ece 451 coupled linesemlab.uiuc.edu/ece451/appnotes/coupledtl.pdf · 2015. 3. 3. · ece 451...

58
ECE 451 – Jose SchuttAine 1 ECE 451 Coupled Lines Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: others

Post on 30-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • ECE 451 – Jose Schutt‐Aine 1

    ECE 451Coupled Lines

    Jose E. Schutt-AineElectrical & Computer Engineering

    University of [email protected]

  • ECE 451 – Jose Schutt‐Aine 2

    Signal Integrity

    Crosstalk Dispersion Attenuation

    Reflection Distortion Loss

    Delta I Noise Ground Bounce Radiation

    Sense Line

    Drive Line

    Drive Line

    Crosstalk Noise

  • ECE 451 – Jose Schutt‐Aine 3

    TEM PROPAGATION

    L

    z

    C

    I

    V

    +

    -

    z

    Zo Z1 Z2

    Vs

  • ECE 451 – Jose Schutt‐Aine 4

    Telegrapher’s Equations

    L: Inductance per unit length.

    C: Capacitance per unit length.

    L

    z

    C

    I

    V

    +

    -

    V ILz t

    I VCz t

  • ECE 451 – Jose Schutt‐Aine 5

    50 line 1

    line 2

    50

    line 1

    line 2

    50 line 1

    line 2

    line 1

    line 2

    Crosstalk noise depends on termination

  • ECE 451 – Jose Schutt‐Aine 6

    50 line 1

    line 2

    50

    line 1

    line 2

    line 1

    line 2

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

  • ECE 451 – Jose Schutt‐Aine 7

    50 line 1

    line 2

    50

    line 1

    line 2

    line 1

    line 2

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

  • ECE 451 – Jose Schutt‐Aine 8

    tr = 1 ns tr = 7 ns

    Crosstalk depends on signal rise time

    50 line 1

    line 2

    line 1

    line 2

    line 1

    line 2

  • ECE 451 – Jose Schutt‐Aine 9

    Coupled Transmission Lines

    r

    w s

    h

    Cs

    V1

    V2

    I1

    I2

    Cs

    Cm Lm

  • ECE 451 – Jose Schutt‐Aine 10

    1 1 211 12

    V I IL Lz t t

    1 1 211 12

    I V VC Cz t t

    2 1 221 22

    I V VC Cz t t

    Telegraphers Equations for Coupled Transmission Lines

    Maxwellian Form

    2 1 221 22

    V I IL Lz t t

  • ECE 451 – Jose Schutt‐Aine 11

    1 1 2s m

    V I IL Lz t t

    2 1 2m s

    V I IL Lz t t

    1 1 1 2s m m

    I V V VC C Cz t t t

    2 1 2 2m m s

    I V V VC C Cz t t t

    Telegraphers Equations for Coupled Transmission Lines

    Physical form

  • ECE 451 – Jose Schutt‐Aine 12

    Relations Between Physical and Maxwellian Parameters

    (symmetric lines)

    L11 = L22 = Ls

    L12 = L21 = Lm

    C11 = C22 = Cs+Cm

    C12 = C21 = - Cm

  • ECE 451 – Jose Schutt‐Aine 13

    11 12e eV IL Lz t

    11 12e eI IC Cz t

    Add voltageand currentequations

    Ze = L11 + L12C11 + C12

    = Ls + LmCs

    ve = 1

    (L11 + L12 )(C11 + C12 )= 1

    (Ls + Lm )Cs

    Ve : Even mode voltage

    Ie : Even mode current

    Ve =12

    V1 + V2( )

    Ie =12

    I1 + I2( )

    Impedance

    velocity

    Even Mode

  • ECE 451 – Jose Schutt‐Aine 14

    Subtract voltageand currentequations

    Vd : Odd mode voltage

    Id : Odd mode current

    Impedance

    velocity

    Odd Mode

    11 12d dV IL Lz t

    11 12d dI IC Cz t

    d 1 21V2

    V V

    d 1 21I2

    I I

    11 12d

    11 12 2Z = = s m

    s m

    L L L LC C C C

    d11 12 11 12

    1 1v = = ( )( ) ( )( 2 )s m s mL L C C L L C C

  • ECE 451 – Jose Schutt‐Aine 15

    +1 +1

    EVEN

    +1 -1

    ODD

    Mode Excitation

  • ECE 451 – Jose Schutt‐Aine 16

    PHYSICAL SIGNIFICANCE OF EVEN- ANDODD-MODE IMPEDANCES

    * Ze and Zd are the wave resistance seen by the even and odd mode travelling signals respectively.

    V1 = Z11 I1 + Z12 I2V2 = Z21 I1 + Z22 I2

    * The impedance of each line is no longer describedby a single characteristic impedance; instead, we have

  • ECE 451 – Jose Schutt‐Aine 17

    Even-Mode Impedance: ZeImpedance seen by wave propagating through the coupled-line system when excitation is symmetric (1, 1).

    Odd-Mode Impedance: ZdImpedance seen by wave propagating through the coupled-line system when excitation is anti-symmetric (1, -1).

    Common-Mode Impedance: Zc = 0.5ZeImpedance seen by a pair of line and a common return by a common signal.

    Differential Impedance: Zdiff = 2ZdImpedance seen across a pair of lines by differential mode signal.

    Definitions

  • ECE 451 – Jose Schutt‐Aine 18

    EVEN AND ODD-MODE IMPEDANCES

    Z11, Z22 : Self Impedances

    Z12, Z21 : Mutual Impedances

    For symmetrical lines,

    Z11 = Z22 and Z12 = Z21

  • ECE 451 – Jose Schutt‐Aine 19

    EXAMPLE(Microstrip)

    r = 4.3Zs = 56.4

    Single LineDielectric height = 6 milsWidth = 8 mils

    r = 4.3

    Coupled LinesHeight = 6 milsWidth = 8 milsSpacing = 12 mils

    Ze = 68.1 Zd = 40.8 Z11 = 54.4 Z12 = 13.6

  • ECE 451 – Jose Schutt‐Aine 20

    ( ,0) ( ,0) ( ,0) ( ,0)e d e dtdr

    e d e d

    a t a t a t a tIZ Z Z Z

    ( ,0) ( ,0)tdr e dV a t a t da ( ,0) 0t

    = 2

    tdr e

    tdr

    V ZI

    Even Mode

    coaxial line

    Zgline 1

    line 2

    Zg

    stepgenerator

    Vb

    Vf IT+

    -VT I2

    I1

    reference plane tied to ground

    e g1Z = 2( ) Z1

    e

    e

    e 2v =

    e

    l

  • ECE 451 – Jose Schutt‐Aine 21

    coaxial line

    Zg

    Zg

    stepgenerator

    Vb

    Vf line 1

    line 2

    IT

    VTI2 reference plane floating

    +-

    I1

    tdr e d e dV = a (t,0)+a (t,0)- a (t,0)-a (t,0) f bV V

    tdr ( ,0) ( ,0)I = e d

    e d

    a t a tZ Z

    tdr

    ( ,0) ( ,0)I =- e de d

    a t a tZ Z

    ae(t,0) = 0, VtdrItdr

    = 2Zd

    dd

    1 1 2l, v = 2 1

    dd g

    d

    Z Z

    Odd Mode

  • ECE 451 – Jose Schutt‐Aine 22

    EXTRACT INDUCTANCE AND CAPACITANCE COEFFICIENTS

    s1L = + 2

    e d

    e d

    Z Zv v

    1s

    e e

    CZ v

    m 1L = - 2

    e d

    e d

    Z Zv v

    m 1 1 1C = - 2 e e d dZ v Z v

    d s eZ < Z < Z

  • ECE 451 – Jose Schutt‐Aine 23

    20

    40

    60

    80

    100

    120

    4 6 8 10 12 14 16 18Spacing (mils)

    Even-Mode Impedanceh=3 milsh=5 milsh=7 mils

    h=10 milsh=14 mils

    h=21 mils

    Ze(

    )

    Measured even-mode impedance

  • ECE 451 – Jose Schutt‐Aine 24

    20

    25

    30

    35

    40

    45

    50

    4 6 8 10 12 14 16 18Spacing (mils)

    Odd-Mode Impedanceh=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

    Zd

    (

    )

    Measured odd-mode impedance

  • ECE 451 – Jose Schutt‐Aine 25

    0.158

    0.16

    0.162

    0.164

    0.166

    0.168

    0.17

    4 6 8 10 12 14 16 18Spacing (mils)

    Even-Mode velocityh=3 mils

    h=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

    v e(m

    /ns)

    Measured even-mode velocity

  • ECE 451 – Jose Schutt‐Aine 26

    0.175

    0.18

    0.185

    0.19

    0.195

    0.2

    0.205

    0.21

    4 6 8 10 12 14 16 18Spacing (mils)

    Odd-Mode Velocity

    h=3 milsh=5 mils

    h=7 mils

    h=10 milsh=14 milsh=21 mils

    vd(

    m/n

    s)

    Measured odd-mode velocity

  • ECE 451 – Jose Schutt‐Aine 27

    0

    50

    100

    150

    200

    250

    4 6 8 10 12 14 16 18Spacing (mils)

    Mutual Inductance h=3 milsh=5 mils

    h=7 mils

    h=10 mils

    h=14 mils

    h=21 mils

    Lm

    (nH

    /m)

    Measured mutual inductance

  • ECE 451 – Jose Schutt‐Aine 28

    10

    15

    20

    25

    30

    35

    40

    4 6 8 10 12 14 16 18Spacing (mils)

    Mutual Capacitance h=3 milsh=5 mils

    h=7 milsh=10 mils

    h=14 mils

    h=21 mils

    Cm

    (pF/

    m)

    Measured mutual capacitance

  • ECE 451 – Jose Schutt‐Aine 29

    40

    50

    60

    70

    80

    90

    100

    110

    10 20 30 40 50

    Typical Even & Odd Mode Impedances

    ZevenZodd

    Zeve

    n, Z

    odd

    (Ohm

    s)

    Distance (mils)

    Even & Odd Mode Impedances

  • ECE 451 – Jose Schutt‐Aine 30

    Microstrip : Inhomogeneous structure, odd and even-mode velocities must have different values.

    Stripline : Homogeneous configuration, odd and even-mode velocities have approximately the same values.

    Modal Velocities in Stripline and Microstrip

  • ECE 451 – Jose Schutt‐Aine 31

    Microstrip vs Stripline

    Microstrip (h =8 mils)w = 8 milsr = 4.32Ls = 377 nH/mCs = 82 pF/mLm = 131 nH/mCm = 23 pF/mve = 0.155 m/nsvd = 0.178 m/ns

    Stripline (h =16 mils)w = 8 milsr = 4.32Ls = 466 nH/mCs = 86 pF/mLm = 109 nH/mCm = 26 pF/mve = 0.142 m/nsvd = 0.142 m/ns

    50

    50

  • ECE 451 – Jose Schutt‐Aine 32

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    Volts

    microstrip

    C

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    Vol

    ts

    stripline

    C

    50

    50

    Microstrip vs Stripline

    Sense line response at near end

    Probe

  • ECE 451 – Jose Schutt‐Aine 33

    1( ) e e d dj z j z j z j zv v v v

    e e d d

    even odd

    V z A e B e A e B e

    2 ( ) e e d dj z j z j z j zv v v v

    e e d d

    even odd

    V z A e B e A e B e

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    General Solution for Voltages

  • ECE 451 – Jose Schutt‐Aine 34

    11 1( ) e e d d

    j z j z j z j zv v v v

    e e d de d

    even odd

    I z A e B e A e B eZ Z

    21 1( ) e e d d

    j z j z j z j zv v v v

    e e d de d

    even odd

    I z A e B e A e B eZ Z

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    General Solution for Currents

  • ECE 451 – Jose Schutt‐Aine 35

    odd

    even

    First reflection

    even

    even

    odd

    odd

    Second reflection

    odd

    odd

    odd

    oddeven

    even

    even

    even

    Zs1

    Zs2 ZL2

    ZL1line 1

    line 2

    Coupling of Modes (asymmetric load)

  • ECE 451 – Jose Schutt‐Aine 36

    Coupling of Modes(symmetric load)

    Zs

    Zs ZL

    ZLline 1

    line 2

    odd

    even

    First reflection

    even

    odd

    Second reflection

    odd

    even

  • ECE 451 – Jose Schutt‐Aine 37

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Vol

    ts

    0 5 10 15 20 25 30

    Time (ns)

    Drive Line at Near End

    35 40

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    Vol

    ts

    0 5 10 15 20 25 30

    Time (ns)

    Sense Line at Near End

    35 40

  • ECE 451 – Jose Schutt‐Aine 38

    1 2 3

    31 1 211 12 13

    VI V VC C Cz t t t

    32 1 221 22 23

    VI V VC C Cz t t t

    3 31 231 32 33

    I VV VC C Cz t t t

    31 1 211 12 13

    IV I IL L Lz t t t

    32 1 221 22 23

    IV I IL L Lz t t t

    3 31 231 32 33

    V II IL L Lz t t t

    Three‐Line Microstrip

  • ECE 451 – Jose Schutt‐Aine 39

    11 13( )V IL Lz t

    11 13( )I VC Cz t

    Subtract (1c) from (1a) and (2c) from (2a), we get

    This defines the Alpha mode with:

    1 3V V V 1 3I I I and

    The wave impedance of that mode is:

    11 13

    11 13

    L LZC C

    and the velocity is 11 13 11 13

    1uL L C C

    Three‐Line – Alpha Mode

  • ECE 451 – Jose Schutt‐Aine 40

    In order to determine the next mode, assume that

    1 2 3V V V V

    1 2 3I I I I

    31 211 21 31 12 22 32 13 23 33V II IL L L L L L L L Lz t t t

    31 211 21 31 12 22 32 13 23 33I VV VC C C C C C C C Cz t t t

    By reciprocity L32 = L23, L21 = L12, L13 = L31

    By symmetry, L12 = L23

    Also by approximation, L22 L11, L11+L13 L11

    Three‐Line – Modal Decomposition

  • ECE 451 – Jose Schutt‐Aine 41

    31 211 12 13 12 112V II IL L L L Lz t t t

    In order to balance the right-hand side into I, we need to have

    12 11 2 11 12 13 2 11 12 22L L I L L L I L L I 2

    12 122L L

    or 2

    Therefore the other two modes are defined as

    The Beta mode with

    Three‐Line – Modal Decomposition

  • ECE 451 – Jose Schutt‐Aine 42

    The Beta mode with

    1 2 32V V V V

    1 2 32I I I I

    The characteristic impedance of the Beta mode is:

    11 12 13

    11 12 13

    22

    L L LZC C C

    and propagation velocity of the Beta mode is

    11 12 13 11 12 131

    2 2u

    L L L C C C

    Three‐Line – Beta Mode

  • ECE 451 – Jose Schutt‐Aine 43

    The Delta mode is defined such that

    1 2 32V V V V

    1 2 32I I I I

    The characteristic impedance of the Delta mode is

    11 12 13

    11 12 13

    22

    L L LZC C C

    The propagation velocity of the Delta mode is:

    11 12 13 11 12 131

    2 2u

    L L L C C C

    Three‐Line – Delta Mode

  • ECE 451 – Jose Schutt‐Aine 44

    1 0 1

    1 2 1

    1 2 1

    E

    1 2 3

    Alpha modeBeta mode*

    Delta mode*

    Symmetric 3‐Line Microstrip

    In summary: we have 3 modes for the 3-line system

    *neglecting coupling between nonadjacent lines

  • ECE 451 – Jose Schutt‐Aine 45

    1 2 3

    r = 4.3

    113 17 5( / ) 16 53 16

    5 17 113C pF m

    346 162 67( / ) 152 683 152

    67 162 346L nH m

    0.45 0.12 0.450.5 0 0.50.45 0.87 0.45

    E

    0.44 0.49 0.440.5 0 0.50.10 0.88 0.10

    H

    Coplanar Waveguide

  • ECE 451 – Jose Schutt‐Aine 46

    73 0 0( ) 0 48 0

    0 0 94mZ

    56 23 8( ) 22 119 22

    8 23 56cZ

    0.15 0 0( / ) 0 0.17 0

    0 0 0.18pv m ns

    1 2 3

    r = 4.3

    Coplanar Waveguide

  • ECE 451 – Jose Schutt‐Aine 47

    WS' S'WS

    rh

    2Sk

    S W

    ( ) : Complete Elliptic Integral of the first kindK k

    '( ) ( ')K k K k

    2 1/ 2' (1 )k k

    30 '( ) (ohm)( )1

    2

    ocpr

    K kZK k

    1/ 22

    1cp rv c

    Coplanar Waveguide

  • ECE 451 – Jose Schutt‐Aine 48

    S WW

    rh

    120 '( ) (ohm)( )1

    2

    ocsr

    K kZK k

    Coplanar Strips

  • ECE 451 – Jose Schutt‐Aine 49

    Characteristic Microstrip Coplanar Wguide Coplanar strips

    eff* ~6.5 ~5 ~5

    Power handling High Medium Medium

    Radiation loss Low Medium Medium

    Unloaded Q High Medium Low or High

    Dispersion Small Medium Medium

    Mounting (shunt) Hard Easy Easy

    Mounting (series) Easy Easy Easy

    * Assuming r=10 and h=0.025 inch

    Qualitative Comparison

  • ECE 451 – Jose Schutt‐Aine 50

    2p

    h

    w

    dielectric

    ground

    signal strip

    V Transmission Line

  • ECE 451 – Jose Schutt‐Aine 51

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4 0.5 0.6w/h

    CHARACTERISTIC IMPEDANCE

    30º37.5º45º52.5º

    60ºMicrostrip

    0.7 0.8 0.9 1

    Zo (o

    hms)

    Calculated values of the characteristic impedance for a single-line v-strip structure as a function of width-to-height ratio w/h. The relative dielectric constant is r = 2.55.

    V‐Line Characteristic Impedance

  • ECE 451 – Jose Schutt‐Aine 52

    1.8

    1.85

    1.9

    1.95

    2

    2.05

    2.1

    2.15

    2.2

    0 0.1 0.2 0.3 0.4 0.5 0.6

    w/h

    EFFECTIVE PERMITTIVITY

    30º

    37.5º

    45º

    52.5º

    60º

    Microstrip

    0.7 0.8 0.9 1

    Effe

    ctiv

    e R

    elat

    ive

    Die

    lect

    ric C

    onst

    ant

    Calculated values of the effective relative dielectric constant for a single-line v-strip structure as a function of width-to-height ratio w/h. The relative dielectric constant is r = 2.55

    V‐Line – Effective Permittivity

  • ECE 451 – Jose Schutt‐Aine 53

    h

    y

    x

    Region 2

    Region 3

    Region 4

    Region 6

    Region 1

    Region 5

    2pw

    dielectricground surface

    signal strip

    s

    Three‐Line – V Transmission Line

  • ECE 451 – Jose Schutt‐Aine 54

    74.00 -0.97 -0.23C (pF/m) = -0.97 74.07 -0.97

    -0.23 -0.97 74.00

    425.84 20.35 7.00L (nH/m) = 20.36 422.85 20.36

    7.00 20.35 425.84

    52.49 -5.90 -0.57C (pF/m) = -5.90 53.27 -5.90

    -0.57 -5.90 52.49

    609.74 113.46 41.79L (nH/m) = 113.54 607.67 113.54

    41.79 113.46 609.74

    Microstrip V-line

    Comparison of the inductance and capacitance matricesbetween a three-line v-line and microstrip structures. The parameters are p/h = 0.8 mils, w/h = 0.6 and r = 4.0.

    h

    y

    x

    Region 2

    Region 3

    Region 4

    Region 6

    Region 1

    Region 5

    2pw

    dielectricground surface

    signal strip

    s1 2 3

    V‐Line and Microstrip

  • ECE 451 – Jose Schutt‐Aine 55

    0

    50

    100

    150

    200

    250

    300

    350

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Mutual Inductance

    V-linemicrostrip

    Lm

    (nH

    /m)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Mutual Capacitance

    V-linemicrostrip

    C m(p

    F/m

    )

    Plot of mutual inductance (top) and mutual capacitance (bottom) versus spacing-to-height ratiofor v-line and microstrip configurations. The parameters are w/h = 0.24, r = 4.0.

    V‐Line: Coupling Coefficients

  • ECE 451 – Jose Schutt‐Aine 56

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.2 0.4 0.6 0.8 1 1.2s/h

    Coupling Coefficient

    V-linemicrostrip

    Kv

    Plot of the coupling coefficient versus spacing-to-height ratio for v-line and microstrip configurations. The parameters are w/h = 0.24, r = 4.0.

    V‐Line vs Microstrip: Coupling Coefficients

  • ECE 451 – Jose Schutt‐Aine 57

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1 3 5 7 9 11 13 15 17

    microstrip

    V-60

    V-30

    Frequency (GHz)

    Linea

    r Atte

    nua ti

    on

    Propagation Function

    2p

    h

    w

    dielectric

    ground

    signal strip

    Advantages of V Line* Higher bandwidth

    * Lower crosstalk

    * Better transition

    ground reference

    ground reference

    dielectr

    ic

    substra

    te

    signal strip

    Advantages of V‐Line

  • ECE 451 – Jose Schutt‐Aine 58

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    0 5 10 15 20 25

    Insertion Loss

    VlineMicrostrip20

    *log1

    0*|S

    21|

    Frequency (GHz)

    V‐Line vs Microstrip: Insertion Loss