ece 541/me 541 microelectronic fabrication techniqueszyang/teaching/20182019springe... ·...

75
ECE541/ME541 Microelectronic Fabrication Techniques Page 1 ECE 541/ME 541 Microelectronic Fabrication Techniques MW 4:00-5:15 pm Interconnect and Packaging Zheng Yang ERF 3017, email: [email protected]

Upload: others

Post on 31-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 1

ECE 541/ME 541Microelectronic Fabrication Techniques

MW 4:00-5:15 pm

Interconnect and Packaging

Zheng YangERF 3017, email: [email protected]

Page 2: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 2

Major Fabrication Steps in MOS Process Flow

Used with permission from Advanced Micro DevicesUsed with permission from Advanced Micro Devices

Oxidation(Field oxide)

Silicon substrate

Silicon dioxideSilicon dioxide

oxygen

PhotoresistDevelop

oxideoxide

PhotoresistCoating

photoresistphotoresist

Mask-WaferAlignment and Exposure

Mask

UV light

Exposed Photoresist

exposedphotoresistexposed

photoresist

GS D

Active Regions

top nitride

S DG

silicon nitridesilicon nitride

NitrideDeposition

Contact holes

S DGG

ContactEtch

Ion Implantation

ox DG

Scanning ion beam

S

Metal Deposition and

Etch

drainS DGG

Metal contacts

PolysiliconDeposition

polysiliconpolysilicon

Silane gas

Dopant gas

Oxidation(Gate oxide)

gate oxidegate oxide

oxygen

PhotoresistStrip

oxideoxide

Ionized oxygen gas

OxideEtch

photoresistphotoresistoxideoxide

Ionized CF4 gas

PolysiliconMask and Etch

oxideoxide

Ionized CCl4 gas

CF4 or C3F8 or CHF3 O3 CF4+O2 or CL2

Page 3: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 3

But we are not finished yet…

• Front end of the line completed• Back end of line (BEOL) starts• Devices on the chip need to be

connected to one another• Interconnect Layers

Page 4: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 4

Integrated Circuit Manufacture

Integrated circuit 1992-19980.75 micron dielectric features

Integrated circuit 1998-Present

0.18 micron dielectric features

Page 5: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 5

M7

M6

M5

M4

M3

M2

M1

Metal Wire Interconnects

6.5 microns

5.6 microns

130nm node

90 nm node

Page 6: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 6

Dual Damascene process

CDOCu

Hermetic etch stop

1. Via etch (doesn’t expose Cu)2. Trench etch3. Etchstop etch (exposes Cu4. Barrier deposition5. Cu seed deposition PVD6. Electroplate Cu7. CMP to planarize

Page 7: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 7

Representative dual damascene process sequence.

Page 8: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 8

Cu seed

Polished Cu

TaN / Ta barrier

Silicon nitride

Electroplated Cu

Fig 1.

Barriers required: TaN less susceptible to oxidation; Ta has better wetting for Cu seed

After anneals, the PVD-deposited Cu seed and Electroplated Cu combine; Cu grains are columnar

Page 9: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 9

Simple model for interconnect.

H

X

W

T

L = length of interconnect.

Resistance: R = L/WTCapacitance vertical = 2o WL/HCapacitance horizontal = 2o TL/X

RC = 2o L2 [ (1/TH) + (1/WX) ]

If we take T=H and X=W, thenRC = 2o L2 [ (1/W2) + (1/T2) ]

Example:Length L = 10 mmInterconnect thickness T = 0.18 micronAssume T=H, X=WRC as function of pitch = X+W for Cu and Al and oxide as dielectric material

1 GHz

Page 10: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 10

Interconnection paradigm shifts for devices < 0.25 micron.

Page 11: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 11

Movement to reduce RC time constant for interconnection:R: conductor.

C: dielectric constant.

Al: 3 micro-ohm cm.Cu: 1.7 micro-ohm cm.Thus move from Al to copper can provide factor of 1.8.Movement has driven development of CMP processing

and metalization fabrication scheme known as Damascene Copper.

SiO2: = 4.0Polymers: = 2-2.7 1.5-2 improvementPorous materials: = 1.5-2 2-2.7 improvementAir: = 1.0 4 improvementMovement has driven development of polymeric

dielectric materials toward production and spurred development of many new materials and processes.

Page 12: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 12

ChemicalFamily

DepositionTechnique(s)

K Range RepresentativeVendors

Polyarylethers Spin – on 2.6 – 2.8AlliedSignal,

Dow Chemical,Schumacher

Organosilicates(Polysiloxanes) Spin – on, CVD 2.5 – 3.2

AlliedSignal, AMAT,Novellus,

Dow CorningAmorphous

Fluorocarbon( - CFx)

CVD 2.6 – 3.2 Novellus

HydrogenSilsesquioxane Spin – on ~ 3.0

Dow Corning

PTFE Spin – on ~ 2.1W.L. Gore

Porous Silica Spin – on 1.8 – 2.7AlliedSignal,

Asahi Chemical

Low K Materials for IC Intermetal Dielectrics:

The Leading (or at Least Most Mature) Chemistries

Page 13: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 13

Spin - On CVD• Evolutionary from Photoresist

• Rapid Film Deposition (High Throughput with Automated Cure Process)

• Gap Fill and Planarization• Organic, Inorganic and

Organosilicates• Lower Equipment Cost• Ease of Tool Cleaning • Non - Vacuum Method• Many Material Suppliers &

Tool Vendors• Detailed Chemical

Characterization (Pre - Deposition)

• Evolutionary from SiO2, Si3N4

• Solventless• Conformal Coatings•Simple, Monomeric

Precursors• Cluster Tool Processing

Possible•

Comparison: spin - on vs. CVD deposition for “Low-K”.

Page 14: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 14

High K Dielectrics• Capacitors, Filter, etc.

Page 15: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 15

Chemical and Mechanical Planarization (CMP).Chemical and Mechanical Planarization (CMP).

Developed at IBM in mid-1980’s.

Global planarization across wafer through selective removal of high elevation features.

Page 16: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 16

CMP: important features.CMP: important features.

Goals for CMP process:• Good planarity across die (150 nm max.).• Good film thickness uniformity across wafer (±2%, 1).• High removal rates: 100-200 nm/min.• Good selectivity or end point determination.• Minimal defect and particulate creation (<0.125

particles/cm at 0.06 micron).

Pad conditioner

Pad/slurry

Wafer / holder

Page 17: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 17

CMP: polishing mechanisms and technology.CMP: polishing mechanisms and technology.• Mechanism differs for each material being processed.• Mechanism can involve conversion of materials to chemical state

which is better suited to mechanical removal with slurry materials of selected hardness. Example: metals converted to oxides and etched with oxide particles.

• Preston’s law often is obeyed:Rate = Kp P v

Where Kp is Preston constant, P is applied pressure, and v is linear velocity of polishing pad relative to wafer.

-5 0 0

5 0 0

1 5 0 0

2 5 0 0

3 5 0 0

4 5 0 0

0 1 2 3 4 5 6 7 8 9

D o w n F o r c e (p si )

Rem

oval

Rat

e (Å

/min

)

C o llo id a l, i n -s i tu , g ro o ve

C o llo id a l, i n -s i tu , p e r f

C o llo id a l, i n -s i tu , g ro o ve - M o d e l

C o llo id a l, i n -s i tu , p e r f - M o d e lEtch rate (angstrom/min)

4500

00

00 8Downward force (psi)

Data for two different pad surfaced and two different slurries.

Page 18: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 18

Example slurries for CMP processing.

Material Slurry: solution Abrasive particles Selectivity

Metals and conductorsAlCu 150:1 Cu:SiO2

W Ferric nitrate, potassium phosphate Silica or alumina 120:1 W:SiO2

Poly Si

Dielectric materialsSiO2 Alkaline solution KOH Silicasilicon nitridepolymer

Page 19: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 19

CMP: polishing mechanisms and technology.CMP: polishing mechanisms and technology.Compliant nature of polishing pad is important for selectivity of material removal.

100

SEM of polishing pad.

Page 20: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 20

End point determination or detection.

Polish for predetermined time.Polish for limited time, measure, estimate remaining time.Monitor of motor current.Back side optical monitoring (infrared through silicon).Front side optical measurements

laser interferometer (“in-situ removal monitor” or ISRM).

Multiple wavelength reflectometry.

Page 21: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 21

Electron micrographs: CMP polishing pad conditioning disk.

SEM micrographs of a new diamond disk (tilted view) before pad conditioning [A], a new diamond disk (top view) afterpad conditioning [B], and a conventional diamond disk (tilted view) before pad conditioning [C].

Page 22: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 22

CVD SiO2

Silicon nitrideSilicon

Silicon nitrideCVD SiO2

Silicon

Example: CMP of CVD SiO2 in STI process.

Page 23: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 23

CMP defect examples.

Page 24: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 24

CMP equipment: general layout.

Page 25: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 25

Intel 0.18 micron technology IBM 1000 MHz Wafer

Starting point for assembly and packaging: the wafer.

Page 26: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 26

Modern wafer dicing machine.

Page 27: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 27

Conventional lead-frame package.

Page 28: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 28

Wire bond interconnection: thermo-compression.

Page 29: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 29

Typical wire bonds – thermocompression on chip.

Page 30: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 30

Electron micrographs: ultrasonic wire bond on chip.

Page 31: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 31

Wire bond detail: example.

Wire-bond advantages:Wire absorbs the mismatch between Si chip and PCB.Technology is very mature and automated.

Wire-bond disadvantages:Wire-bonding is complex mechanical process.Process time and complexity scales with number of interconnections:

6 bonds per second maximum rate today.Impractical for chip pin counts above 400 or so.

Page 32: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 32

Attachment Methodologies

• Wire Bond• Flip Chip• Tape

Automated Bonding

Page 33: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 33

• Can form many bonds at the same time

• One line of bonds on each side only, no double row.

Tape Automated Bonding

Page 34: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 34

Flip-chip interconnection.Flip-chip interconnection.Semiconductor chip

silicon tce=2 ppm/oC

Printed circuit boardpolymer, glass, copper tce=19 ppm/oC

PackagePackage purpose:

Conventional lead-frame package.

Page 35: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 35

Package configurations: DIP (dual in line package).Surface mount styles.

Page 36: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 36

Package configurations: DIP (dual in line package).

Surface mount.

Through hole mount.

Page 37: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 37

Quad flat pack package designs.

Page 38: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 38

Electronic Packaging Evolution:Quad Flat Pack

BGA-wire bondBGA-flip chip

Chip scale pkg.Chip on board

AlliedSignal Substrate Technology & Interconnect

Costa Mesa, California

ASTI: AlliedSignal’s new electronic packaging initiative

Packaging technologies:QFP: quad flat packBGA: ball grid arrayflip BGA: flip chip BGACSP: chip scale packageLDI: local density interconnect

Page 39: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 39

Flip-chip bonding: an alternative to wire bonding.

Wirebond BGA package.

Flip-chip BGA package.

Page 40: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 40

Solder bumps on package for flip chip mounting – 900 pin.

After reflow.

Before reflow.

Solder is screen-printed on package.

Typical reflow temperature is 180oC – 240oC.

Page 41: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 41

Flip-chip bonding: an alternative to wire bonding.

Wirebond BGA package.

Flip-chip BGA package.

Page 42: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 42

Example of stress in flip-chip interconnection.

Ceramic package.

Center of package Edge of package

Page 43: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 43

Advantages of flip-chip bonding:Parallel process – all interconnections formed in one process.

Disadvantages of flip chip bonding.Stress during processing due to thermal expansion mismatch can be a problem for large die (>18 mm).Metal solder bumps must be created on chip or package or both.Underfill polymer required in most cases.

Flip-chip bonding: Summary.

For all high technology devices (pin count above 400 leads), flip chip bonding is the interconnection medium of choice.

Page 44: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 44

Packaging Evolution

Outer lead pitchCircuit line / space.Via diameter

0.6 mm100 m125 m

1.3 mm100 m125 m

1.0 mm75 m50 m

0.5 mm50 m38 m

0.25 mm20 m25 m

0.15 mm15 m15 m

Materials RoadmapReinforcementThicknessPolymer: TgMoisture

Woven fiber100 micron1800C1.5%

Nonwoven microfiber50 micron2200C0.5%

Nonwoven microfiber35 micron3000C0.25%

Quad FlatPack

Advanced BGA Chip Scale Pkg Local DensityInterconnect.

4.5 cm.

Multiple chips

4.5 cm.

2.0 cm1.5 cm. 1.0 cm. 0.8 cm.

1998 2001 2004

UltraStableTM Technologies

Page 45: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 45

Chip Pitch Trends

0

50

100

150

200

250

1995 2000 2005 2010 2015

Dim

ensi

on (m

icro

n)

chip pitch-wire bondchip pitch TABchip pitch-flip chip

Semiconductor chip pitch trends....

Data from SIA National Technology Roadmap for Semiconductors, 1997

• Fundamental interconnection on-chip pushing toward 50 micron dimension.

• Flip chip dimension shrink will challenge technical capabilities.

• Wire bond and tape automated bond are being displaced with flip-chip interconnection.

IC chip

PWB

Package

Chip-Package Interconnect

Package-PWB Interconnect

IC chip pitch

Page 46: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 46

Interconnect density

0

500

1000

1500

2000

2500

1996 1998 2000 2002 2004 2006 2008 2010 2012

pins

/sq

inch

BGA pins per sq inch-high performance

Data from SIA National Technology Roadmap for Semiconductors, 1997

Chip to package interconnection density trends:

QFP BGA flip BGA CSP LDIpackage pin density (pin/sq.in.) 200 500 750 1100 1300Significant commercial impact 1996 1998 2001 2004 2007

Packaging technologies:QFP: quad flat packBGA: ball grid arrayflip BGA: flip chip BGACSP: chip scale packageLDI: local density interconnect

Page 47: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 47

0

20

40

60

80

100

120

140

160

180

200

1995 2000 2005 2010 2015

Pad

Size

(mic

ron)

high densitypad size(micron)

Data from SIA National Technology Roadmap for Semiconductors, 1997

0

5

10

15

20

25

30

35

40

45

50

1995 2000 2005 2010 2015

Line

wid

th (m

icro

n)

high densityline width(micron)

• Micro-via technologies will be required to obtain density.

• Mechanical drilling incapable of providing density, size.

• Laser drilling will dominate micro-via.

• Microvia capability enables high density interconnect, but has limits.

Conventional printed wiring technology cannot satisfy customer needs for packaging interconnect density.

Conventional printed wiring technology cannot satisfy customer needs for packaging interconnect density.

Trends in dimensions for high density circuitry....

Page 48: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 48

• Market is expanding rapidly, especially in critical flip-chip, BGA, and chip-on board products.

• Market is undergoing paradigm shift in package technology.

• Market is expanding rapidly, especially in critical flip-chip, BGA, and chip-on board products.

• Market is undergoing paradigm shift in package technology.

Worldwide Trends in Packaging Technology

0

20

40

60

80

100

120

140

1980 1985 1990 1995 2000 2005

Bill

ions

of I

nteg

rate

d C

ircui

ts

COB. flip chipBGA,CSPPGA,SIPSMTTABP-QFPDIP

Source: Amkor/Anam quoted in Advanced Packaging, February, 1998

Trends: market growth for electronic packages

High growth

Slow growth or shrink

Page 49: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 49

Increased pin count and reduced package dimensions require paradigm shift in interconnection.

Only a limited number of known feasible approaches can provide the high density interconnect needed.

1990 1994 1998 2002 2006 2010Year

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Inte

rcon

nect

ions

per

squ

are

inch

file: roadint4.axg revised 05/18/98

SIA Roadmap BGA 1997

ICP Roadmap 1997

Leading edge PWBCommodity PWB

State of art PWB

Unmet customer need

• SLC (surface laminar circuit) IBM, Japan

• ALIVH (Matsushita, Japan)

• Layer Pair ASTI

Semiconductor roadmap.

Printed Wiring board roadmap.

Technologies with known capability to satisfy need:

Page 50: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 50

Electrical Testing

• Probe Station

• Hot Probe• (Polarity tells doping)

Page 51: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 51

Probe Station

• Available in different level of automation.

• Probes generally individual items

• Test electronics separate

Page 52: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 52

Automatic Testing SystemParallel Computing Environment.- Runs testing algorithms.

Engineering Station- Debug Display- Productivity Monitoring

Universal Manipulator

- To adjust for attachment to other equipment

Test Head- Capable of digital

and analog signals

Page 53: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 53

What does a tester do?It is used at two places in the assembly line:• Front-End: Before the wafer is diced (cut)

• The test head will be pointed down and each die will be brought into contact with a the probes by a wafer handler.

• Non-conforming die’s are inked so that they are not further processed.

• Typically, this test is a sub-set of a full test.• Back-End: The last thing before it is shipped

• This is done after the chip has been bonded and packaged.

• Chips are fed one by one into a socket that uses the same pins that will be used in the field.

• This is a full test of all functionality.

Page 54: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 54

Types of Tests

• Analog signals• Digital signals• Often parallel tests on many pins,

complex test routines!• Time critical step/can take very long

Page 55: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 55

Metrology Tool

Optical or Electro-Optical Imaging System, that detetcs defects such as dust, incomplete or unwanted connects, etc. using pattern recognition

Page 56: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 56

Metrology Tool

• KLA-Tencor eS20

Page 57: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 57

Why electro-optical ?

• Today’s devices have features less than 0.15 micron

• Optical devices catch only 25% of killer defects

• Voltage variation can provide chemical contrast

Page 58: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 58

Defect Detection

Page 59: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 59

Combination Metrology Tools

Combination of optical and electro-optical tool common.

SEM Optical Defect Inspection

Page 60: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 60

Auto Defect Classification (ADC)

ADC classifiesdefect images filedwith the ADC server,with reference tothe classified andrecorded defect data

Page 61: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 61

Time of Flight Secondary Ion Mass Spectrometry

Time of Flight Secondary Ion Mass Spectrometry(TOF-SIMS)

high sensitivity- high transmission (Uex, ap, Eacc)

atoms <50%, molecules <100%- parallel mass detection

high mass resolution>10 000 for Tp<1 ns

high mass accuracy(1-10ppm)

high lateral resolution<100 nm at low mass resolution<500 nm at high mass resolution

high mass rangeup to 10 000 u

Page 62: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 62

The Applied Technique

Principle Modes of Operation

1. Surface Spectroscopy (static SIMS)Application of very low primary ion dose densities quasi non-destructive surface analysis

2. Surface ImagingRastering of a finely focussed ion beam over the surface mass resolved secondary ion images (chemical maps)

3. Depth ProfilingApplication of high primary ion dose densities successive removal of top surface layers elemental in-depth distribution

Page 63: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 63

Trace Metal Detection

Detection Limits with TOF-SIMSarea analyzed: 100 x 100 µm2

(one monolayer: around 1015 atoms/cm2)

Element Detection limit (atoms / cm2)Li 1 x 107

B 1 x 107

Na 1 x 107

Mg 1 x 107

Al 1 x 107

K 1 x 107

Ca 1 x 107

Cr 1 x 108

Mn 5 x 108

Fe 5 x 108

Ni 5 x 108

Cu 5 x 108

Page 64: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 64

TOF-SIMS Instrument

Page 65: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 65

Microscopy challenges from mm to nm

Page 66: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 66

Package cross-section overview

1 mm

Page 67: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 67

Pb-Sn solder bump between package and die

package

bump

die

100 microns

Page 68: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 68

0.13u Process Technology6-level Cu Metallization

ILD

M6

M5

M4

M3

M2

M1

MOSIsolation Transistor gate

gate

source

drain

100 nm

Page 69: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 69

1997 process

2003 process

Page 70: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 70

P1264“65nm node”

~40nm gatelength

P1262 “90nm node”~65nm gatelength

NMOS

Concern: Sample prep is harder both planar and cross-section

Page 71: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 71

M7

M6

M5

M4

M3

M2

M1

Metal Wire Interconnects

6.5 microns

5.6 microns

130nm node

90 nm node

Page 72: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 72

0

10

20

30

40

50

60

0 10 20 30% Increase in IDSAT

% In

crea

se in

I DLI

N

Increasing Strain

XRD data

Xiwei’s strain Electron Diffraction

From A 90nm High Volume Manufacturing Logic Technology Featuring

Novel 45nm Gate Length Strained Silicon CMOS Transistors IEDM 2003 by T. Ghani et al.

Epitaxial layer induces a large uniaxialcompressive strain in the channel region,

thereby resulting in significant hole mobility improvement.

Replacing S/D with epitaxial film improves performance without shrinking geometry

Page 73: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 73

Blanket films: strain measured by XRD

-0.8 -0.6 -0.4 -0.2 0.0 0.2

100

101

102

103

104

105

106

¢ µ (deg)

Inte

nsit

y (c

ps)

Layer

Thickness (Å) Ge composition (y)

Si --- --- SixGey 1752 17.63 SixGey 3133 Linear grade to 0 Si 4531 ---

Si

Ge

Si1-xGex = 5.431 + 0.20x + 0.027x2

Page 74: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 74

Why Cu + CDO?

• Resistivity: 1.7 vs. 2.7 ohmcm

• Dielectric constant: CDO 2.8 to 3.2 SiOF 3.7 SiO2 4

• Reliability: Cu interconnects that will last for 7 years would last about 26 days if they were made of Al(Cu) with doping and shunts.

020406080

100120140

0 200 400 600 800 1000 1200 1400

Pitch (nm)

RC

(ps/

mm

2)

180 nm Al + SiO2

130 nm Cu + SiOF

90 nm Cu + CDO

Page 75: ECE 541/ME 541 Microelectronic Fabrication Techniqueszyang/Teaching/20182019SpringE... · 2015-04-22 · ECE541/ME541 Microelectronic Fabrication Techniques Page 3 But we are not

ECE541/ME541 Microelectronic Fabrication Techniques Page 75

Barriers chosen based on performance on flat wafers

Si

CuBarrier

Anneal

Si

CuSiBarrier

SiN

SiN

/ nmDepth10 20 30 40 50 60 70 80 90 100 110

1810

1910

2010

2110

[ato

ms/

cm3]

Con

cent

ratio

n

Mass

W334A1.TFD

90.91

W340A1.TFD

90.91

W657A1.TFD

90.91

“barrier 1”

SiN

Cu

BAR

Si

Barrier 2

Barrier 3 Formation of Cu silicide reaction product used to determine global barrier integrity