ece 6540, lecture 01

74
Variations ECE 6540, Lecture 01 Introduction and Review of Probability

Upload: others

Post on 28-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 6540, Lecture 01

Variations

ECE 6540, Lecture 01Introduction and Review of Probability

Page 2: ECE 6540, Lecture 01

Estimation Theory: Some Definitions

Page 3: ECE 6540, Lecture 01

Definitions Question: What is a statistic? How do we define it?

3

Page 4: ECE 6540, Lecture 01

Definitions Question: What is a statistic? How do we define it?

Answer: A statistic is any function of sampled data

The function must be independent of the data’s underlying probability distribution

4

Page 5: ECE 6540, Lecture 01

Definitions Examples:

π‘₯π‘₯~𝒩𝒩 0,1 , y~𝒩𝒩 0,2

Are these statistics? π‘₯π‘₯

π‘₯π‘₯ + 𝑦𝑦

π‘₯π‘₯2

π‘₯π‘₯π‘₯π‘₯ βˆ’ 𝑦𝑦ln π‘₯π‘₯ + 2 + 3𝑦𝑦

𝐸𝐸 π‘₯π‘₯

5

Page 6: ECE 6540, Lecture 01

Definitions Examples:

π‘₯π‘₯~𝒩𝒩 0,1 , y~𝒩𝒩 0,2

Are these statistics? π‘₯π‘₯ Yes!

π‘₯π‘₯ + 𝑦𝑦 Yes!

π‘₯π‘₯2 Yes!

π‘₯π‘₯π‘₯π‘₯ βˆ’ 𝑦𝑦ln π‘₯π‘₯ + 2 + 3𝑦𝑦 Yes!

𝐸𝐸 π‘₯π‘₯ No!

6

Page 7: ECE 6540, Lecture 01

Definitions Question: What is an estimator? How do we define it?

7

Page 8: ECE 6540, Lecture 01

Definitions Question: What is an estimator? How do we define it?

Answer: An estimator is a statistic that estimates a specific value

8

Page 9: ECE 6540, Lecture 01

Definitions Examples:

π‘₯π‘₯~𝒩𝒩 0,1 , y~𝒩𝒩 0,1

A familiar statistic12π‘₯π‘₯ + 𝑦𝑦 is an estimator of what?

Is it a good estimator? Why or why not?

9

Page 10: ECE 6540, Lecture 01

Definitions Examples:

π‘₯π‘₯~𝒩𝒩 0,1 , y~𝒩𝒩 0,1

A less familiar statistic23π‘₯π‘₯ + 1

3𝑦𝑦 is an estimator of what?

Is it a good estimator? Why or why not?

10

Page 11: ECE 6540, Lecture 01

Definitions Question: What is an estimation theory? How do we define it?

11

Page 12: ECE 6540, Lecture 01

Definitions Question: What is an estimation theory? How do we define it?

Answer: Estimation theory is the study estimators and their properties.

12

Page 13: ECE 6540, Lecture 01

Definitions Question: What is a [statistical] detector (not to be confused with communications

detector)?

13

Page 14: ECE 6540, Lecture 01

Definitions Question: What is a [statistical] detector (not to be confused with communications

detector)?

Answer: (Warning: definition is a but fuzzy) A detector is a statistic or process

that determines the presence of a signal within noise

A [hypothesis] test is a method for determining what distribution a detector (statistic) belongs to

14

Page 15: ECE 6540, Lecture 01

Definitions Example:

𝑛𝑛~𝒩𝒩 0,1 , π‘₯π‘₯ is any signal

Hypothesis Test Null Hypothesis: y = n

Alternative Hypothesis: y = x + n

What is a good detector?

15

Page 16: ECE 6540, Lecture 01

Definitions Example:

𝑛𝑛~𝒩𝒩 0,1 , π‘₯π‘₯ is any signal

Hypothesis Test Null Hypothesis: y = n

Alternative Hypothesis: y = x + n

What is a good detector? Optimal detector: s = 𝑦𝑦 2

Optimal test: s > πœ†πœ† (threshold πœ†πœ† is determined from a Chi-square distribution)

16

Page 17: ECE 6540, Lecture 01

Definitions Question: What is an detection theory? How do we define it?

17

Page 18: ECE 6540, Lecture 01

Definitions Question: What is an detection theory? How do we define it?

Answer: Detection theory is the study detectors and their properties.

18

Page 19: ECE 6540, Lecture 01

Definitions Question: In engineering, how do we define the β€œbest” or β€œoptimal” of something

(e.g., the best estimator or the best detector)

19

Page 20: ECE 6540, Lecture 01

Definitions Question: In engineering, how do we define the β€œbest” or β€œoptimal” of something

(e.g., the best estimator or the best detector)

Answer: Trick question, β€œbest” and β€œoptimal” is always based on some criteria

that WE define.

20

Page 21: ECE 6540, Lecture 01

Applications

Page 22: ECE 6540, Lecture 01

Definitions Question: What are some applications of estimation theory?

22

Page 23: ECE 6540, Lecture 01

Applications RADAR (Radio Detection And Ranging) / Sonar

Detection: Is there a reflection from an aircraft?

Estimation: How far is the aircraft / what is its precise location?

Related (Waveform Design): Can I design waveforms to make the above easier/harder?

Detection Theory Estimation Theory

Credit: https://en.wikipedia.org/wiki/Radar23

Page 24: ECE 6540, Lecture 01

Applications Communications Detection: Did I receive a message?

Estimation: What is the message?

Related (Coding): Can I design codes to make the above easier/harder?

Credit: http://www.ohlone.edu/instr/speech/longdesc-diagramcommunication.html

24

Page 25: ECE 6540, Lecture 01

Applications It is pervasive in signal processing Estimation theory = applied statistics

Most modern signal processing tools involve statisticsβ€” Array processingβ€” Compressive sensing (most proofs are probability based)β€” Network science (probabilistic graphical models)β€” Optimal filter designβ€” De-noising β€” Tracking (e.g., Kalman filter)β€” Statistical Modelling / Analysis

25

Page 26: ECE 6540, Lecture 01

Applications Two examples: Gaussian Random Variable

β€” What is an optimal estimate for the expected value?

Laplace Random Variableβ€” What is an optimal estimate for the expected value?

26

Page 27: ECE 6540, Lecture 01

Schedule

Page 28: ECE 6540, Lecture 01

Schedule Part 1: Classical Estimation Theory Minimum Mean Square Error Estimators

Minimum Variance Unbiased Estimators

Maximum Likelihood Estimators

Part 2: Bayesian Estimation Theory Maximum a Priori Estimators

Minimax Estimators

Part 3: Detection Theory Neyman-Pearson Tests

Generalized Maximum Likelihood Tests

28

Page 29: ECE 6540, Lecture 01

Schedule Question: What is the difference between classical and Bayesian statistics? Why are these differences important?

29

Page 30: ECE 6540, Lecture 01

Schedule Quick warning! In the first few classes, I am going to throw a lot of information at you

(some of which you may know, some of which you may not)

I do not expect you to retain everything 100%. My goal is to expose you to these concepts and make you more comfortable about the concepts.

30

Page 31: ECE 6540, Lecture 01

Probability Review (with some things you may have not seen)

Page 32: ECE 6540, Lecture 01

Probability Review Quick Note: Notation everywhere is different

We will try to stick with Kay’s notation

32

Page 33: ECE 6540, Lecture 01

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

33

Page 34: ECE 6540, Lecture 01

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

Ξ©

Event A

Event B

<- Universe

34

Page 35: ECE 6540, Lecture 01

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

Ξ©

Event A

Event B

<- Universe

35

Page 36: ECE 6540, Lecture 01

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

Ξ©

Event A

Event B

<- Universe

36

Page 37: ECE 6540, Lecture 01

Event A

Event B

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

Ξ© <- Universe

37

Page 38: ECE 6540, Lecture 01

Probability Review Probability events: Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

New UniverseΞ© = B

38

Page 39: ECE 6540, Lecture 01

Probability Review EXAMPLE: Probability events (fair coin flips): Probability that β€˜event’ A

β€” Pr 𝐴𝐴

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡

Event 𝐴𝐴 β†’ Coin 1 is headsEvent 𝐡𝐡 β†’ Coin 2 is heads

39

Page 40: ECE 6540, Lecture 01

Probability Review EXAMPLE: Probability events (fair coin flips): Probability that β€˜event’ A

β€” Pr 𝐴𝐴 = 1/2

Probability of β€˜event’ A AND Bβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴,𝐡𝐡 = 1/4

Probability of β€˜event’ A OR Bβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = 3/4

Probability of an β€˜event’ A, given β€˜event’ Bβ€” 𝑃𝑃 𝐴𝐴|𝐡𝐡 = 1/2

Event 𝐴𝐴 β†’ Coin 1 is headsEvent 𝐡𝐡 β†’ Coin 2 is heads

40

Page 41: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = 𝑃𝑃 𝐡𝐡 𝑃𝑃 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

41

Page 42: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = 𝑃𝑃 𝐡𝐡 𝑃𝑃 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

New UniverseΞ© = B

Weight this by probability to be in B

42

Page 43: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = 𝑃𝑃 𝐡𝐡 𝑃𝑃 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

New UniverseΞ© = B

Derive from above

43

Page 44: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = 𝑃𝑃 𝐡𝐡 𝑃𝑃 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

Event A

Event B

Remove overlap

44

Page 45: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = Pr 𝐡𝐡 Pr 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡 Pr 𝐡𝐡 = Pr 𝐡𝐡|𝐴𝐴

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

45

Page 46: ECE 6540, Lecture 01

Probability Review Relationships between probability events: Chain Rule

β€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴 = Pr 𝐡𝐡 Pr 𝐴𝐴|𝐡𝐡

Bayes Theorem

β€” Pr 𝐴𝐴|𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡|𝐴𝐴Pr 𝐡𝐡

β€œOR” Ruleβ€” Pr 𝐴𝐴 βˆͺ 𝐡𝐡 = Pr 𝐴𝐴 + Pr 𝐡𝐡 βˆ’ Pr 𝐴𝐴 ∩𝐡𝐡

Independence Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = Pr 𝐴𝐴 Pr 𝐡𝐡

Disjoint Eventsβ€” Pr 𝐴𝐴 ∩ 𝐡𝐡 = 0

Event A

Event B

46

Page 47: ECE 6540, Lecture 01

Probability Review Random Variables: Continuous-values random variables 𝑋𝑋

Capital-case (𝑋𝑋) means random (this is the notation we will use)

Lower-case (π‘₯π‘₯) means fixed value

Probability Density Functions (PDF) with parameter 𝜽𝜽 π‘π‘πœƒπœƒ π‘₯π‘₯

𝑝𝑝𝑋𝑋,πœƒπœƒ π‘₯π‘₯

𝑝𝑝 π‘₯π‘₯;πœƒπœƒ

All three notations mean the same thing!

Kay’s notation

47

Page 48: ECE 6540, Lecture 01

Probability Density Functions and Cumulative Density Functions

Page 49: ECE 6540, Lecture 01

Probability Review Probability Density Functions (PDF) Definition A valid PDF is any function 𝑓𝑓 π‘₯π‘₯ that is both

β€” Non-negative p π‘₯π‘₯ β‰₯ 0β€” Unit area βˆ«βˆ’βˆž

∞ 𝑝𝑝 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯ = 1

Credit: https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg49

Page 50: ECE 6540, Lecture 01

Probability Review Cumulative Density Functions (CDF) Definition A valid CDF is any function 𝐹𝐹 π‘₯π‘₯ that is both

β€” Monotonically increasing (non-deceasing )β€” Normalized: 𝐹𝐹 βˆ’βˆž = 0, 𝐹𝐹 ∞ = 1

From a PDF as

β€” 𝑃𝑃 π‘₯π‘₯;πœƒπœƒ = Pr 𝑋𝑋 ≀ π‘₯π‘₯ = βˆ«βˆ’βˆžπ‘₯π‘₯ 𝑝𝑝 𝜏𝜏;πœƒπœƒ π‘‘π‘‘πœπœ

Figure

Credit: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_CDF.svg 50

Page 51: ECE 6540, Lecture 01

Probability Review Gaussian (or Normal) Random Variable 𝑋𝑋:𝑁𝑁 πœ‡πœ‡,𝜎𝜎2

PDF is also known as the β€œbell curve”

mean variance

𝑝𝑝 π‘₯π‘₯; πœ‡πœ‡,𝜎𝜎 =1

2 πœ‹πœ‹πœŽπœŽ2exp βˆ’

π‘₯π‘₯ βˆ’ πœ‡πœ‡ 2

2𝜎𝜎2

Credit:https://commons.wikimedia.org/wiki/File:Normal_Distrib

ution_PDF.svg

51

Page 52: ECE 6540, Lecture 01

Probability Review Cumulative Distribution Function (CDF):

𝑃𝑃 π‘₯π‘₯;πœƒπœƒ = Pr 𝑋𝑋 ≀ π‘₯π‘₯ = οΏ½βˆ’βˆž

π‘₯π‘₯

𝑝𝑝 𝜏𝜏;πœƒπœƒ π‘‘π‘‘πœπœ

FigureFigure Figure

Credit: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_CDF.svg

52

Page 53: ECE 6540, Lecture 01

Probability Review Example: Uniform Random Variable 𝑋𝑋: uniform π‘Žπ‘Ž,𝑏𝑏

𝑝𝑝 π‘₯π‘₯;π‘Žπ‘Ž,𝑏𝑏 = οΏ½1

π‘π‘βˆ’π‘Žπ‘Žfor π‘Žπ‘Ž ≀ π‘₯π‘₯ ≀ 𝑏𝑏

0 for otherwise Used for many applications

Credit: http://www.epixanalytics.com/modelassist/CrystalBall/Model_Assist.htm#Distributions/Continuous_distributions/Uniform.htm

53

Page 54: ECE 6540, Lecture 01

Probability Review Example: Beta Random Variable 𝑋𝑋: beta(𝛼𝛼,𝛽𝛽)

𝑝𝑝 π‘₯π‘₯;𝛼𝛼,𝛽𝛽 = 1𝐡𝐡 𝛼𝛼,𝛽𝛽

π‘₯π‘₯π›Όπ›Όβˆ’1 1βˆ’ π‘₯π‘₯ π›½π›½βˆ’1

Used in control systems, population genetics, Bayesian inference

Credit: https://en.wikipedia.org/wiki/Beta_distribution#/media/File:Beta_distribution_pdf.svg

Beta function

54

Page 55: ECE 6540, Lecture 01

Probability Review Example: Chi-squared random variable

𝑋𝑋: 𝒳𝒳N2

𝑝𝑝 π‘₯π‘₯;𝑁𝑁 =π‘₯π‘₯𝑁𝑁2βˆ’1π‘’π‘’βˆ’

π‘₯π‘₯2

2π‘˜π‘˜2Ξ“ 𝑁𝑁

2

for π‘₯π‘₯ > 0

0 for otherwise

Used in detection theory

Credit: https://en.wikipedia.org/wiki/Chi-squared_distribution#/media/File:Chi-square_pdf.svg

55

Page 56: ECE 6540, Lecture 01

Probability Review Transformation of Random Variables (Common Transformations)

Let π‘₯π‘₯ and 𝑦𝑦 be independent such that π‘₯π‘₯~𝒩𝒩 0,1 and 𝑦𝑦~𝒩𝒩 0,1

π‘₯π‘₯ + 𝑦𝑦~ ?

π‘₯π‘₯ 2 ~ ?

𝑛𝑛 π‘›π‘›βˆ’1𝑛𝑛

π‘₯π‘₯+𝑦𝑦π‘₯π‘₯2+𝑦𝑦2

~ ?

π‘₯π‘₯ 2

𝑦𝑦 2 ~?

π‘₯π‘₯𝑦𝑦

~ ?

56

Page 57: ECE 6540, Lecture 01

Probability Review Transformation of Random Variables (Common Transformations)

Let π‘₯π‘₯ and 𝑦𝑦 be independent such that π‘₯π‘₯~𝒩𝒩 0,1 and 𝑦𝑦~𝒩𝒩 0,1

π‘₯π‘₯ + 𝑦𝑦~π‘›π‘›π‘›π‘›π‘›π‘›π‘›π‘›π‘Žπ‘Žπ‘›π‘›

π‘₯π‘₯ 2 ~ 𝑐𝑐𝑐𝑐𝑐 βˆ’ π‘ π‘ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘›π‘›π‘ π‘ π‘‘π‘‘

𝑛𝑛 π‘›π‘›βˆ’1𝑛𝑛

π‘₯π‘₯+𝑦𝑦π‘₯π‘₯2+𝑦𝑦2

~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑛𝑛𝑠𝑠′𝑠𝑠 βˆ’ 𝑇𝑇

π‘₯π‘₯ 2

𝑦𝑦 2 ~𝐹𝐹

π‘₯π‘₯𝑦𝑦

~πΆπΆπ‘Žπ‘Žπ‘ π‘ π‘π‘π‘π‘¦π‘¦

57

Page 58: ECE 6540, Lecture 01

Expectations and Moments

Page 59: ECE 6540, Lecture 01

Probability Review Random Variables 𝑋𝑋 <- denoted by capital letter usually

Two types: discrete, continuous

Defined by a probability distribution function (PDF) and cumulative distribution function (CDF)

For discrete-valued random variables, the PDF is replaced by a probability mass function (PMF)

59

Page 60: ECE 6540, Lecture 01

Probability Review Expectation

𝐸𝐸 𝑋𝑋 = οΏ½βˆ’βˆž

∞

π‘₯π‘₯ 𝑝𝑝 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

Expectation of a function

𝐸𝐸 𝑔𝑔 𝑋𝑋 = οΏ½βˆ’βˆž

∞

𝑔𝑔 π‘₯π‘₯ 𝑝𝑝 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

Expectation with an unknown parameter

𝐸𝐸 𝑋𝑋;πœƒπœƒ = οΏ½βˆ’βˆž

∞

𝑔𝑔 π‘₯π‘₯ 𝑝𝑝 π‘₯π‘₯;πœƒπœƒ 𝑑𝑑π‘₯π‘₯

Useful!! Can be easy to find the expectation of a function without finding find the PDF

60

Page 61: ECE 6540, Lecture 01

Probability Review Moments

𝑋𝑋: 𝑁𝑁 𝑛𝑛,𝜎𝜎2π‘Œπ‘Œ = 𝑔𝑔 𝑋𝑋 = 𝑋𝑋 βˆ’π‘›π‘› 2

β€” Mean: E 𝑋𝑋 = βˆ«βˆ’βˆžβˆž π‘₯π‘₯ 𝑓𝑓 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

β€” 2nd Moment: E 𝑋𝑋2 = βˆ«βˆ’βˆžβˆž π‘₯π‘₯2 𝑓𝑓 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

β€” Variance: E 𝑋𝑋 βˆ’π‘›π‘› 2 = βˆ«βˆ’βˆžβˆž (π‘₯π‘₯ βˆ’π‘›π‘›)2 𝑓𝑓 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

Note: In general, the PDF of 𝑋𝑋2, 𝑋𝑋 βˆ’ 𝐸𝐸 𝑋𝑋 2, … do not have the same PDF as 𝑋𝑋

61

Page 62: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑁𝑁 𝑛𝑛,𝜎𝜎2

β€” π‘Œπ‘Œ = 𝑔𝑔 𝑋𝑋 = 𝑋𝑋 βˆ’π‘›π‘› 2

Compute

β€” E 𝑋𝑋;𝑛𝑛,𝜎𝜎2

β€” E 𝑔𝑔 𝑋𝑋 ;𝑛𝑛,𝜎𝜎2

β€” E 𝑋𝑋 + 10;𝑛𝑛,𝜎𝜎2

β€” E 𝑔𝑔 2𝑋𝑋 ;𝑛𝑛,𝜎𝜎2

62

Page 63: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑁𝑁 𝑛𝑛,𝜎𝜎2

β€” π‘Œπ‘Œ = 𝑔𝑔 𝑋𝑋 = 𝑋𝑋 βˆ’π‘›π‘› 2

Compute

β€” E 𝑋𝑋;𝑛𝑛,𝜎𝜎2 = 𝑛𝑛

β€” E 𝑔𝑔 𝑋𝑋 ;𝑛𝑛,𝜎𝜎2 = 𝜎𝜎2

β€” E 𝑋𝑋 + 10;𝑛𝑛,𝜎𝜎2 = E 𝑋𝑋;𝑛𝑛,𝜎𝜎2 + 10 = 𝑛𝑛+ 10

β€” E 𝑔𝑔 2𝑋𝑋 ;𝑛𝑛,𝜎𝜎2 = 4𝜎𝜎2

63

Page 64: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑠𝑠π‘₯π‘₯π‘π‘π‘›π‘›π‘›π‘›π‘ π‘ π‘›π‘›π‘ π‘ π‘π‘π‘Žπ‘Žπ‘›π‘› πœ†πœ†

β€” 𝑝𝑝 π‘₯π‘₯;πœ†πœ† = οΏ½πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ for π‘₯π‘₯ β‰₯ 00 for π‘₯π‘₯ < 0

Compute

β€” E 𝑋𝑋;πœ†πœ†

64

Page 65: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑠𝑠π‘₯π‘₯π‘π‘π‘›π‘›π‘›π‘›π‘ π‘ π‘›π‘›π‘ π‘ π‘π‘π‘Žπ‘Žπ‘›π‘› πœ†πœ†

β€” 𝑝𝑝 π‘₯π‘₯;πœ†πœ† = οΏ½πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ for π‘₯π‘₯ β‰₯ 00 for π‘₯π‘₯ < 0

Compute

β€” E 𝑋𝑋;πœ†πœ† = ∫0∞π‘₯π‘₯ 𝑝𝑝 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯ = ∫0

∞π‘₯π‘₯πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

E 𝑋𝑋;πœ†πœ† = οΏ½βˆ’π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ πœ†πœ†π‘₯π‘₯ + 1

πœ†πœ†0

∞

=βˆ’π‘ π‘ βˆ’πœ†πœ†βˆž βˆ’πœ†πœ†βˆž+ 1

πœ†πœ†+π‘ π‘ βˆ’0π‘₯π‘₯ 1

πœ†πœ†

E 𝑋𝑋;πœ†πœ† =1πœ†πœ†

L’Hospital’s Rule = 0

65

Page 66: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑠𝑠π‘₯π‘₯π‘π‘π‘›π‘›π‘›π‘›π‘ π‘ π‘›π‘›π‘ π‘ π‘π‘π‘Žπ‘Žπ‘›π‘› πœ†πœ†

β€” 𝑝𝑝 π‘₯π‘₯;πœ†πœ† = οΏ½πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ for π‘₯π‘₯ β‰₯ 00 for π‘₯π‘₯ < 0

Compute

β€” E 𝑋𝑋2;πœ†πœ†

66

Page 67: ECE 6540, Lecture 01

Probability Review Expectation Examples Let

β€” 𝑋𝑋: 𝑠𝑠π‘₯π‘₯π‘π‘π‘›π‘›π‘›π‘›π‘ π‘ π‘›π‘›π‘ π‘ π‘π‘π‘Žπ‘Žπ‘›π‘› πœ†πœ†

β€” 𝑝𝑝 π‘₯π‘₯;πœ†πœ† = οΏ½πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ for π‘₯π‘₯ β‰₯ 00 for π‘₯π‘₯ < 0

Compute

β€” E 𝑋𝑋2;πœ†πœ† = ∫0∞π‘₯π‘₯2 𝑝𝑝 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯ = ∫0

∞π‘₯π‘₯2πœ†πœ†π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯

E 𝑋𝑋2;πœ†πœ† = οΏ½βˆ’π‘ π‘ βˆ’πœ†πœ†π‘₯π‘₯ πœ†πœ†2π‘₯π‘₯2 + 2πœ†πœ†π‘₯π‘₯ + 2

πœ†πœ†20

∞

=βˆ’π‘ π‘ βˆ’πœ†πœ†βˆž βˆ’πœ†πœ†2∞2 + 2πœ†πœ†π‘₯π‘₯ + 2

πœ†πœ†2 +π‘ π‘ βˆ’0π‘₯π‘₯ 1πœ†πœ†2

E 𝑋𝑋2;πœ†πœ† =2πœ†πœ†2

= 0

67

Page 68: ECE 6540, Lecture 01

Two Random Variables (and their relationships)

Page 69: ECE 6540, Lecture 01

Several Random Variables Joint PDFs of Random Variables 𝑝𝑝 π‘₯π‘₯,𝑦𝑦 Joint PDF of 2 random variables

Vector form

Define 𝑾𝑾 = π‘‹π‘‹π‘Œπ‘Œ , π’˜π’˜ =

π‘₯π‘₯𝑦𝑦

𝑝𝑝 π’˜π’˜ = 𝑝𝑝 π‘₯π‘₯,𝑦𝑦 Joint PDF of 2 random variables (short version)

Credit: https://en.wikipedia.org/wiki/Multivariate_normal_distribution#/media/File:MultivariateNormal.png

69

Page 70: ECE 6540, Lecture 01

Several Random Variables Chain Rule for 2 Random Variables

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 𝑝𝑝 π‘₯π‘₯ 𝑝𝑝 𝑦𝑦|π‘₯π‘₯ = 𝑝𝑝 𝑦𝑦 𝑝𝑝 π‘₯π‘₯|𝑦𝑦

If Random Variables are independent

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 𝑝𝑝 π‘₯π‘₯ 𝑝𝑝 𝑦𝑦

70

Page 71: ECE 6540, Lecture 01

Several Random Variables Moments of two random variables 𝑋𝑋,π‘Œπ‘Œ

β€” Mean: E 𝑋𝑋 , E π‘Œπ‘Œβ€” 2nd Moment: E 𝑋𝑋2 ,𝐸𝐸 π‘Œπ‘Œ2

β€” Variance: E 𝑋𝑋 βˆ’π‘›π‘›π‘₯π‘₯2 , E 𝑋𝑋 βˆ’π‘›π‘›π‘¦π‘¦

2

β€” Cross-Correlation: E π‘‹π‘‹π‘Œπ‘Œβ€” Cross-variance: E 𝑋𝑋 βˆ’π‘›π‘›π‘₯π‘₯ π‘Œπ‘Œ βˆ’π‘›π‘›π‘¦π‘¦ = E π‘‹π‘‹π‘Œπ‘Œ βˆ’ E 𝑋𝑋 E π‘Œπ‘Œ

If 𝑋𝑋,π‘Œπ‘Œ are uncorrelated Cross-Correlation: 𝐸𝐸 π‘‹π‘‹π‘Œπ‘Œ = 𝐸𝐸 𝑋𝑋 𝐸𝐸 π‘Œπ‘Œ

Co-Variance: 𝐸𝐸 𝑋𝑋 βˆ’ 𝐸𝐸 𝑋𝑋 π‘Œπ‘Œ βˆ’πΈπΈ π‘Œπ‘Œ = 0

Variance sum: var 𝑋𝑋 + π‘Œπ‘Œ = var 𝑋𝑋 + var π‘Œπ‘Œ

Important Note: β€” Independent implies uncorrelated, but Correlated does not imply independent

71

Page 72: ECE 6540, Lecture 01

Several Random Variables Example: Two Normal Distributions Consider the two random variables

𝑋𝑋~𝒩𝒩 0,1 , π‘Œπ‘Œ~𝒩𝒩 π‘₯π‘₯, 1

Compute the joint PDF 𝑝𝑝 π‘₯π‘₯,𝑦𝑦

72

Page 73: ECE 6540, Lecture 01

Several Random Variables Example: Two Normal Distributions Consider the two random variables

𝑋𝑋~𝒩𝒩 0,1 , π‘Œπ‘Œ~𝒩𝒩 π‘₯π‘₯, 1

Compute the joint PDF 𝑝𝑝 π‘₯π‘₯,𝑦𝑦

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 𝑝𝑝 π‘₯π‘₯ 𝑝𝑝 𝑦𝑦|π‘₯π‘₯ Chain Rule

𝑝𝑝 π‘₯π‘₯ = 12πœ‹πœ‹(1)2

exp βˆ’ π‘₯π‘₯ 2

2(1)2

𝑝𝑝 𝑦𝑦|π‘₯π‘₯ = 12πœ‹πœ‹(1)2

exp βˆ’ π‘¦π‘¦βˆ’π‘₯π‘₯ 2

2(1)2

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 12πœ‹πœ‹(1)2

exp βˆ’ π‘₯π‘₯2

2(1)21

2πœ‹πœ‹(1)2exp βˆ’ π‘¦π‘¦βˆ’π‘₯π‘₯ 2

2(1)2

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 12πœ‹πœ‹

exp βˆ’π‘₯π‘₯2+ π‘¦π‘¦βˆ’π‘₯π‘₯ 2

2= 1

2πœ‹πœ‹exp βˆ’2π‘₯π‘₯2+𝑦𝑦2βˆ’2𝑦𝑦π‘₯π‘₯

2

𝑝𝑝 π‘₯π‘₯,𝑦𝑦 = 12πœ‹πœ‹

exp βˆ’12

π‘₯π‘₯𝑦𝑦

𝑇𝑇 2 βˆ’1βˆ’1 1

π‘₯π‘₯𝑦𝑦 β†’ 𝑋𝑋

π‘Œπ‘Œ ~𝒩𝒩 00 , 2 βˆ’1

βˆ’1 1βˆ’1

= 1 11 2

73

Page 74: ECE 6540, Lecture 01

Several Random Variables Example: Two Normal Distributions Consider the two random variables

𝑋𝑋~𝒩𝒩 0,1 , π‘Œπ‘Œ~𝒩𝒩 π‘₯π‘₯, 1

Compute the joint PDF 𝑝𝑝 π‘₯π‘₯,𝑦𝑦

π‘‹π‘‹π‘Œπ‘Œ ~𝒩𝒩 0

0 , 1 11 2

Question: How do we interpret this distribution?

74