ece305#homework#solutions:week#8#week8hwsolutions_s15.pdf · sε 0 qn a v bi ⎡ ⎣ ⎢ ⎤ ⎦...

6
ECE 305 Spring 2015 ECE305 Spring 2015 1 ECE 305 Homework SOLUTIONS: Week 8 Mark Lundstrom Purdue University 1) The sketch below shows the carrier concentrations in a PN junction at room temperature. Answer the following questions. 1a) Is the diode forward or reverse biased? Explain your answer. Solution: Forward biased because there are excess electrons on the Pside and excess holes on the Nside. 1b) What is the acceptor concentration on the Pside? Solution: N A = 10 16 cm -3 1c) What is the donor concentration on the Nside? Solution: N D = 10 14 cm -3 1d) What is the intrinsic carrier concentration? Solution: n 0 p 0 = n i 2 On the Pside: n 0 p 0 = 10 16 × 10 7 = 10 23 n i = 10 23 = 3.16 × 10 11 cm -3 On the Nside: n 0 p 0 = 10 14 × 10 9 = 10 23 n i = 10 23 = 3.16 × 10 11 cm -3 n i = 3.16 × 10 11 cm -3

Upload: others

Post on 21-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  1  

    ECE  305  Homework  SOLUTIONS:  Week  8    

    Mark  Lundstrom  Purdue  University  

     1) The  sketch  below  shows  the  carrier  concentrations  in  a  PN  junction  at  room  

    temperature.    Answer  the  following  questions.    

       

    1a)    Is  the  diode  forward  or  reverse  biased?    Explain  your  answer.    

    Solution:  Forward  biased  because  there  are  excess  electrons  on  the  P-‐side  and  excess  holes  on  the  N-‐side.    

    1b)    What  is  the  acceptor  concentration  on  the  P-‐side?    

    Solution:     NA = 1016 cm-3  

     1c)    What  is  the  donor  concentration  on  the  N-‐side?    

    Solution:     ND = 1014 cm-3  

     1d)    What  is  the  intrinsic  carrier  concentration?    

    Solution:  

    n0 p0 = ni2    

    On  the  P-‐side:     n0 p0 = 1016 ×107 = 1023     ni = 10

    23 = 3.16×1011 cm-3    

    On  the  N-‐side:     n0 p0 = 1014 ×109 = 1023   ni = 10

    23 = 3.16×1011 cm-3      

    ni = 3.16×10

    11 cm-3  

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  2  

    HW8  solutions  (continued):    1e)    Do  low  level  injection  conditions  apply?    

    Solution:    YES.  On  the  P-‐side:    

    Δn −xp( ) = 1010

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  3  

    HW8  solutions  (continued):    

    2a)     Is  the  diode  forward  or  reverse  biased?    

    Solution:  Forward  biased  because  

    Fn > Fp  .    2b)     What  is  the  value  of  the  applied  bias?    

    Solution:  

    qVA = Fn − Fp  

    VA = +0.5 V  

     2c)     What  is  the  bandgap  of  the  semiconductor?    

    Solution:  Reading  from  the  graph:  

    EC − EV = 1.25 eV  

     2d)     What  is  the  built-‐in  potential  of  the  junction.    

    Solution:  From  the  plot:    

    Vj =Vbi −VA = 0.25 V  

    Since:   VA = +0.5 V  

    Vbi =Vj +VA = 0.75 V  

    Vbi = 0.75 V  

       3) A  silicon  diode  is  asymmetrically  doped  at   N D = 10

    19  cm-‐3  and N A = 1016  cm-‐3.    (Note  

    that  at   N D = 1019 the  semiconductor  is  on  the  edge  of  degeneracy,  but  we  can  assume  

    that  non-‐degenerate  carrier  statistics  are  close  enough  for  this  problem.)    Answer  the  following  questions  assuming  room  temperature.    Assume  that  the  minority  electron  and  hole  lifetimes  are  

    τ n = τ p = 10

    −6  s.    The  lengths  of  the  N  and  P  regions  are  

    L = 500 µm  and   L >> xp ,xn .                  

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  4  

    HW8  Solutions  (continued):    3a)   Find  the  zero-‐bias  depletion  region  capacitance  per  cm2  of  diode  area.    

    Solution:  The  junction  capacitance  per  unit  area  is:  

    CJ =

    Ksε0W VA( )

       

    The  depletion  region  width  for  a  one-‐sided  junction  is:  

    W VA = 0( ) = 2KSε0qNAVbi

    ⎣⎢

    ⎦⎥

    1/2

     

    The  built-‐in  potential  is  

    Vbi =kBTqln NDNA

    ni2

    ⎛⎝⎜

    ⎞⎠⎟  

    Putting  in  numbers,  we  find:  

    Vbi =kBTqln NDNA

    ni2

    ⎛⎝⎜

    ⎞⎠⎟= 0.026 ln 10

    191016

    1020⎛⎝⎜

    ⎞⎠⎟= 0.90  V  

    W VA = 0( ) = 2KSε0qNAVbi

    ⎣⎢

    ⎦⎥

    1/2

    = 2 ×11.8 × 8.854 ×10−14

    1.6 ×10−19 ×1016× 0.90⎡

    ⎣⎢

    ⎦⎥

    1/2

    = 3.43×10−5 cm  

     (Note  that  we  used   ε0  in  F/cm  and   N A  in  cm

    -‐3  so  that  the  result  would  come  out  in  cm  not  in  meters.)  

    CJ 0 =

    Ksε0W VA = 0( )

    = 11.8×8.845×10−14

    2.8×10−5= 3.05×10−8 F/cm2  

    CJ 0 = 3.05×10

    −8 F/cm2  

     3b)   Find  the  depletion  capacitance  at   VA = −5  V  (reverse  biased).    

    Solution:  

    CJ =

    Ksε0W VA( )

    =Ksε0

    W VA = 0( )×

    W VA = 0( )W VA( )

    = CJ 0Vbi

    Vbi −VA=

    CJ 01−VA Vbi

     

     

    CJ =

    3.05×10−8

    1+5 0.9= 1.19×10−8 F/cm2 < CJ 0  

    CJ VA = −5 V( ) = 1.19×10−8 F/cm2  Reverse  bias  decreases  the  junction  capacitance.    

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  5  

    HW8  Solutions  (continued):  3c)   Find  the  depletion  capacitance  at   VA = +0.5V  (forward  biased).    

    Solution:  

    CJ =

    CJ 01−VA Vbi

    = 3.73×10−8

    1− 0.5 0.9= 5.6×10−8 F/cm2 > CJ 0  

    CJ VA = −5 V( ) = 4.58×10−8 F/cm2  Forward  bias  increases  the  junction  capacitance.  

       4) A  silicon  diode  is  asymmetrically  doped  at   N D = 10

    19  cm-‐3  and N A = 1016  cm-‐3.    (Note  

    that  at   N D = 1019 the  semiconductor  is  on  the  edge  of  degeneracy,  but  we  can  assume  

    that  non-‐degenerate  carrier  statistics  are  close  enough  for  this  problem.)    Assume  that  the  minority  electron  and  hole  lifetimes  are  

    τ n = τ p = 10

    −6  s.    The  lengths  of  the  N  and  

    P  regions  are   L = 500 µm  and   L >> xp ,xn .      4a)   Estimate  the  applied  forward  bias  at  which  the  P-‐region  enters  high-‐level  

    injection.    Solution:  

    High  injection  will  occur  first  on  the  lightly  doped  side,  the  P-‐side.    The  maximum  excess  electron  concentration    occurs  at  the  beginning  of  the  P-‐side.    From  the  law  of  the  junction:  

    Δn 0( ) = ni

    2

    N AeqVA kBT −1( )    

    Low  level  injection  means:     Δn 0( )

  • ECE  305     Spring  2015  

    ECE-‐305     Spring  2015  6  

    HW8  Solutions  (continued):    

    4b)   Compute  the  current  density  at  the  onset  of  high-‐injection.    

    Solution:  The  current  density  is  given  by:  

    J = J0 e

    qVA kBT −1( )  From  HW8,  problem  1):     J0 = 9.1×10

    −12 A/cm2  

    J = J0 e

    qVA kBT −1( ) = 9.1×10−12 e0.718/0.026 −1( ) = 9 A/cm2   J = 9 A/cm2  

       5) A  silicon  diode  is  asymmetrically  doped  at   N D = 10

    19  cm-‐3  and N A = 1016  cm-‐3.    (Note  

    that  at   N D = 1019 the  semiconductor  is  on  the  edge  of  degeneracy,  but  we  can  assume  

    that  non-‐degenerate  carrier  statistics  are  close  enough  for  this  problem.)    Answer  the  following  questions  assuming  room  temperature.    Assume  that  the  minority  electron  and  hole  lifetimes  are  

    τ n = τ p = 10

    −6  s.    The  lengths  of  the  N  and  P  regions  are  

    L = 500 µm  and   L >> xp ,xn .    What  is  the  reverse  breakdown  voltage  of  this  diode?    

    Assume  a  critical  field  for  breakdown  of   E cr = 3×105  V/cm.  

     Solution:  

    E 0( ) = 2VbiW

    =2 Vbi +VR( )

    2KSε0qNA

    Vbi +VR( )⎡

    ⎣⎢

    ⎦⎥

    1/2 =2qNA Vbi +VR( )

    KSε0

    ⎣⎢

    ⎦⎥

    1/2

     

    E cr =E 0( ) =

    2qNA Vbi +VR( )KSε0

    ⎣⎢

    ⎦⎥

    1/2

     

    VBR =

    KSε0E cr2

    2qNA−Vbi  

    Vbi =kBTqln NDNA

    ni2

    ⎛⎝⎜

    ⎞⎠⎟= 0.026 ln 10

    191016

    1020⎛⎝⎜

    ⎞⎠⎟= 0.90  

    VBR =

    KSε0E cr2

    2qNA− 0.90 =

    11.8 × 8.854 ×10−14 × 3×105( )22 ×1.6 ×10−19 ×1016

    − 0.90 = 29.4 − 0.90 = 28.5 V  

    VBR = 28.5 V    This  assumes  a  planar  junction.    If  there  is  junction  curvature  at  the  edge  of  the  diode,  the  breakdown  voltage  will  be  lower.