Download - EE 536a _ Jie_Wang

Transcript
Page 1: EE 536a _ Jie_Wang

Operational Transconductance Amplifier (OTA) in 45nm CMOS

Jie Wang

Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089

December 3, 2014

Page 2: EE 536a _ Jie_Wang

2

Your Name EE 536a Final Project Presentation December 3, 2014

Statement of the problem: High Performance OTA

Main challenges:

Large Range of Vin,

100GHz 𝑓𝑒5000V/us Slew Rate

General approach:

Two Amplifiers + MUX

Pole Cancelling

Large Current, Smaller Cc

Introduction

Page 3: EE 536a _ Jie_Wang

3

Your Name EE 536a Final Project Presentation December 3, 2014

Block Diagram

Page 4: EE 536a _ Jie_Wang

4

Your Name EE 536a Final Project Presentation December 3, 2014

Step1: Fix current

Step 2: Fix gain

Step 3: Calculate required π‘”π‘š

Step 4: Test uπΆπ‘œπ‘₯

Find π‘Š

𝐿

General Design Strategy

gm= 2π‘’πΆπ‘œπ‘₯π‘Š

𝐿𝐼𝑑

π‘Ÿπ‘œ =1

πœ†πΌπ‘‘

Gain = gm(π‘Ÿπ‘œπ‘//π‘Ÿπ‘œπ‘›)

Page 5: EE 536a _ Jie_Wang

5

Your Name EE 536a Final Project Presentation December 3, 2014

How to Find uπΆπ‘œπ‘₯

Betaeff =uπΆπ‘œπ‘₯π‘Š

𝐿

Page 6: EE 536a _ Jie_Wang

6

Your Name EE 536a Final Project Presentation December 3, 2014

NMOS Based Input Stage Amplifier

𝑝1 β‰ˆ1

π‘”π‘š2𝐢𝑐𝑅1𝑅2

𝑝2 β‰ˆπ‘”π‘š2𝐢𝐢𝐢𝐢𝐢2

=π‘”π‘š2

𝐢2

𝐴𝐷𝐢 = π‘”π‘š1π‘”π‘š2𝑅1𝑅2

𝑧 =1

𝐢𝑐(1

π‘”π‘š2βˆ’ 𝑅𝑧)

𝑓𝑒 =π‘”π‘š1

πΆπΆπ‘‰π‘œπ‘’π‘‘π‘‘

=𝐼

𝐢𝐢

Page 7: EE 536a _ Jie_Wang

7

Your Name EE 536a Final Project Presentation December 3, 2014

NMOS Based Input Stage Amplifier[1]

First Stage Gain:

π‘”π‘š7(π‘Ÿπ‘œ7//π‘Ÿπ‘œ41)

Second Stage Gain:

π‘”π‘š43(π‘Ÿπ‘œ43//π‘Ÿπ‘œ42)

gm= 2π‘’πΆπ‘œπ‘₯π‘Š

𝐿𝐼𝑑

π‘Ÿπ‘œ =1

πœ†πΌπ‘‘

Page 8: EE 536a _ Jie_Wang

8

Your Name EE 536a Final Project Presentation December 3, 2014

First Stage Performance

I=110uA

Gain= 30dB

π‘Ÿπ‘œπ‘›//π‘Ÿπ‘œπ‘= 26.67K Ξ©

gm=1.2mΞ©βˆ’1

π‘’π‘›πΆπ‘œπ‘₯ = 500u

π‘Š

𝐿= 12

Page 9: EE 536a _ Jie_Wang

9

Your Name EE 536a Final Project Presentation December 3, 2014

Second Stage Performance

𝐼𝑑= 8mA,

Gain= 30dB

π‘Ÿπ‘œπ‘›//π‘Ÿπ‘œπ‘ =417.7Ξ©

π‘”π‘šπ‘ = 75m Ξ©βˆ’1

π‘’π‘πΆπ‘œπ‘₯ = 15u

π‘Š

𝐿= 24580

Page 10: EE 536a _ Jie_Wang

10

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

When Input at 800mV

Page 11: EE 536a _ Jie_Wang

11

Your Name EE 536a Final Project Presentation December 3, 2014

PMOS Based Input Stage Amplifier

Page 12: EE 536a _ Jie_Wang

12

Your Name EE 536a Final Project Presentation December 3, 2014

First Stage Performance

Page 13: EE 536a _ Jie_Wang

13

Your Name EE 536a Final Project Presentation December 3, 2014

Second Stage Performance

Page 14: EE 536a _ Jie_Wang

14

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

Page 15: EE 536a _ Jie_Wang

15

Your Name EE 536a Final Project Presentation December 3, 2014

MUX

Vin as a select signal

Page 16: EE 536a _ Jie_Wang

16

Your Name EE 536a Final Project Presentation December 3, 2014

Overall Performance

Almost the same as before

Page 17: EE 536a _ Jie_Wang

17

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference Motivation

Generate Vgs for NMOS

carrying tail current

Page 18: EE 536a _ Jie_Wang

18

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference[2]

𝑉𝐺𝑆 𝑇 β‰ˆ 𝑉𝐺𝑆 𝑇0 + [𝐾𝑇 + 𝑉𝐺𝑆 𝑇0 βˆ’ 𝑉𝑇𝐻 𝑇0 βˆ’ 𝑉𝑂𝐹𝐹](𝑇

𝑇0βˆ’ 1)

𝑉𝐺𝑆0 βˆ’ 𝑉𝐺𝑆1 = 𝑛𝑉𝑑𝑙𝑛𝑁

π‘‰π‘Ÿπ‘’π‘“ =

𝑉𝐺𝑆0 + 𝑉𝑅1 + 𝑉𝑅3 =𝑉𝐺𝑆 𝑇0

+ 𝐾𝑇 + 𝑉𝐺𝑆 𝑇0 βˆ’ 𝑉𝑇𝐻 𝑇0 βˆ’ 𝑉𝑂𝐹𝐹𝑇

𝑇0βˆ’ 1

+𝑅1 + 𝑅3𝑅0

𝑛𝑉𝑑𝑙𝑛𝑁

Page 19: EE 536a _ Jie_Wang

19

Your Name EE 536a Final Project Presentation December 3, 2014

Band-gap Reference

Name After Tuning π‘Š

𝐿 M0

5

π‘Š

𝐿 M1

11.5

π‘Š

𝐿 M3,4

0.8

π‘Š

𝐿 M5,6

8

π‘Š

𝐿 M7

32

𝑅0 30kΞ©

𝑅1 150kΞ©

𝑅2 50kΞ© 𝑅3 100kΞ©

𝑅4 100kΞ©

Page 20: EE 536a _ Jie_Wang

20

Your Name EE 536a Final Project Presentation December 3, 2014

Vref

Add a voltage dividor to

get desired votlage

reference

Page 21: EE 536a _ Jie_Wang

21

Your Name EE 536a Final Project Presentation December 3, 2014

OTA Schematic

Page 22: EE 536a _ Jie_Wang

22

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Small-Signal Response

𝐴

1 + π΄β‰ˆ 1

3dB BW increase from 6KHz to 26MHz

A = 74dB = 5000

Input at 800mV

Page 23: EE 536a _ Jie_Wang

23

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Small-Signal Transient

Page 24: EE 536a _ Jie_Wang

24

Your Name EE 536a Final Project Presentation December 3, 2014

Unity-Gain Closed-Loop Large-Signal Transient

Page 25: EE 536a _ Jie_Wang

25

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Input-Referred Voltage Noise

Corner frequency

100 Hz

Vn,in=𝐾

πΆπ‘œπ‘₯π‘ŠπΏπ‘“=0.013

𝑓1𝑓

=3π‘”π‘šπΎ

8π‘˜π‘‡π‘ŠπΏπΆπ‘œπ‘₯=141.65KHz

Page 26: EE 536a _ Jie_Wang

26

Your Name EE 536a Final Project Presentation December 3, 2014

CMRR

80dB at 1Hz

38dB at 10MHz

Page 27: EE 536a _ Jie_Wang

27

Your Name EE 536a Final Project Presentation December 3, 2014

PSRR

67dB at 1 Hz

32 dB at 10MHz

Page 28: EE 536a _ Jie_Wang

28

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

0.9V -20π‘œ @200mV of Input

Gain: 68dB

PM:680

Page 29: EE 536a _ Jie_Wang

29

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

0.9V +20π‘œ @200mV of Input

Gain: 64dB

PM:760

Page 30: EE 536a _ Jie_Wang

30

Your Name EE 536a Final Project Presentation December 3, 2014

0.9V 85π‘œ @200mV of Input

Gain: 61dB

PM:800

T goes up

Gain goes

down

Open-Loop Small-Signal Response at Corners

Page 31: EE 536a _ Jie_Wang

31

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V -20π‘œ @200mV of Input

Gain: 74dB

PM:670

Page 32: EE 536a _ Jie_Wang

32

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V 20π‘œ @200mV of Input

Gain: 66dB

PM:700

Page 33: EE 536a _ Jie_Wang

33

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1V 85π‘œ @200mV of Input

Gain: 64dB

PM:710

Page 34: EE 536a _ Jie_Wang

34

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V -20π‘œ @200mV of Input

Gain: 64dB

PM:700

Page 35: EE 536a _ Jie_Wang

35

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V 20π‘œ @200mV of Input

Gain: 61dB

PM:770

Page 36: EE 536a _ Jie_Wang

36

Your Name EE 536a Final Project Presentation December 3, 2014

Open-Loop Small-Signal Response at Corners

1.1V 85π‘œ @200mV of Input

Gain: 55 dB

PM:820

Page 37: EE 536a _ Jie_Wang

37

Your Name EE 536a Final Project Presentation December 3, 2014

Large-Signal Output Spectrum

Output swing:0.7V

Page 38: EE 536a _ Jie_Wang

38

Your Name EE 536a Final Project Presentation December 3, 2014

Performance Summary

*exception for input at 400mV-500mV

Name Target Analytical Estimation Simulated Result

Avd β‰₯60dB 60dB *β‰₯60dB Best:75dB

fu β‰₯100GHz 300MHz 20MHz

SR β‰₯5000V/US 62.5V/us ~13000V/s

ts ≀50ps 10000ps 81.63n

Vn,in ≀1nV/sqrt(Hz) 0.013 0.14nV/sqrt(Hz)

f1/f ≀10KHz 141.65KHz 100Hz

THD 0.001% 0 0

CMRR β‰₯80dB at DC

β‰₯60dB at 10MHz

β‰₯80dB at DC

β‰₯60dB at 10MHz

80dB at DC

40dB at 10MHz

PSRR β‰₯60dB at DC

β‰₯40dB at 10MHz

β‰₯60dB at DC

β‰₯40dB at 10MHz

67dB at DC

32dB at 10MHz

Vdd 1V 1V 1V

Vin,rr β‰₯0.9V β‰₯0.9V β‰₯0.9V

Vin,CM 0.1-0.9V 0.1-0.9 0.1-0.9

Vout,rr β‰₯0.9V β‰₯0.9V 0.7V

IDC ≀25mA ≀25mA ≀25mA

CL 100fF 100fF 100fF

PM β‰₯60o 60o *β‰₯60o Best 80o

GM β‰₯10dB β‰₯10dB β‰₯20dB

Page 39: EE 536a _ Jie_Wang

39

Your Name EE 536a Final Project Presentation December 3, 2014

Highlights of the design:

Mixed Signal Design

Improvement suggestions:

Increase current to increase the Slew Rate.

Pole cancellation to Increase unity-gain cut-off frequency

Lessons learned

Start the project early

Conclusions

Page 40: EE 536a _ Jie_Wang

40

Your Name EE 536a Final Project Presentation December 3, 2014

[1] K.T. Hafeez. β€˜β€™Design of Two Stage Operational Amplifier’’, IIT.

Web:

https://www.youtube.com/channel/UCEXcqylc45jam5xa6vvEG7A

[2]H.L. Wang, X.X. Zhang, Y.J. Dai, et al. β€˜β€™A Low-Voltage Low-Power

CMOS Voltage Reference Based on Subthreshold MOSFET’’ Journal of

Semiconductors, Vol.32, No.8, Aug 2011

References


Top Related