/2)) = −

1

R1vd .

vc has simply got cancelled! (And this holds even if R2 and R′2 are not exactly matched.)

→ The instrumentation amplifier is very effective in minimising the effect of the common-modesignal. (Note that component mismatch in the second stage will cause a finite CMRR, but the firststage has effectively amplified only vd while leaving vc unchanged; so the overall CMRR hasimproved.)

M. B. Patil, IIT Bombay

Page 52: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

vi1

vi2

RL

R2

R2’

R4

R1

R3

i1

vo1

vo

vo2

vi1 = vc − vd/2

vi2 = vc + vd/2

As we have seen earlier, vi1 and vi2 can have a large common-mode component (vc ).

What is the effect of vc on the amplifier output vo?

v+ ≈ v− ⇒ vA = vc − vd/2 , vB = vc + vd/2 .

i1 =1

R1(vA − vB ) =

1

R1((vc − vd/2)− (vc + vd/2)) = −

1

R1vd .

vc has simply got cancelled! (And this holds even if R2 and R′2 are not exactly matched.)

→ The instrumentation amplifier is very effective in minimising the effect of the common-modesignal. (Note that component mismatch in the second stage will cause a finite CMRR, but the firststage has effectively amplified only vd while leaving vc unchanged; so the overall CMRR hasimproved.)

M. B. Patil, IIT Bombay

Page 53: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

vi1

vi2

RL

R2

R2’

R4

R1

R3

i1

vo1

vo

vo2

vi1 = vc − vd/2

vi2 = vc + vd/2

As we have seen earlier, vi1 and vi2 can have a large common-mode component (vc ).

What is the effect of vc on the amplifier output vo?

v+ ≈ v− ⇒ vA = vc − vd/2 , vB = vc + vd/2 .

i1 =1

R1(vA − vB ) =

1

R1((vc − vd/2)− (vc + vd/2)) = −

1

R1vd .

vc has simply got cancelled! (And this holds even if R2 and R′2 are not exactly matched.)

→ The instrumentation amplifier is very effective in minimising the effect of the common-modesignal. (Note that component mismatch in the second stage will cause a finite CMRR, but the firststage has effectively amplified only vd while leaving vc unchanged; so the overall CMRR hasimproved.)

M. B. Patil, IIT Bombay

Page 54: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

vi1

vi2

RL

R2

R2’

R4

R1

R3

i1

vo1

vo

vo2

vi1 = vc − vd/2

vi2 = vc + vd/2

As we have seen earlier, vi1 and vi2 can have a large common-mode component (vc ).

What is the effect of vc on the amplifier output vo?

v+ ≈ v− ⇒ vA = vc − vd/2 , vB = vc + vd/2 .

i1 =1

R1(vA − vB ) =

1

R1((vc − vd/2)− (vc + vd/2)) = −

1

R1vd .

vc has simply got cancelled! (And this holds even if R2 and R′2 are not exactly matched.)

→ The instrumentation amplifier is very effective in minimising the effect of the common-modesignal. (Note that component mismatch in the second stage will cause a finite CMRR, but the firststage has effectively amplified only vd while leaving vc unchanged; so the overall CMRR hasimproved.)

M. B. Patil, IIT Bombay

Page 55: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Instrumentation amplifier

A1

A2

A3A

B

R4

R3

vi1

vi2

RL

R2

R2’

R4

R1

R3

i1

vo1

vo

vo2

vi1 = vc − vd/2

vi2 = vc + vd/2

As we have seen earlier, vi1 and vi2 can have a large common-mode component (vc ).

What is the effect of vc on the amplifier output vo?

v+ ≈ v− ⇒ vA = vc − vd/2 , vB = vc + vd/2 .

i1 =1

R1(vA − vB ) =

1

R1((vc − vd/2)− (vc + vd/2)) = −

1

R1vd .

vc has simply got cancelled! (And this holds even if R2 and R′2 are not exactly matched.)

→ The instrumentation amplifier is very effective in minimising the effect of the common-modesignal. (Note that component mismatch in the second stage will cause a finite CMRR, but the firststage has effectively amplified only vd while leaving vc unchanged; so the overall CMRR hasimproved.)

M. B. Patil, IIT Bombay

Page 56: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convertthis current into a voltage for further processing.

Current-to-voltage conversion can be achieved by simply passing the current through aresistor: Vo1 = Is R .

Is R Vo1

amplifier

Vi

AV Vi

Ro

Ri

Vo2

However, this simple approach will not work if the next stage in the circuit (such as anamplifier) has a finite Ri , since it will modify Vo1 to Vo1 = Is (Ri ‖ R) , which is notdesirable.

M. B. Patil, IIT Bombay

Page 57: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convertthis current into a voltage for further processing.

Current-to-voltage conversion can be achieved by simply passing the current through aresistor: Vo1 = Is R .

Is R Vo1

amplifier

Vi

AV Vi

Ro

Ri

Vo2

However, this simple approach will not work if the next stage in the circuit (such as anamplifier) has a finite Ri , since it will modify Vo1 to Vo1 = Is (Ri ‖ R) , which is notdesirable.

M. B. Patil, IIT Bombay

Page 58: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convertthis current into a voltage for further processing.

Current-to-voltage conversion can be achieved by simply passing the current through aresistor: Vo1 = Is R .

Is R Vo1

amplifier

Vi

AV Vi

Ro

Ri

Vo2

However, this simple approach will not work if the next stage in the circuit (such as anamplifier) has a finite Ri , since it will modify Vo1 to Vo1 = Is (Ri ‖ R) , which is notdesirable.

M. B. Patil, IIT Bombay

Page 59: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 60: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 61: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 62: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 63: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 64: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Current-to-voltage conversion

i−

RL

R

IsVo

Vbias (negative)

RL

R

VoIs

V− ≈ V+, and i− ≈ 0⇒ Vo = V− − Is R = −Is R .

The output voltage is proportional to the source current, irrespective of the value

of RL, i.e., irrespective of the next stage.

Example: a photocurrent detector.

Vo = Is R . The diode is under a reverse bias, with Vn = 0V and Vp = Vbias .

M. B. Patil, IIT Bombay

Page 65: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i−

Vc

Vi

RL

C

R

i1

Vo

V− ≈ V+ = 0V → i1 = Vi/R .

Since i− ≈ 0 , the current through the capacitor is i1 .

⇒ CdVc

dt= i1 =

Vi

R.

Vc = V− − Vo = 0− Vo = −Vo → C

(−dVo

dt

)=

Vi

R

Vo = − 1

RC

∫Vi dt

The circuit works as an integrator.

M. B. Patil, IIT Bombay

Page 66: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i−

Vc

Vi

RL

C

R

i1

Vo

V− ≈ V+ = 0V → i1 = Vi/R .

Since i− ≈ 0 , the current through the capacitor is i1 .

⇒ CdVc

dt= i1 =

Vi

R.

Vc = V− − Vo = 0− Vo = −Vo → C

(−dVo

dt

)=

Vi

R

Vo = − 1

RC

∫Vi dt

The circuit works as an integrator.

M. B. Patil, IIT Bombay

Page 67: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i−

Vc

Vi

RL

C

R

i1

Vo

V− ≈ V+ = 0V → i1 = Vi/R .

Since i− ≈ 0 , the current through the capacitor is i1 .

⇒ CdVc

dt= i1 =

Vi

R.

Vc = V− − Vo = 0− Vo = −Vo → C

(−dVo

dt

)=

Vi

R

Vo = − 1

RC

∫Vi dt

The circuit works as an integrator.

M. B. Patil, IIT Bombay

Page 68: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i−

Vc

Vi

RL

C

R

i1

Vo

V− ≈ V+ = 0V → i1 = Vi/R .

Since i− ≈ 0 , the current through the capacitor is i1 .

⇒ CdVc

dt= i1 =

Vi

R.

Vc = V− − Vo = 0− Vo = −Vo → C

(−dVo

dt

)=

Vi

R

Vo = − 1

RC

∫Vi dt

The circuit works as an integrator.

M. B. Patil, IIT Bombay

Page 69: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Op Amp circuits (linear region)

i−

Vc

Vi

RL

C

R

i1

Vo

V− ≈ V+ = 0V → i1 = Vi/R .

Since i− ≈ 0 , the current through the capacitor is i1 .

⇒ CdVc

dt= i1 =

Vi

R.

Vc = V− − Vo = 0− Vo = −Vo → C

(−dVo

dt

)=

Vi

R

Vo = − 1

RC

∫Vi dt

The circuit works as an integrator.

M. B. Patil, IIT Bombay

Page 70: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Integrator

Vi

RL

C

R

Vo

R = 1 kΩ , C = 0.2µF

Vo = − 1

RC

∫Vi dt

6

3

0

−3

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

6

3

0

−3

−6

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

SEQUEL files: ee101 integrator 1.sqproj, ee101 integrator 2.sqproj

M. B. Patil, IIT Bombay

Page 71: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Integrator

Vi

RL

C

R

Vo

R = 1 kΩ , C = 0.2µF

Vo = − 1

RC

∫Vi dt

6

3

0

−3

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

6

3

0

−3

−6

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

SEQUEL files: ee101 integrator 1.sqproj, ee101 integrator 2.sqproj

M. B. Patil, IIT Bombay

Page 72: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Integrator

Vi

RL

C

R

Vo

R = 1 kΩ , C = 0.2µF

Vo = − 1

RC

∫Vi dt

6

3

0

−3

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

6

3

0

−3

−6

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

SEQUEL files: ee101 integrator 1.sqproj, ee101 integrator 2.sqproj

M. B. Patil, IIT Bombay

Page 73: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Integrator

Vi

RL

C

R

Vo

R = 1 kΩ , C = 0.2µF

Vo = − 1

RC

∫Vi dt

6

3

0

−3

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

6

3

0

−3

−6

0t (msec)

0.5 1 1.5 2 2.5

Vi

Vo

SEQUEL files: ee101 integrator 1.sqproj, ee101 integrator 2.sqproj

M. B. Patil, IIT Bombay

Page 74: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 75: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 76: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 77: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 78: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 79: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Offset voltage

−4 −3 −2 −1 0 1 2 3 4

Vi Vo

Vi (mV)

Ideal Op Amp

Real Op Amp

−4 −3 −2 −1 0 1 2 3 4

Vsat

−Vsat

Vi (mV)

VoVOS

For the real Op Amp, Vo = AV ((V+ + VOS )− V−) .

For Vo = 0V , V+ + VOS − V− = 0→ V+ − V− = −VOS .

Vo versus Vi curve gets shifted.

741: −6 mV < VOS < 6 mV .

OP-77: −50µV < VOS < 50µV .

M. B. Patil, IIT Bombay

Page 80: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

1 k IdealReal

10 k 10 k

1 k

RL RL

R2

R2

R1 R1Vi Vi

Vo Vo

VOS

By superposition, Vo = −R2

R1Vi + VOS

(1 +

R2

R1

).

For VOS = 2 mV , the contribution from VOS to Vo is 22 mV ,

i.e., a DC shift of 22 mV .

M. B. Patil, IIT Bombay

Page 81: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

1 k IdealReal

10 k 10 k

1 k

RL RL

R2

R2

R1 R1Vi Vi

Vo Vo

VOS

By superposition, Vo = −R2

R1Vi + VOS

(1 +

R2

R1

).

For VOS = 2 mV , the contribution from VOS to Vo is 22 mV ,

i.e., a DC shift of 22 mV .

M. B. Patil, IIT Bombay

Page 82: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

1 k IdealReal

10 k 10 k

1 k

RL RL

R2

R2

R1 R1Vi Vi

Vo Vo

VOS

By superposition, Vo = −R2

R1Vi + VOS

(1 +

R2

R1

).

For VOS = 2 mV , the contribution from VOS to Vo is 22 mV ,

i.e., a DC shift of 22 mV .

M. B. Patil, IIT Bombay

Page 83: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

1 k IdealReal

10 k 10 k

1 k

RL RL

R2

R2

R1 R1Vi Vi

Vo Vo

VOS

By superposition, Vo = −R2

R1Vi + VOS

(1 +

R2

R1

).

For VOS = 2 mV , the contribution from VOS to Vo is 22 mV ,

i.e., a DC shift of 22 mV .

M. B. Patil, IIT Bombay

Page 84: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

IdealReal

Vc Vc

RL RL

C C

R R

i1 i1

Vi Vi

Vo Vo

VOS

V− ≈ V+ = VOS → i1 =1

R(Vi − VOS ) = C

dVc

dt.

i.e., Vc =1

RC

∫(Vi − VOS ) dt .

Even with Vi = 0V , Vc will keep rising or falling (depending on the sign of VOS ).

Eventually, the Op Amp will be driven into saturation.

→ need to address this issue!

M. B. Patil, IIT Bombay

Page 85: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

IdealReal

Vc Vc

RL RL

C C

R R

i1 i1

Vi Vi

Vo Vo

VOS

V− ≈ V+ = VOS → i1 =1

R(Vi − VOS ) = C

dVc

dt.

i.e., Vc =1

RC

∫(Vi − VOS ) dt .

Even with Vi = 0V , Vc will keep rising or falling (depending on the sign of VOS ).

Eventually, the Op Amp will be driven into saturation.

→ need to address this issue!

M. B. Patil, IIT Bombay

Page 86: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

IdealReal

Vc Vc

RL RL

C C

R R

i1 i1

Vi Vi

Vo Vo

VOS

V− ≈ V+ = VOS → i1 =1

R(Vi − VOS ) = C

dVc

dt.

i.e., Vc =1

RC

∫(Vi − VOS ) dt .

Even with Vi = 0V , Vc will keep rising or falling (depending on the sign of VOS ).

Eventually, the Op Amp will be driven into saturation.

→ need to address this issue!

M. B. Patil, IIT Bombay

Page 87: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

IdealReal

Vc Vc

RL RL

C C

R R

i1 i1

Vi Vi

Vo Vo

VOS

V− ≈ V+ = VOS → i1 =1

R(Vi − VOS ) = C

dVc

dt.

i.e., Vc =1

RC

∫(Vi − VOS ) dt .

Even with Vi = 0V , Vc will keep rising or falling (depending on the sign of VOS ).

Eventually, the Op Amp will be driven into saturation.

→ need to address this issue!

M. B. Patil, IIT Bombay

Page 88: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

IdealReal

Vc Vc

RL RL

C C

R R

i1 i1

Vi Vi

Vo Vo

VOS

V− ≈ V+ = VOS → i1 =1

R(Vi − VOS ) = C

dVc

dt.

i.e., Vc =1

RC

∫(Vi − VOS ) dt .

Even with Vi = 0V , Vc will keep rising or falling (depending on the sign of VOS ).

Eventually, the Op Amp will be driven into saturation.

→ need to address this issue!

M. B. Patil, IIT Bombay

Page 89: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 90: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 91: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 92: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 93: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 94: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of VOS

Integrator with Vi = 0 V :

(a) (b)

Vc Vc

RL RL

C CR’

R R

i1 i1

Vo Vo

VOS VOS

(a) i1 =VOS

R= −C

dVc

dt

Vc = −1

RC

∫VOS dt → Op Amp saturates.

(b) There is a DC path for the current.

→ Vo =

(1 +

R′

R

)VOS .

R′ should be small enough to have a negligible effect on Vo .

However, R′ must be large enough to ensure that the circuit still functions as an integrator.

→ R′ 1/ωC at the frequency of interest.

M. B. Patil, IIT Bombay

Page 95: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Input bias currents

Q2Q1

Q3 Q4

Q5 Q6

Q7

Q8

R1 R2R3

741

−+

I+B I−B

Ideal Op Amp

Real Op Amp

Vo

I+B

I−B

I+B

I−B

0.8 mV25 pA411 FET input50 pA

80 nA 20 nA 1 mV741 BJT input

Op Amp

BJT inputOP77 1.2 nA 0.3 nA

IB IOS VOS

10µV

I+B and I−B are generally not exactly equal.

|I+B − I−B | : “offset current” (IOS )

(I+B + I−B )/2 : “bias current” (IB ).

M. B. Patil, IIT Bombay

Page 96: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Input bias currents

Q2Q1

Q3 Q4

Q5 Q6

Q7

Q8

R1 R2R3

741

−+

I+B I−B

Ideal Op Amp

Real Op Amp

Vo

I+B

I−B

I+B

I−B

0.8 mV25 pA411 FET input50 pA

80 nA 20 nA 1 mV741 BJT input

Op Amp

BJT inputOP77 1.2 nA 0.3 nA

IB IOS VOS

10µV

I+B and I−B are generally not exactly equal.

|I+B − I−B | : “offset current” (IOS )

(I+B + I−B )/2 : “bias current” (IB ).

M. B. Patil, IIT Bombay

Page 97: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Input bias currents

Q2Q1

Q3 Q4

Q5 Q6

Q7

Q8

R1 R2R3

741

−+

I+B I−B

Ideal Op Amp

Real Op Amp

Vo

I+B

I−B

I+B

I−B

0.8 mV25 pA411 FET input50 pA

80 nA 20 nA 1 mV741 BJT input

Op Amp

BJT inputOP77 1.2 nA 0.3 nA

IB IOS VOS

10µV

I+B and I−B are generally not exactly equal.

|I+B − I−B | : “offset current” (IOS )

(I+B + I−B )/2 : “bias current” (IB ).

M. B. Patil, IIT Bombay

Page 98: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Input bias currents

Q2Q1

Q3 Q4

Q5 Q6

Q7

Q8

R1 R2R3

741

−+

I+B I−B

Ideal Op Amp

Real Op Amp

Vo

I+B

I−B

I+B

I−B

0.8 mV25 pA411 FET input50 pA

80 nA 20 nA 1 mV741 BJT input

Op Amp

BJT inputOP77 1.2 nA 0.3 nA

IB IOS VOS

10µV

I+B and I−B are generally not exactly equal.

|I+B − I−B | : “offset current” (IOS )

(I+B + I−B )/2 : “bias current” (IB ).

M. B. Patil, IIT Bombay

Page 99: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Inverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

I+B

VoVi

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = 0 V → i1 = Vi/R1 .

i2 = i1 − I−B → Vo = V− − i2 R2 = 0−(

Vi

R1− I−B

)R2 = −

R2

R1Vi + I−B R2 ,

i.e., the bias current causes a DC shift in Vo .

For I−B = 80 nA, R2 = 10 k, ∆Vo = 0.8 mV .

M. B. Patil, IIT Bombay

Page 100: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Inverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

I+B

VoVi

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = 0 V → i1 = Vi/R1 .

i2 = i1 − I−B → Vo = V− − i2 R2 = 0−(

Vi

R1− I−B

)R2 = −

R2

R1Vi + I−B R2 ,

i.e., the bias current causes a DC shift in Vo .

For I−B = 80 nA, R2 = 10 k, ∆Vo = 0.8 mV .

M. B. Patil, IIT Bombay

Page 101: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Inverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

I+B

VoVi

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = 0 V → i1 = Vi/R1 .

i2 = i1 − I−B → Vo = V− − i2 R2 = 0−(

Vi

R1− I−B

)R2 = −

R2

R1Vi + I−B R2 ,

i.e., the bias current causes a DC shift in Vo .

For I−B = 80 nA, R2 = 10 k, ∆Vo = 0.8 mV .

M. B. Patil, IIT Bombay

Page 102: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Inverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

I+B

VoVi

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = 0 V → i1 = Vi/R1 .

i2 = i1 − I−B → Vo = V− − i2 R2 = 0−(

Vi

R1− I−B

)R2 = −

R2

R1Vi + I−B R2 ,

i.e., the bias current causes a DC shift in Vo .

For I−B = 80 nA, R2 = 10 k, ∆Vo = 0.8 mV .

M. B. Patil, IIT Bombay

Page 103: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Inverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

I+B

VoVi

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = 0 V → i1 = Vi/R1 .

i2 = i1 − I−B → Vo = V− − i2 R2 = 0−(

Vi

R1− I−B

)R2 = −

R2

R1Vi + I−B R2 ,

i.e., the bias current causes a DC shift in Vo .

For I−B = 80 nA, R2 = 10 k, ∆Vo = 0.8 mV .

M. B. Patil, IIT Bombay

Page 104: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Non-nverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

Vo

Vi

I+B

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = Vi → i1 = −Vi/R1 .

i2 = i1 − I−B = −Vi

R1− I−B .

Vo = Vi − i2 R2 = Vi −(−

Vi

R1− I−B

)R2 = Vi

(1 +

R2

R1

)+ I−B R2 .

→ Again, a DC shift ∆Vo .

M. B. Patil, IIT Bombay

Page 105: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Non-nverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

Vo

Vi

I+B

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = Vi → i1 = −Vi/R1 .

i2 = i1 − I−B = −Vi

R1− I−B .

Vo = Vi − i2 R2 = Vi −(−

Vi

R1− I−B

)R2 = Vi

(1 +

R2

R1

)+ I−B R2 .

→ Again, a DC shift ∆Vo .

M. B. Patil, IIT Bombay

Page 106: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Non-nverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

Vo

Vi

I+B

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = Vi → i1 = −Vi/R1 .

i2 = i1 − I−B = −Vi

R1− I−B .

Vo = Vi − i2 R2 = Vi −(−

Vi

R1− I−B

)R2 = Vi

(1 +

R2

R1

)+ I−B R2 .

→ Again, a DC shift ∆Vo .

M. B. Patil, IIT Bombay

Page 107: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Non-nverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

Vo

Vi

I+B

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = Vi → i1 = −Vi/R1 .

i2 = i1 − I−B = −Vi

R1− I−B .

Vo = Vi − i2 R2 = Vi −(−

Vi

R1− I−B

)R2 = Vi

(1 +

R2

R1

)+ I−B R2 .

→ Again, a DC shift ∆Vo .

M. B. Patil, IIT Bombay

Page 108: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Non-nverting amplifier:

RealIdeal

RL

R2

R1

i2

i1

I−B

Vo

Vi

I+B

Assume that the Op Amp is ideal in other respects (i.e., VOS = 0 V , etc.).

V− ≈ V+ = Vi → i1 = −Vi/R1 .

i2 = i1 − I−B = −Vi

R1− I−B .

Vo = Vi − i2 R2 = Vi −(−

Vi

R1− I−B

)R2 = Vi

(1 +

R2

R1

)+ I−B R2 .

→ Again, a DC shift ∆Vo .

M. B. Patil, IIT Bombay

Page 109: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Integrator:

RealIdeal

Vc

RL

i1

R

i2 C

I−B

I+B

VoVi

R’

Even with Vi = 0 V , Vc =1

C

∫−I−B dt will drive the Op Amp into saturation.

Connecting R′ across C provides a DC path for the current, and results in a DC shift∆Vo = I−B R′ at the output.

As we have discussed earlier, R′ should be small enough to have a negligible effect on Vo .However, R′ must be large enough to ensure that the circuit still functions as an integrator.

M. B. Patil, IIT Bombay

Page 110: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Integrator:

RealIdeal

Vc

RL

i1

R

i2 C

I−B

I+B

VoVi

R’

Even with Vi = 0 V , Vc =1

C

∫−I−B dt will drive the Op Amp into saturation.

Connecting R′ across C provides a DC path for the current, and results in a DC shift∆Vo = I−B R′ at the output.

As we have discussed earlier, R′ should be small enough to have a negligible effect on Vo .However, R′ must be large enough to ensure that the circuit still functions as an integrator.

M. B. Patil, IIT Bombay

Page 111: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Integrator:

RealIdeal

Vc

RL

i1

R

i2 C

I−B

I+B

VoVi

R’

Even with Vi = 0 V , Vc =1

C

∫−I−B dt will drive the Op Amp into saturation.

Connecting R′ across C provides a DC path for the current, and results in a DC shift∆Vo = I−B R′ at the output.

As we have discussed earlier, R′ should be small enough to have a negligible effect on Vo .However, R′ must be large enough to ensure that the circuit still functions as an integrator.

M. B. Patil, IIT Bombay

Page 112: EE101: Op Amp circuits (Part 2) › ~sequel › ee101 › ee101_opamp_2.pdf · 2016-08-25 · Common-mode and di erential-mode voltages Amplifier R c R d R a R b V CC V o v 1 v 2

Effect of bias currents

Integrator:

RealIdeal

Vc

RL

i1

R

i2 C

I−B

I+B

VoVi

R’

Even with Vi = 0 V , Vc =1

C

∫−I−B dt will drive the Op Amp into saturation.

Connecting R′ across C provides a DC path for the current, and results in a DC shift∆Vo = I−B R′ at the output.

As we have discussed earlier, R′ should be small enough to have a negligible effect on Vo .However, R′ must be large enough to ensure that the circuit still functions as an integrator.

M. B. Patil, IIT Bombay