ece 451 advanced microwave measurements transmission linesemlab.uiuc.edu/ece451/notes/tl.pdf · ece...

29
ECE 451 – Jose SchuttAine 1 ECE 451 Advanced Microwave Measurements Transmission Lines Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]

Upload: dothuan

Post on 16-Aug-2018

256 views

Category:

Documents


4 download

TRANSCRIPT

ECE 451 – Jose Schutt‐Aine 1

ECE 451Advanced Microwave Measurements

Transmission Lines

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 451 – Jose Schutt‐Aine 2

Faraday’s Law of Induction

Ampère’s Law

Gauss’ Law for electric field

Gauss’ Law for magnetic field

Constitutive Relations

BEt

H J Dt

D

0B

B H D E

Maxwell’s Equations

ECE 451 – Jose Schutt‐Aine 3

z

Wavelength :

= propagation velocity

frequency

Why Transmission Line?

ECE 451 – Jose Schutt‐Aine 4

In Free Space

At 10 KHz : = 30 km

At 10 GHz : = 3 cm

Transmission line behavior is prevalent when the structural dimensions of the circuits are comparable to the wavelength.

Why Transmission Line?

ECE 451 – Jose Schutt‐Aine 5

Let d be the largest dimension of a circuit

If d << , a lumped model for the circuit can be used

circuit

z

Justification for Transmission Line

ECE 451 – Jose Schutt‐Aine 6

circuit

z

If d ≈ , or d > then use transmission line model

Justification for Transmission Line

ECE 451 – Jose Schutt‐Aine 7

L: Inductance per unit length.

C: Capacitance per unit length.

L

z

C

I

V

+

-

V ILz t

I VCz t

V j LIz

I j CVz

Assumetime-harmonicdependence

, ~ j tV I e

Telegraphers’ Equations

ECE 451 – Jose Schutt‐Aine 8

L

z

C

I

V

+

-

22

2

V LCVz

22

2

I CLIz

2V V Ij L j Lj CVz z z z

2 I I Vj C j Lj CI

z z z z

TL Solutions

ECE 451 – Jose Schutt‐Aine 9

( )Forward Wave Backward Wave

j z j zV z V e V e

z

Zo

forward wave

backward wave

LC

oLZC

(Frequency Domain)

( ) j z j z

o o

Forward Wave Backward Wave

V VI z e eZ Z

TL Solutions

ECE 451 – Jose Schutt‐Aine 10

( , ) cos cosForward Wave Backward Wave

V z t V t z V t z

LC

oLZC

( , ) cos coso o

Forward Wave Backward Wave

V VI z t t z t zZ Z

1v

LC

vf

Propagation constant

Characteristic impedanceWavelength

Propagation velocity

TL Solutions

ECE 451 – Jose Schutt‐Aine 11

At z=0, we have V(0)=ZRI(0)

But from the TL equations:

(0)V V V

(0) o o

V VIZ Z

Which gives

R

o

Z V V V VZ

RV V

R oR

R o

Z ZZ Z

is the load reflection coefficientwhere

Reflection Coefficient

ECE 451 – Jose Schutt‐Aine 12

- If ZR = Zo, R=0, no reflection, the line is matched

- If ZR = 0, short circuit at the load, R=-1

- If ZR inf, open circuit at the load, R=+1

( ) j z j zRV z V e e

( ) j z j zR

o

VI z e eZ

2( ) 1j z j zRV z V e e

2( ) 1j z

j zR

o

V eI z eZ

Reflection Coefficient

V and I can be written in terms of R

ECE 451 – Jose Schutt‐Aine 13

( )( )( )

j z j zR

o j z j zR

e eV zZ z ZI z e e

tantan

R oo

o R

Z jZ lZ l ZZ jZ l

Generalized Impedance

Impedance transformation 

equation

ECE 451 – Jose Schutt‐Aine 14

( ) tanoZ l jZ l

( )tan

oZZ lj l

- Short circuit ZR=0, line appears inductive for 0 < l < /2

- Open circuit ZR inf, line appears capacitive for 0 < l < /2

2

( ) o

R

ZZ lZ

- If l = /4, the line is a quarter-wave transformer

Generalized Impedance

ECE 451 – Jose Schutt‐Aine 15

( )Backward traveling wave at( )Forward traveling wave at ( )

b

f

V zzzz V z

2 2( )

j z

j z j zRj z

V e Vz e eV e V

2( ) j lRl e Reflection coefficient

transformation equation

1 ( )( )1 ( )o

zZ z Zz

( )( )( )

o

o

Z z ZzZ z Z

Generalized Reflection Coefficient

ECE 451 – Jose Schutt‐Aine 16

2( ) 1j z j zRV z V e e

2 2( ) 1 1 j z j z j z

R RV z V e e V e

max 1 RV

min 1 RV

Maximum and minimummagnitudes given by

Voltage Standing Wave Ratio (VSWR)We follow the magnitude of thevoltage along the TL

ECE 451 – Jose Schutt‐Aine 17

max

min

11

R

R

VVSWRV

Voltage Standing Wave Ratio (VSWR)

Define Voltage Standing Wave Ratio as:

It is a measure of the interaction between forward and backward waves

ECE 451 – Jose Schutt‐Aine 18

VSWR – Arbitrary Load

Shows variation of amplitude along line

ECE 451 – Jose Schutt‐Aine 19

VSWR – For Short Circuit Load

Voltage minimum is reached at load

ECE 451 – Jose Schutt‐Aine 20

Voltage maximum is reached at load

VSWR – For Open Circuit Load

ECE 451 – Jose Schutt‐Aine 21

VSWR – For Open Matched Load

No variation in amplitude along line

ECE 451 – Jose Schutt‐Aine 22

Application: Slotted‐Line Measurement

‐ Measure VSWR = Vmax/Vmin‐ Measure location of first minimum

ECE 451 – Jose Schutt‐Aine 23

Application: Slotted‐Line Measurement

At minimum, ( ) pure real Rz

Therefore,  min2min( ) j d

R Rd e

min2 j dR R e So, 

11

RVSWRVSWR

Since  min211

j dR

VSWR eVSWR

then

11

RR o

R

Z Zand

ECE 451 – Jose Schutt‐Aine 24

Summary of TL Equations

tantan

R oo

o R

Z jZ lZ l ZZ jZ l

2( ) j lRl e

1 ( )( )1 ( )o

zZ z Zz

( )( )( )

o

o

Z z ZzZ z Z

Impedance Transformation 

Reflection Coefficient Transformation 

Reflection Coefficient – to Impedance 

Impedance to Reflection Coefficient 

2( ) 1 j z j z

Ro

VI z e eZ

2( ) 1j z j zRV z V e e

Voltage Current

ECE 451 – Jose Schutt‐Aine 25

+- Vg =100 V

Zo = 50 Zg =(10+j10)

d=l d=0

ZR=(30+j40) Zin

Ig

Consider the transmission line system shown in the figure above.(a) Find the input impedance Zin.

(30 40) 50 0.5 90(30 40) 50

R oR

R o

Z Z jZ Z j

4 .0.7252( ) 0.5 90 0.5 72jj l

Rd l e e

Example 1

ECE 451 – Jose Schutt‐Aine 26

1 ( ) 1 0.5 72501 ( ) 1 0.5 72in o

lZ Zl

64.361 51.738 39.86 50.54inZ j

(b) Find the current drawn from the generator

100 0 1.552 39.11(10 10)(39.86 50.54)

gg

g in

VI A

Z Z j j

1.207 0.981gI j A

Example 1 – Cont’

ECE 451 – Jose Schutt‐Aine 27

c) Find the time‐average power delivered to the load

1( ) 64.361 51.73 1.5562 39.11 100.159 12.622in gV l Z I

*1 1Real ( ) Real 100.159 12.62 1.5562 39.112 2gP V l I

*1 Real ( ) 48.262 gP V l I W

Example 1 – Cont’

ECE 451 – Jose Schutt‐Aine 28

+- Vg

Zo = 50

d=l d=0

L=1 HC=100 pF

R=50

In the system shown above, a line of characteristic impedance 50  is terminated by a series R, L, C circuit having the values R = 50 , L = 1 H, and C = 100 pF.

(d) Find the source frequency fo for which there are no standing waves on the line.

Example 1 – Cont’

ECE 451 – Jose Schutt‐Aine 29

No standing wave on the line if ZR = R = Zo which occurs at the resonant frequency of the RLC circuit. Thus,

8

6 10

1 1 10 15.9222 2 10 10

of Hz MHzLC

Example 1 – Cont’