ee 536a _ jie_wang

40
Operational Transconductance Amplifier (OTA) in 45nm CMOS Jie Wang Ming Hsieh Department of Electrical Engineering University of Southern California, Los Angeles, CA 90089 December 3, 2014

Upload: jie-wang

Post on 16-Jul-2015

39 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE 536a _ Jie_Wang

Operational Transconductance Amplifier (OTA) in 45nm CMOS

Jie Wang

Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089

December 3, 2014

Page 2: EE 536a _ Jie_Wang

2

Your Name EE 536a Final Project Presentation December 3, 2014

Statement of the problem: High Performance OTA

Main challenges:

Large Range of Vin,

100GHz 𝑓𝑢5000V/us Slew Rate

General approach:

Two Amplifiers + MUX

Pole Cancelling

Large Current, Smaller Cc

Introduction

Page 3: EE 536a _ Jie_Wang

3

Your Name EE 536a Final Project Presentation December 3, 2014

Block Diagram

Page 4: EE 536a _ Jie_Wang

4

Your Name EE 536a Final Project Presentation December 3, 2014

Step1: Fix current

Step 2: Fix gain

Step 3: Calculate required 𝑔𝑚

Step 4: Test u𝐶𝑜𝑥

Find 𝑊

𝐿

General Design Strategy

gm= 2𝑢𝐶𝑜𝑥𝑊

𝐿𝐼𝑑

𝑟𝑜 =1

𝜆𝐼𝑑

Gain = gm(𝑟𝑜𝑝//𝑟𝑜𝑛)

Page 5: EE 536a _ Jie_Wang

5

Your Name EE 536a Final Project Presentation December 3, 2014

How to Find u𝐶𝑜𝑥

Betaeff =u𝐶𝑜𝑥𝑊

𝐿

Page 6: EE 536a _ Jie_Wang

6

Your Name EE 536a Final Project Presentation December 3, 2014

NMOS Based Input Stage Amplifier

𝑝1 ≈1

𝑔𝑚2𝐶𝑐𝑅1𝑅2

𝑝2 ≈𝑔𝑚2𝐶𝐶𝐶𝐶𝐶2

=𝑔𝑚2

𝐶2

𝐴𝐷𝐶 = 𝑔𝑚1𝑔𝑚2𝑅1𝑅2

𝑧 =1

𝐶𝑐(1

𝑔𝑚2− 𝑅𝑧)

𝑓𝑢 =𝑔𝑚1

𝐶𝐶𝑉𝑜𝑢𝑡𝑡

=𝐼

𝐶𝐶

Page 7: EE 536a _ Jie_Wang

7

Your Name EE 536a Final Project Presentation December 3, 2014

NMOS Based Input Stage Amplifier[1]

First Stage Gain:

𝑔𝑚7(𝑟𝑜7//𝑟𝑜41)

Second Stage Gain:

𝑔𝑚43(𝑟𝑜43//𝑟𝑜42)

gm= 2𝑢𝐶𝑜𝑥𝑊

𝐿𝐼𝑑

𝑟𝑜 =1

𝜆𝐼𝑑

Page 8: EE 536a _ Jie_Wang

8

Your Name EE 536a Final Project Presentation December 3, 2014

First Stage Performance

I=110uA

Gain= 30dB

𝑟𝑜𝑛//𝑟𝑜𝑝= 26.67K Ω

gm=1.2mΩ−1

𝑢𝑛𝐶𝑜𝑥 = 500u

𝑊

𝐿= 12

Page 9: EE 536a _ Jie_Wang

9

Your Name EE 536a Final Project Presentation December 3, 2014

Second Stage Performance

𝐼𝑑= 8mA,

Gain= 30dB

𝑟𝑜𝑛//𝑟𝑜𝑝 =417.7Ω

𝑔𝑚𝑝 = 75m Ω−1

𝑢𝑝𝐶𝑜𝑥 = 15u

𝑊

𝐿= 24580

Page 10: EE 536a _ Jie_Wang

10

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

When Input at 800mV

Page 11: EE 536a _ Jie_Wang

11

Your Name EE 536a Final Project Presentation December 3, 2014

PMOS Based Input Stage Amplifier

Page 12: EE 536a _ Jie_Wang

12

Your Name EE 536a Final Project Presentation December 3, 2014

First Stage Performance

Page 13: EE 536a _ Jie_Wang

13

Your Name EE 536a Final Project Presentation December 3, 2014

Second Stage Performance

Page 14: EE 536a _ Jie_Wang

14

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

Page 15: EE 536a _ Jie_Wang

15

Your Name EE 536a Final Project Presentation December 3, 2014

MUX

Vin as a select signal

Page 16: EE 536a _ Jie_Wang

16

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

Almost the same as before

Page 17: EE 536a _ Jie_Wang

17

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference Motivation

Generate Vgs for NMOS

carrying tail current

Page 18: EE 536a _ Jie_Wang

18

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference[2]

𝑉𝐺𝑆 𝑇 ≈ 𝑉𝐺𝑆 𝑇0 + [𝐾𝑇 + 𝑉𝐺𝑆 𝑇0 − 𝑉𝑇𝐻 𝑇0 − 𝑉𝑂𝐹𝐹](𝑇

𝑇0− 1)

𝑉𝐺𝑆0 − 𝑉𝐺𝑆1 = 𝑛𝑉𝑡𝑙𝑛𝑁

𝑉𝑟𝑒𝑓 =

𝑉𝐺𝑆0 + 𝑉𝑅1 + 𝑉𝑅3 =𝑉𝐺𝑆 𝑇0

+ 𝐾𝑇 + 𝑉𝐺𝑆 𝑇0 − 𝑉𝑇𝐻 𝑇0 − 𝑉𝑂𝐹𝐹𝑇

𝑇0− 1

+𝑅1 + 𝑅3𝑅0

𝑛𝑉𝑡𝑙𝑛𝑁

Page 19: EE 536a _ Jie_Wang

19

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference

Name After Tuning 𝑊

𝐿 M0

5

𝑊

𝐿 M1

11.5

𝑊

𝐿 M3,4

0.8

𝑊

𝐿 M5,6

8

𝑊

𝐿 M7

32

𝑅0 30kΩ

𝑅1 150kΩ

𝑅2 50kΩ 𝑅3 100kΩ

𝑅4 100kΩ

Page 20: EE 536a _ Jie_Wang

20

Your Name EE 536a Final Project Presentation December 3, 2014

Vref

Add a voltage dividor to

get desired votlage

reference

Page 21: EE 536a _ Jie_Wang

21

Your Name EE 536a Final Project Presentation December 3, 2014

OTA Schematic

Page 22: EE 536a _ Jie_Wang

22

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Small-Signal Response

𝐴

1 + 𝐴≈ 1

3dB BW increase from 6KHz to 26MHz

A = 74dB = 5000

Input at 800mV

Page 23: EE 536a _ Jie_Wang

23

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Small-Signal Transient

Page 24: EE 536a _ Jie_Wang

24

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Large-Signal Transient

Page 25: EE 536a _ Jie_Wang

25

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Input-Referred Voltage Noise

Corner frequency

100 Hz

Vn,in=𝐾

𝐶𝑜𝑥𝑊𝐿𝑓=0.013

𝑓1𝑓

=3𝑔𝑚𝐾

8𝑘𝑇𝑊𝐿𝐶𝑜𝑥=141.65KHz

Page 26: EE 536a _ Jie_Wang

26

Your Name EE 536a Final Project Presentation December 3, 2014

CMRR

80dB at 1Hz

38dB at 10MHz

Page 27: EE 536a _ Jie_Wang

27

Your Name EE 536a Final Project Presentation December 3, 2014

PSRR

67dB at 1 Hz

32 dB at 10MHz

Page 28: EE 536a _ Jie_Wang

28

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

0.9V -20𝑜 @200mV of Input

Gain: 68dB

PM:680

Page 29: EE 536a _ Jie_Wang

29

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

0.9V +20𝑜 @200mV of Input

Gain: 64dB

PM:760

Page 30: EE 536a _ Jie_Wang

30

Your Name EE 536a Final Project Presentation December 3, 2014

0.9V 85𝑜 @200mV of Input

Gain: 61dB

PM:800

T goes up

Gain goes

down

Open-Loop Small-Signal Response at Corners

Page 31: EE 536a _ Jie_Wang

31

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V -20𝑜 @200mV of Input

Gain: 74dB

PM:670

Page 32: EE 536a _ Jie_Wang

32

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V 20𝑜 @200mV of Input

Gain: 66dB

PM:700

Page 33: EE 536a _ Jie_Wang

33

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V 85𝑜 @200mV of Input

Gain: 64dB

PM:710

Page 34: EE 536a _ Jie_Wang

34

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V -20𝑜 @200mV of Input

Gain: 64dB

PM:700

Page 35: EE 536a _ Jie_Wang

35

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V 20𝑜 @200mV of Input

Gain: 61dB

PM:770

Page 36: EE 536a _ Jie_Wang

36

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V 85𝑜 @200mV of Input

Gain: 55 dB

PM:820

Page 37: EE 536a _ Jie_Wang

37

Your Name EE 536a Final Project Presentation December 3, 2014

Large-Signal Output Spectrum

Output swing:0.7V

Page 38: EE 536a _ Jie_Wang

38

Your Name EE 536a Final Project Presentation December 3, 2014

Performance Summary

*exception for input at 400mV-500mV

Name Target Analytical Estimation Simulated Result

Avd ≥60dB 60dB *≥60dB Best:75dB

fu ≥100GHz 300MHz 20MHz

SR ≥5000V/US 62.5V/us ~13000V/s

ts ≤50ps 10000ps 81.63n

Vn,in ≤1nV/sqrt(Hz) 0.013 0.14nV/sqrt(Hz)

f1/f ≤10KHz 141.65KHz 100Hz

THD 0.001% 0 0

CMRR ≥80dB at DC

≥60dB at 10MHz

≥80dB at DC

≥60dB at 10MHz

80dB at DC

40dB at 10MHz

PSRR ≥60dB at DC

≥40dB at 10MHz

≥60dB at DC

≥40dB at 10MHz

67dB at DC

32dB at 10MHz

Vdd 1V 1V 1V

Vin,rr ≥0.9V ≥0.9V ≥0.9V

Vin,CM 0.1-0.9V 0.1-0.9 0.1-0.9

Vout,rr ≥0.9V ≥0.9V 0.7V

IDC ≤25mA ≤25mA ≤25mA

CL 100fF 100fF 100fF

PM ≥60o 60o *≥60o Best 80o

GM ≥10dB ≥10dB ≥20dB

Page 39: EE 536a _ Jie_Wang

39

Your Name EE 536a Final Project Presentation December 3, 2014

Highlights of the design:

Mixed Signal Design

Improvement suggestions:

Increase current to increase the Slew Rate.

Pole cancellation to Increase unity-gain cut-off frequency

Lessons learned

Start the project early

Conclusions

Page 40: EE 536a _ Jie_Wang

40

Your Name EE 536a Final Project Presentation December 3, 2014

[1] K.T. Hafeez. ‘’Design of Two Stage Operational Amplifier’’, IIT.

Web:

https://www.youtube.com/channel/UCEXcqylc45jam5xa6vvEG7A

[2]H.L. Wang, X.X. Zhang, Y.J. Dai, et al. ‘’A Low-Voltage Low-Power

CMOS Voltage Reference Based on Subthreshold MOSFET’’ Journal of

Semiconductors, Vol.32, No.8, Aug 2011

References