ece 546 – jose schutt-aine 1 ece 546 lecture -04 transmission lines spring 2014 jose e....

52
ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: ross-beasley

Post on 27-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 1

ECE 546Lecture -04

Transmission LinesSpring 2014

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 2

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

Constitutive Relations

BE

t

H J D

t

D

0B

B H D E

Maxwell’s Equations

Page 3: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 3

l

l

z

Wavelength : l

l = propagation velocity

frequency

Why Transmission Line?

Page 4: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 4

In Free Space

At 10 KHz : l = 30 km

At 10 GHz : l = 3 cm

Transmission line behavior is prevalent when the structural dimensions of the circuits are comparable to the wavelength.

Why Transmission Line?

Page 5: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 5

Let d be the largest dimension of a circuit

If d << l, a lumped model for the circuit can be used

circuit

z

l

Justification for Transmission Line

Page 6: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 6

circuit

z

l

If d ≈ l, or d > l then use transmission line model

Justification for Transmission Line

Page 7: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 7

CT/2

LT

CT/2

CT

LT/2 LT/2

Zo

Short

LumpedReactive CKT

TransmissionLine

Low FrequencyMid-range Frequency High Frequency

or

Modeling Interconnections

Page 8: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 8

Single wire near ground

+

h

d

o

1 4for d << h, Z = ln

2

h

d

-1oZ = 120 cosh (D/d)

2C =

4hln

d

4L = ln

2

h

d

Page 9: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 9

Single wire between grounded parallel planes

ground return

h/2

d+

h/2

o

1 4Z = ln

2

h

d

Page 10: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 10

Wires in parallel near ground

D

d++

h

for d << D, h

2

1069 / log 4 / 1 2 /O rZ h d h D

Page 11: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 11

Balanced, near ground

D

d+

h

for d << D, h

10 2

2 /276 / log

1 / 2O r

D dZ

D h

Page 12: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 12

D

d

Open 2-wire line in air

-1oZ = 120 cosh (D/d)

Page 13: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 13

Parallel-plate Transmission Line

w

a

L = aw

C = wa

Page 14: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 14

r

Coaxial line

Air

WaveguideCoplanar line

er

er

Microstrip

er

Stripline

er

Slot line

Types of Transmission Lines

Page 15: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 15

Coaxial Transmission Line

a

b

L = ln ba

C = 2

ln(b/a)

TEM Mode of Propagation

Page 16: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 16

Coaxial Air Lines

a

b

/ln /

2oZ b a

1/ 1//ln / 1 1

2 4 ln( / )o

a bZ b a j

f b a

Infinite Conductivity

Finite Conductivity

Page 17: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 17

Coaxial Connector Standards

a

b

Connector Frequency Range

14 mm DC - 8.5 GHzGPC-7 DC - 18 GHzType NDC - 18 GHz3.5 mm DC - 33 GHz2.92 mm DC - 40 GHz2.4 mm DC - 50 GHz1.85 mm DC - 65 GHz1.0 mm DC - 110 GHz

Page 18: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 18

Cricket Software 

Microstrip

Page 19: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 19

Microstrip

0 1 2 330

40

50

60

70

80

90

100

h = 21 milsh = 14 milsh = 7 mils

Microstrip Characteristic Impedance

W/h

Zo (

oh

ms)

dielectric constant : 4.3.

Page 20: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 20

L: Inductance per unit length.

C: Capacitance per unit

length.

L

z

C

I

V

+

-

V IL

z t

I VC

z t

Vj LI

z

Ij CV

z

Assumetime-harmonicdependence

, ~ j tV I e

Telegraphers’ Equations

Page 21: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 21

L

z

C

I

V

+

-

22

2

VLCV

z

22

2

ICLI

z

2V V Ij L j Lj CV

z z z z

2 I I V

j C j Lj CIz z z z

TL Solutions

Page 22: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 22

( )

Forward Wave Backward Wave

j z j zV z V e V e

z

Zo

forward wave

backward wave

LC

o

LZ

C

(Frequency Domain)

( ) j z j z

o o

Forward Wave Backward Wave

V VI z e e

Z Z

TL Solutions

Page 23: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 23

( , ) cos cos

Forward Wave Backward Wave

V z t V t z V t z

LC

o

LZ

C

( , ) cos coso o

Forward Wave Backward Wave

V VI z t t z t z

Z Z

1v

LC

v

f

Propagation constant

Characteristic impedanceWavelength

Propagation velocity

TL Solutions

Page 24: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 24

At z=0, we have V(0)=ZRI(0)

But from the TL equations:

(0)V V V

(0) o o

V VI

Z Z

Which gives

R

o

ZV V V V

Z

RV V

R oR

R o

Z Z

Z Z

is the load reflection coefficientwhere

Reflection Coefficient

Page 25: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 25

- If ZR = Zo, GR=0, no reflection, the line is matched

- If ZR = 0, short circuit at the load, GR=-1

- If ZR inf, open circuit at the load, GR=+1

( ) j z j zRV z V e e

( ) j z j zR

o

VI z e e

Z

2( ) 1j z j zRV z V e e

2( ) 1j z

j zR

o

V eI z e

Z

Reflection Coefficient

V and I can be written in terms of R

Page 26: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 26

( )( )

( )

j z j zR

o j z j zR

e eV zZ z Z

I z e e

tan

tanR o

oo R

Z jZ lZ l Z

Z jZ l

Generalized Impedance

Impedance transformatio

n equation

Page 27: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 27

( ) tanoZ l jZ l

( )tan

oZZ lj l

- Short circuit ZR=0, line appears inductive for 0 < l < l/2

- Open circuit ZR inf, line appears capacitive for 0 < l < l/2

2

( ) o

R

ZZ l

Z

- If l = l/4, the line is a quarter-wave transformer

Generalized Impedance

Page 28: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 28

( )Backward traveling wave at( )

Forward traveling wave at ( ) b

f

V zzz

z V z

2 2( )

j z

j z j zRj z

V e Vz e e

V e V

2( ) j lRl e Reflection coefficient

transformation equation

1 ( )( )

1 ( )

o

zZ z Z

z( )

( )( )

o

o

Z z Zz

Z z Z

Generalized Reflection Coefficient

Page 29: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 29

2( ) 1j z j zRV z V e e

2 2( ) 1 1 j z j z j z

R RV z V e e V e

max 1 RV

min 1 RV

Maximum and minimummagnitudes given by

Voltage Standing Wave Ratio (VSWR)

We follow the magnitude of thevoltage along the TL

Page 30: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 30

max

min

1

1

R

R

VVSWR

V

Voltage Standing Wave Ratio (VSWR)

Define Voltage Standing Wave Ratio as:

It is a measure of the interaction between forward and backward waves

Page 31: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 31

VSWR – Arbitrary Load

Shows variation of amplitude along line

Page 32: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 32

VSWR – For Short Circuit Load

Voltage minimum is reached at load

Page 33: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 33

Voltage maximum is reached at load

VSWR – For Open Circuit Load

Page 34: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 34

VSWR – For Open Matched Load

No variation in amplitude along line

Page 35: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 35

Application: Slotted-Line Measurement

- Measure VSWR = Vmax/Vmin

- Measure location of first minimum

Page 36: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 36

Application: Slotted-Line Measurement

At minimum, ( ) pure real Rz

Therefore, min2min( ) j d

R Rd e

min2 j dR R e So,

1

1

R

VSWR

VSWRSince min21

1

j dR

VSWRe

VSWRthen

1

1

R

R oR

Z Zand

Page 37: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 37

Summary of TL Equations

tan

tanR o

oo R

Z jZ lZ l Z

Z jZ l

2( ) j lRl e

1 ( )( )

1 ( )

o

zZ z Z

z

( )( )

( )

o

o

Z z Zz

Z z Z

Impedance Transformation

Reflection Coefficient Transformation

Reflection Coefficient – to Impedance

Impedance to Reflection Coefficient

2( ) 1 j z j z

Ro

VI z e e

Z 2( ) 1j z j z

RV z V e e

Voltage Current

Page 38: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 38

2( ) 1j z j zRV z V e e

2( ) 1j z

j zR

o

V eI z e

Z

R oR

R o

Z Z

Z Z

At z = -l, ( ) ( )S SV Z I l V l

Determining V+

For lossless TL, V and I are given by

reflection coefficientat the load

Page 39: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 39

2 21 1j l j l j l j lSS R R

o

ZV V e e V e e

Z

j l j l j l j lS SS R R

o o

Z ZV V e e e e

Z Z

1 1j l j lS SS R

o o

Z ZV V e e

Z Z

this leads to

or

Determining V+

Page 40: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 40

j l j lS R S SV e e T V

Divide through by 1

1 S

o S

Z

Z T

with1

1 S oS

o S o

Z ZT

Z Z Z

and

S oS

S o

Z Z

Z Z

From which 21

j lS S

j lS R

T V eV

e

Determining V+

Page 41: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 41

Z R = 7 5 V R

+

-

Z o = 5 0

Z s = 2 5 +

-

z

d

I R

I sV s= 1 e j0 oV

A signal generator having an internal resistance Zs = 25 W and an open circuit phasor voltage Vs = 1ej0 volt is connected to a 50-W lossless transmission line as shown in the above picture. The load impedance is ZR= 75 W and the line length is l/4.

Find the magnitude and phase of the load current IR.

TL Example

Page 42: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 42

Z R = 7 5 V R

+

-

Z o = 5 0

Z s = 2 5 +

-

z

d

I R

I sV s= 1 e j0 oV

21

j ls s

j lR s

TV eV

e

502 / 3

50 25o

ss o

ZT

Z Z

25 501/ 3

25 50s o

ss o

Z Z

Z Z

75 50

1/ 575 50

R oR

R o

Z Z

Z Z

TL Example – Cont’

Page 43: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 43

R

0.714285 0.714285 0.8I 1 1 0.2

50 50Ro

Vj j

Z

2

4 2j ll e j

0.714285 VV j

(2 / 3)(1)( ) 2 / 35 / 7

1 ( 1/ 3)(1/ 5)( 1) 1 1/15

j jV j

RI 0.014285 Aj

TL Example – Cont’

Page 44: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 44

2

0

k k j kl j lS S S Rk

V T V e e

21

j lS S

j lS R

T V eV

e

2 1

0

( ) j l kk k j zS S S Rk

V z T V e e

2 11

0

j l kk k j zS S S Rk

T V e e

v

2 1 2 11

0 0

( )j z k l j z k lk k k kv v

S S S R S S S Rk k

V z T V e T V e

Geometric Series Expansion

V+ can be expanded in a geometric series form

2 1j lS Re

Since

Page 45: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 45

0

(2 1)( , ) k k

S S R sk o

k l zv z t T v t

v

1

0

(2 1)k kS S R sk o

k l zT v t

v

0

(2 1)(0, ) k k

S S R sk o

k lv t T v t

v

1

0

(2 1)k kS S R sk o

k lT v t

v

at z=0

TL Time-Domain Solution

Page 46: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 46

0

(2 1)( , ) k k

S S R sk o

k l lv l t T v t

v

1

0

(2 1)k kS S R sk o

k l lT v t

v

At z=-l

0

2( , ) k k

S S R sk o

klv l t T v t

v

1

0

2( 1)k kS S R sk o

k lT v t

v

TL Time-Domain Solution

Page 47: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 47

2( , ) S s S R s

o

lv l t T v t T v t

v

TL - Time-Domain Reflectometer

For TDR, ZS = Zo S = 0, and retain only k=1

Page 48: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 48

1( )fv tForward traveling wave at port 1 (measured at near end of line)

2 ( )fv tForward traveling wave at port 2 (measured at far end of line)

1( )bv tBackward traveling wave at port 1 (measured at near end of line)

2 ( )bv tBackward traveling wave at port 2 (measured at far end of line)

Wave Shifting Method

Page 49: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 49

Wave Shifting Solution*

1 1 2 1 1( ) ( ) ( )f b gv t v t TV t

2 2 1 2 2( ) ( ) ( )b f gv t v t T V t

2 1( ) ( )f fv t v t

1 2( ) ( )b bv t v t

11

1

o

o

Z Z

Z Z

11

o

o

ZT

Z Z

22

2

o

o

Z Z

Z Z

*Schutt-Aine & Mittra, Trans. Microwave Theory Tech., pp. 529-536, vol. 36 March 1988.

1 1 1( ) ( ) ( )f bv t v t v t

2 2 2( ) ( ) ( )f bv t v t v t 22

o

o

ZT

Z Z

line lengthdelay=

velocity

Page 50: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 50

Frequency Dependence of Lumped Circuit Models

– At higher frequencies, a lumped circuit model is no longer accurate for interconnects and one must use a distributed

model

– Transition frequency depends on the dimensions and relative

magnitude of the interconnect parameters.

f 0.3109

10d rtr

0.35

f

Page 51: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 51

Lumped Circuit or Transmission Line?

• Determine frequency or bandwidth of signal – RF/Microwave: f= operating frequency– Digital: f=0.35/tr

• Determine the propagation velocity and wavelength– Material medium v=c/( r)1/2

– Obtain wavelength =v/f

• Compare wavelenth with feature size – If >> d, use lumped circuit: Ltot= L* length, Ctot= C* length– If 10d or <10d, use transmission-line model

Page 52: ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois

ECE 546 – Jose Schutt-Aine 52

PCB line 10 in > 55 MHz < 7nsPackage 1 in > 400 MHz < 0.9 nsVLSI int* 100 um > 8 GHz < 50 ps

Level Dimension Frequency Edge rate

* Using RC criterion for distributed effect

Frequency Dependence of Lumped Circuit Models