ece 422 system operations planning 2 –synchronous machine...

51
1 Spring 2015 Instructor: Kai Sun ECE 422 Power System Operations & Planning 2 – Synchronous Machine Modeling

Upload: others

Post on 24-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

1

Spring 2015Instructor: Kai Sun

ECE 422 Power System Operations & Planning

2 – Synchronous Machine Modeling

2

Outline

•Synchronous Machine Modeling•Simplified Models for Stability Studies•Materials– Saadat’s Chapter 8– Kundur’s Chapters 3‐5

3

Synchronous Generators

Stator

Salient-pole rotor Cylindrical/round rotor

Field current

Armature winding

Field winding

4

Types of Rotors

• Salient pole rotors– Concentrated windings on poles and non‐uniform air gap

– Short axial length and large diameter– Hydraulic turbines operated at low speeds (large number of poles)

– Have damper/amortisseur windings to help damp out speed oscillations

• Round rotors– 70% of large synchronous generators (150~1500MVA)

– Distributed winding and uniform air gap– Large axial length and small diameter to limit the centrifugal forces

– Steam and gas turbines, operated at high speeds, typically 3600 or 1800rpm (2 or 4‐pole)

– No special damper windings but eddy in the solid steal rotor gives damping effects Round rotor generator under construction

16 poles salient-pole rotor (12 MW)

(Source: http://emadrlc.blogspot.com)

5

Under Steady‐State Conditions

•MMFs: Fsr =Fr+Fs Fr=Fsr -Fs

• EMFs: Esr=Ea+Ear Ea=Esr -Ear

Esr =V+(Ra+jXl)Ia

• For a round rotor, defineEar =-jXarIa

where Xs=Xl+Xar (synchronous reactance)

d

Axis of coil a

(reference)

N

S

n

m

ea

Fr

Fs

Fsr

Fs

Fsr

Fr

( ) ( )

a a ar a

a s a

E V R jX jX IV R jX I

Ea

EsrEar

Ea

Load

r

6

Armature windings: • a‐a’, b‐b’ and c‐c’ windings

Rotor windings:• Field windings

– Field winding F‐F’ produces a flux on the d‐axis.

• Damper windings– Two damper windings D‐D’ and Q‐Q’

respectively on d‐ and q‐axes– For a round‐rotor machine, consider a

second damper winding G‐G’ on the q‐axis (two windings on each axis)

Total number of windings:• Salient pole: 3+3 (discussed here)• Round‐rotor: 3+4

Stator and Rotor Windings

Note: ANSI/IEEE standard 100-1977 defines the quadrature (q) axis to lead the d-axis by 900

2rt

• Assume a synchronously rotating reference frame at speed r (along with the axis of a-a’ at t=0)

• Assume to be the displacement of q-axis from the reference axis

Quadrature or q axis

Direct or d axis

Reference axis

r

7

Voltage and Flux Equations (Salient‐pole machine)

0 0 0 0 00 0 0 0 00 0 0 0 0

0 0 0 0 00 0 0 0 000 0 0 0 00

a a aa

b b bb

c c cc

FF F F

DD D D

QQ Q Q

e iRe iRe iR d

Re i dtRe i

Re i

0

0abc abc abcabc

FDQFDQ FDQ FDQ

ddt

e i ψRRe i ψ

a aaa ab ac aF aD aQ

b bba bb bc bF bD bQ

c cca cb cc cF cD cQ

F a F b F c F F F D F QF F

D a D b D c D F D D D QD D

Q a Q b Q c Q F Q D Q QQ Q

il l l l l lil l l l l lil l l l l l

l l l l l l il l l l l l il l l l l l i

abc abcSS SR

FDQ FDQRS RR

ψ iL Lψ iL L

• Model windings as a group of magnetically coupled circuits with inductances depending on

• Rotor self‐inductances (lFF, lDD, lQQ)

• Rotor mutual inductances (lFD, lDQ, lFQ)

• Rotor self‐inductances (lFF, lDD, lQQ)

• Rotor mutual inductances (lFD, lDQ, lFQ)

• Stator self‐inductances (laa, lbb, lcc)

• Stator mutual inductances (lab, lbc, lac)

• Stator self‐inductances (laa, lbb, lcc)

• Stator mutual inductances (lab, lbc, lac)

• Stator‐to‐rotor mutual inductances (laF, lbD, laQ)• Stator‐to‐rotor mutual inductances (laF, lbD, laQ)

A main objective of synchronous machine modeling is to find constants for simplification of voltage and flux equations

Rc

Ra

Rb

aF

D

Q

c

b

RF

RD

RQ

ea

ec

eb

eF

eQ=0

eD=0

8

The matrix is symmetric because the mutual inductance by definition is the flux linkage with one winding per unit current in the other winding, i.e.

l12 ≝ N1 / i2 = N1 N2 / (N2i2)= N1 N2 / MMF2= N1N2 P12 = N12P12 = l21

P12 ~ permeance of the mutual flux path

N12 ~ effective coupling between two windings

A salient pole machine has significantly different permeances in d and q axes:

• P12 between stator windings (e.g. Paa and Pab) is a function of the rotor position and reaches the maximum twice in 0o~360o

P12 P0+P2cos2(+) l12 =l0+l2cos2(+)

• P12 between stator and rotor windings (e.g. PaF) may be treated as constant but effective N12 is a function of the rotor position and reaches the maximum once in 0o~360o

N12 N0cos(+) l12 =l1cos(+)

a aaa ab ac aF aD aQ

b bba bb bc bF bD bQ

c cca cb cc cF cD cQ

F a F b F c F F F D F QF F

D a D b D c D F D D D QD D

Q a Q b Q c Q F Q D Q QQ Q

il l l l l lil l l l l lil l l l l l

l l l l l l il l l l l l il l l l l l i

Assume a sinusoidal space distribution of each MMF

9

Stator self‐inductances (laa, lbb, lcc) and Stator Mutual Inductances (lab, lbc, lac)• Assume a sinusoidal space distribution of MMF Fa• laa is equal to the ratio of flux linking phase a winding to current ia, with zero currents in all other circuits, which can be approximated as

laa= Ls + Lm cos2

• lab <0 since windings a and b have 120o (>90o) displacement • Has the maximum absolute value when = ‐300 or 1500.

lab = lba = -Ms - Lmcos2(+/6)

laa=Ls + Lm cos2

lbb=Ls + Lm cos2(-2/3)

lcc=Ls + Lm cos2(+2/3)

Ls >Lm 0

lab = -Ms - Lmcos2(+/6)

lbc = -Ms - Lmcos2(-/2)

lca = -Ms - Lmcos2(+5/6)

Ms Ls/2

q axis

d axis

Reference axis

b aq

d

= -30o

b a

q

d

=150o

S N

N S

c

c

10

Stator to Rotor Mutual Inductances(LSR: laF~lcF, laD~lcD, laQ~lcQ)

• The rotor sees a constant permeance if neglecting variations in the air gap due to stator slots

• When the flux linking a stator winding and a rotor winding reaches the maximum when they aligns with each other and is 0 when they are displaced by 90o

• d‐axis

• q‐axis

laF = lFa = MF cos laD = lDa = MD cos

lbF = lFb = MF cos(-2/3) lbD = lDb = MD cos(-2/3)

lcF = lFc = MF cos(+2/3) lcD = lDc = MD cos(+2/3)

LaQ = LQa = -MQ sin

LbQ = LQb = -MQ sin(-2/3)

LcQ = LQc = -MQ sin(+2/3)

baq (Q)

d (F, D)

c

11

For Salient‐pole Rotors

Which of the curves will be different for round rotors? No 2nd harmonic

12

Rotor Inductances (LRR: lFF, lDD, lQQ, lFD, lFQ, lDQ)

•They are all constant– Rotor self inductances

– Rotor mutual inductances

lFF ≜ LF

lDD ≜ LD

lQQ ≜ LQ

lFD = lDF ≜ MR

lFQ = lQF = 0

lDQ = lQD = 0

13

LRS = LTSR

F R 0R D 00 0 Q

Summary Observations:• Only LRR is constant• LSS and LSR are or time dependent• How to simplify LSS and LSR?

– Diagonalization– Remove or time dependency

What if we define q-axis lagging d-axis by 90o?

abc abcSS SR

FDQ FDQRS RR

ψ iL Lψ iL L

How to remove or time dependency?

• The 1st harmonic in LSS and 2nd harmonic in LSR are due to the rotor rotating relative to a, b and c to cause variations in P12 or N12

• Constant LRR doesn’t have harmonic terms because it is in a reference frame rotating with the rotor

FDQ = - LSR iabc + LRR iFDQ

LSR iabc = -FDQ + LRR iFDQ

• LSR iabc may be represented by functions independent of if we represent stator currents and flux linkages also in a reference frame rotating with the rotor.

14

FDQ = - LSR iabc + LRR iFDQ

F = – laFia – lbFib – lcFic +lFFiF + lFDiD + lFQiQ

= – MFcos ia – MFcos(-2/3) ib – MF cos(+2/3)ic +LFiF + MRiD +0= – MF [ia cos + ib cos(-2/3) + ic cos(+2/3)] + LFiF + MRiD

D = – laDia – lbDib – lcDic +lDFiF + lDDiD + lDQiQ

= – MD cos ia - MD cos(-2/3) ib - MD cos(+2/3)ic +MRiF + LDiD + 0 = – MD [ia cos + ib cos(-2/3) + ic cos(+2/3)] + MRiF + LDiD

Q = – laQia – lbQib – lcQic +lQFiF + lQDiD + lQQiQ

= MQ sin ia + MQ sin(-2/3) ib + MQ sin(+2/3) ic +0 + 0 + LQiQ

= MQ [ia sin + ib sin(-2/3) + ic sin(+2/3) ] +LQiQ

15

Park’s (dq0) Transformation

• Define

id= kd [ia cos +ib cos(-2/3) +ic cos(+2/3)]

iq= -kq [ia sin +ib sin(-2/3) +ic sin(+2/3) ]

For balanced steady-state conditions:ia= Im sinstib= Im sin(st - 2/3)ic= Im sin(st + 2/3)

id= kd Im sin(st-)×3/2

iq= -kq Im cos(st-)×3/2

=rt+-/2rs

id= kd Im sin(/2-)×3/2

iq= -kq Im cos (/2-)×3/2Constant currents!

• Define

i0= k0(ia + ib + ic)

00 0 0

cos cos( 2 / 3) cos( 2 / 3)sin sin( 2 / 3) sin( 2 3)

/

d d d

q

a

d b

q cq q

k k kk k k

i ii

kii ik k

0dq abci Pi

16

Park’s (dq0) Transformation (cont’d)

P-TP-1=U P-1= PT or PTP=U (P is an orthogonal matrix)

1

1/ 2 cos sin

2 / 3 1/ 2 cos( 2 / 3) sin( 2 / 3)

1/ 2 cos( 2 / 3) sin( 2 / 3)

P

1 / 2 1 / 2 1 / 22 / 3 cos cos( 2 / 3) cos( 2 / 3)

sin sin( 2 / 3) sin( 2 / 3)

P

kd=kq= and k0=

P3 =edid+eqiq+e0i0If we expect the transformation to be power invariant:

What if we define q-axis lagging d-axis by 90o?

3T

a a b b c c abc abcP e i e i e i e i 1 10 0( )T

dq dq P e P i 1

0 0T T

dq dq e P P i

17

Flux Equations after Park’s Transformation

0 adq bc Pψψ 0 dq

FD QQ

abc

FD

ψψ ψψ P 0

0 U

abc abcSS SR

FDQ FDQRS RR

ψ iL Lψ iL L

01 1

0 SS SR

RS R

dq dq

FDQF

RDQ

P 0 P 00 U 0 U

L

iL LψLψ i

01

dq

F

abc

DF QDQ

ψ

ψψP 0

U

ψ

0

0 0dq dqSS SR

RS RRFDQFDQ

ψ iL LL Lψ i

0 00 0 0 0 0 00 0 00 0 0 0

0 0 00 0 00 0 0 0

d dd F D

q qq Q

F F RF F

D R DD D

Q QQ Q

iLiL kM kMiL kM

kM L M ikM M L i

kM L i

032 2

3 3 / 22

s s d s s m

q s s m

L L M L L M L

L L M L k

0 00 0 0 0 0 00 0 00 0 0

0 0 00 0 0 00 0 0 0

d dd F D

F FF F R

D DD R D

q qq Q

Q QQ Q

iLiL kM kMikM L M

ikM M LiL kM

kM L i

10 00

0SS SR

RS RR

dq dq

FDQFDQ

P P 0U 0 ULψ

L

iLψ iL

18

Voltage Equations after Park’s Transformation0

1

dq

F

abc

DF QDQ

e

eeP 0

U

e

00 adq bc Pee

0 01 1

dq abc

FDQ

dq

FDQFDQ

P 0 P 00 U 0 U

e i

e i

R 00 R

10 dq

FDQ

ddt

ψ

ψP 00 U

10 0abc

FD

dq dq

FDQQ QFD

P 0 P 0e iie 0 0 U

00 RU

R 10 dq

FDQ

ddt

P 0 P 00 U 0 ψU

ψ

0 0 0 001

dq dq dp dqdq

FDQFDQ FDQ FDQFDQ

dd

dtt

d

Pe i ψ ψP 0

0 U

R 00 Re ψ ψi

Note: P is NOT constant

1 1 1r

d d d ddt dt d d

P P P P P P1/ 2 1/ 2 1/ 2

2 / 3 cos cos( 2 / 3) cos( 2 / 3)sin sin( 2 / 3) sin( 2 / 3)

0 sin cos0 sin( 2 /3) cos( 2 /3)0 sin( 2 /3) cos( 2 /3)

0 0 00 0 10 1 0

r

10

0 0( ) ( )

( )dq r q r q q r Q Q

r d r d d r F F r D D

d L i kM idt

L i kM i kM i

P P

0

0abc abc abcabc

FDQFDQ FDQ FDQ

ddt

e i ψRRe i ψ

19

Voltage Equations after Park’s Transformation (cont’d)0 00 0 0 0 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 000 0 0 0 00

a a

db a r q r Q d F D

qc r d a r F r D q Q

F F F RF F

D D RD D

QQ Q

ie R Lie R L kM L kM kMie L R kM kM L kM

R kM L Me iR kM Me i

Re i

0

00 0 0 0

d

q

F

D D

Q Q Q

iiid

idtL i

kM L i

00 00 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000 0 0 0 0 00 0 0 0 0 0 0 00

a

dd a r q r Q d F D

FF F F RF

DD D R D

qr d r F r D a q Qq

Q Q

ie R Lie R L kM L kM kM

iR kM L MeiR kM M L

iL kM kM R L kMeR i

0

0

d

F

D

q

Q Q Q

ii

ididt

ikM L i

00 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

a

dd a d F D

FF F F RF

DD D R D

qa q Qq

Q Q QQ

ie R Lie R L kM kM

iR kM L MeiR kM M L

iR L kMeR kM Li

0 0

00

0

d r q

F

D

q r d

Q

ii

ididt

i

i

( ) ( ) = ( )r q q r Q Q r q r d d r F F r D D r dL i kM i L i kM i kM i

20

Winding Circuits after Park’s Transformation00 00 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

a

dd a d F D

FF F F RF

DD D R D

qa q Qq

Q Q QQ

ie R Lie R L kM kM

iR kM L MeiR kM M L

iR L kMeR kM Li

0 0

00

0

d r q

F

D

q r d

Q

ii

ididt

i

i

• d‐axis flux causes a speed voltage rd inthe q‐axis winding

• q‐axis flux causes a speed voltage ‐rq in the d‐axis winding

kMF

kMD

MR

kMR

L0

r i0

id

iq

Ld

Lq

e0

ed

eq

rq

rd

r

r

eF

eQ=0

eD=0

RF

RQ

RD

Ra

Ra

Ra

d

q

21

Alternative Park’s Transformation

• If kd=kq=2/3 and k0=1/3, a unit‐to‐unit relationship holds between abc and dq0 variables.

ia= Im sinst

ib= Im sin(st - 2/3)

ic= Im sin(st + 2/3)

id= kd Im sin(st-)×3/2

iq= -kq Im cos(st-)×3/2

i0= k0(ia + ib + ic)

P

• By defining proper base inductances, the matrix may become symmetric in per unit

1/ 2 1/ 2 1/ 22 cos cos( 2 / 3) cos( 2 / 3)3

sin sin( 2 / 3) sin( 2 / 3)

P 1

1 cos sin1 cos( 2 / 3) sin( 2 / 3)1 cos( 2 / 3) sin( 2 / 3)

P

0 00 0 0 0 0 00 0 00 0 0 00 0 00 0 00 0 0 0

d dd F D

q qq Q

F FF F R

D DD R D

Q QQ Q

iLiL M MiL M

iM L MiM M LiM L

0

0 0

0 0 0 0 00 0 00 0 0 0

30 0 0 230 0 02

30 0 0 02

d F D

q Qd d

q qF F R

F F

D DD R D

Q Q

Q Q

LL M M i

L M iiM L M

iiM M Li

M L

Lad-Laq based per unit system: assume that all the per unit mutual inductances between the stator and rotor circuits in each axis are equal ( or )

0 0 0 0 0 00 0 00 0 0 00 0 00 0 00 0 0 0

l ad ad ad

l aq aq

ad F R

ad R D

aq Q

LL L L L

L L LL L ML M L

L L

22

Per Unit Representation• Using the machine ratings as the base values

– es base (V) peak value of rated line-to-neutral voltage– is base (A) peak value of rated line current– fbase (Hz) rated frequency

• Accordingly:

– S3 base (VA) = 3ERMS base× IRMS base = 3(es base/ 2)×(is base/ 2)= es base×is base

– Zs base ( ) =es base/is base

– Ls base (H) =Zs base/base

– base (elec. rad/s) =2fbase

– mbase (mech. rad/s) =base×(2/pf) – tbase (s) =1/ base =1/(2fbase)– s base (Wbturns) =Ls base×is base= es base/base

– Tbase (Nm) = S3 base / mbase = s base×is base

p.u.

Base d q 0 F D Q1 fbase

2 es base S3 base

3 is base iF base iD base iQ base

Selection of rotor based quantities:

iFbase, iDbase and iQbase should enable a

symmetric per-unit inductance matrix

22

If f=fbase

23

Equivalent Circuits

iD+iF

00 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

a

dd a l ad ad ad

FF ad F RF

DD ad R D

qa l aq aqq

Q aq QQ

ie R Lie R L L L L

iR L L MeiR L M LiR L L Le

R L Li

0 0

00

0

d r q

F

D

q r d

Q

ii

ip i

i

i

ed= -(Ll+Lad)×pid+Lad×piF +Lad×piD-rq -Raid

=Lad×p(-id+iF+iD) -Ll×pid -rq -Raid

pd= -(Ll+Lad)×pid +Lad×piF +Lad×piD

= Lad×p(-id+iF+iD) -Ll×pid

eF= -Lad×pid +LF×piF +MR×piD +RFiF

= Lad×p(-id+iF+iD) +(MR- Lad)×p(iD+iF) +(LF - MR)×piF + RFiF

eD=0= -Lad×pid +MR×piF +LD×piD+ RDiD

= Lad×p(-id+iF+iD) +(MR- Lad)×p(iD+iF) +(LD- MR)×piD+ RDiD

eq= -(Ll+Laq)×piq +Laq×piQ +rd -Raiq

=Laq×p(-iq+iQ) -Ll×piq +rd -Raiq

eQ=0= -Laq×piq + LQ×piQ +RQiQ

= Laq×p(-iq+iQ) +(LQ-Laq)×piQ +RQiQ

ed

00 0 0 0 0 0 00 0 00 0 00 0 00 0 0 00 0 0 0

dd l ad ad ad

FF ad F R

DD ad R D

qq l aq aq

Q aq Q Q

iLiL L L L

iL L Mp p iL M L

iL L LL L i

Define differential operator p=d/dt

24

Equivalent Circuits with Multiple Damper Windings (e.g. Round‐rotor Machines)

L1d =LD - MR

R1d =RD

Lfd=LF - MR

Rfd=RF

efd=eF

L1q=LQ – Laq

R1q=RQ

L2q=LG – Laq

R2q=RG

Subscript Notations:( )fd ~ field winding quantities( )kd ~ k-th d-axis damper winding quantities( )kq ~ k-th q-axis damper winding quantities

• d axis:Lfd≜LF - MR Rfd≜RF

fd≜ F efd≜eF

L1d ≜LD - MR R1d ≜RD

1d ≜ D

MR-Lad 0 (named Lfkd1 in some literature to model rotor mutual flux leakage, i.e. the flux linking the rotor’s field and damper windings but not stator windings)

• q axis:L1q≜LQ – Laq R1q≜RQ

1q ≜ Q

L2q≜LG – Laq R2q≜RG

2q ≜ G

25

Example: a model with 3 rotor windings in each of d‐ and q‐axis equivalent circuits • EPRI Report EL‐1424‐V2, “Determination of Synchronous Machine Stability Study Constants, Volume 2”, 1980– The proposed equivalent circuits are expected to contain sufficient details to model all machines

– Parameters are estimated by frequency response testsUsually ignored

26

Lad=KsdLadu

Ksd = at/at0 = at/(at+ I) = I0 / I

27

Steady‐state AnalysisAll flux linkages, voltages and currents are constant:p1d=0 R1di1d=0 i1d=0p1q=0 R1qi1q=0 i1q=0(Damper winding currents are all zero due tono change in the magnetic field)

d= -( Ll+Lad)id+Ladifd = -Ldid+Ladifd

q= -( Ll+Laq)iq = -Lqiq

pd=0 ed = -rq -Raid =rLqiq -Raid

pq=0 eq =rd -Raiq = -rLdid +rLadifd -Raiq

pfd=0 efd= Rfdifd

r=1 and L=X in p.u.ed=Xqiq -Raid

eq= -Xdid +Xadifd -Raiq

efd= Rfdifd

Can we have a single equivalent circuit representing both d and q axes circuits under balanced steady-state conditions?

28

ea= Em cos(st+)eb= Em cos(st +-2/3)ec= Em cos(st ++2/3)

ed= Em cos( -0)= Et cos( -0)eq= Em sin( -0) = Et sin( -0)where Et is the per unit RMS value of the armature terminal voltage, which equals the peak value Em in per unit.

= Xqiq –Raid – jXdid +jXadifd –jRaiq

= – Ra +Xqiq –jXdid +jXadifd

Compared to = –Ra –jXS

=rt+0

E

LoadXS Xq

=j[Xadifd – (Xd – Xq)id]≝

= – Ra – jXq

Terminal voltage & current phasors:

=ed+jeq =id+jiq

where ed=Xqiq –Raid

eq= – Xdid +Xadifd –Raiq

1/ 2 1/ 2 1/ 22 cos cos( 2 / 3) cos( 2 / 3)3

sin sin( 2 / 3) sin( 2 / 3)

P

= –Ra –jXS (id+jiq)

=–Ra +XSiq –jXSid+

29

Steady‐state equivalent circuit

• Under no‐load or open‐circuit conditions, id=iq=0. =jXadifd

i=0 (load angle)

• For round rotor machines or machines with neglected saliency

Xd=Xq=Xs (synchronous reactance)= – (Ra+jXs)

Eq=Xadifd

=j[Xadifd-(Xd-Xq)id]

30

Computing per‐unit steady‐state values

*

( j )( j )

( ) j( )

t t

d q d q

d d q q q d d q

S E Ie e i i

e i e i e i e i

t d d q q

t q d d q

P e i e i

Q e i e i

d r q a d

q r d a q

e R i

e R i

2 2

2 2

( ) ( )

( )t r d q q d a d q

r e a d q

P i i R i i

T R i i

2 2

2 2

= / ( )

= ( ) 1p.u.

e d q q d

t r a d q

t a d q r

T i i

P R i i

P R i i

• Active and Reactive Powers

• Air-gap torque (or electric torque)

31

Example 3.2 in Kundur’s Book

MR

L1q/R1q>>L2q/R2q

R1d>>Rfd

Lfd/Rfd>>L1d/R1d

Figure 3.22

32

33

39.1o

1.565pu

34

Sub‐transient and Transient Analysis• Following a disturbance, currents are induced in rotor circuits. Some of these induced rotor currents decay more rapidly than others. – Sub‐transient parameters: influencing rapidly decaying (cycles) components– Transient parameters: influencing the slowly decaying (seconds) components– Synchronous parameters: influencing sustained (steady state) components

35

• Study transient behavior of a simple RL circuit

• Apply Laplace Transform

• Apply Inverse Laplace Transform

• Example 8.1R=0.125, L=10mH, Vm=151V=L/R=0.08s

Transient Phenomena

Unit step

i(t)

Steady-state (sinusoidal component)

dc offset (transient component)

( ) sin( )) (mv t V t u t

( )( ) ( )di tRi t L v tdt

(s) [ ( ) (0)] ( )RI L sI s i V s 2 2

( ) 1 sin cos( ) 1 ( )(1 )/

mVV s sI sR s R sL Rs

/sin( )( ( )) sintmm I eti It ⁄ , ⁄ , tan ⁄

36

Short‐circuit and open circuit time constantsConsider the d-axis network• Short-circuit time constant

– Instantaneous change on d

– Delayed change on id ( through )

• Open-circuit time constant 0

– Instantaneous change on id

– Delayed change on d ( through )

• Time constant or 0 equals the division of the total inductance and resistance (L/R) with the effective circuit

00

1( )1

fd

dd d

d e

sL s Li s

)1)(1()1)(1()(00 dd

dddd TsTs

TsTsLsL

37

Transient and sub‐transient parameters

d axis circuit q axis circuit

Considered rotor windings

Only fieldWinding

Add the damper winding Only 1st damper winding Add the 2nd damper winding

Time constant(open circuit)

Time constant(short circuit)

Inductance(Reactance)Ld(s) and Lq(s)

L1q /R1q>>L2q /R2qR1d>>Rfd Lfd /Rfd>>L1d /R1d

8.07(s) 1.00(s)

T’d0=

T’d=

L’d= L’’d=

T’’d0= T’q0= T’’q0=

T’’d= T’q= T’’q=

0.03(s) 0.07(s)

L’q= L’’q=0.30(pu) 0.23(pu) 0.65(pu) 0.25(pu)

Based on the parameters of Example 3.2

+

//

Ll+Lad//Lfd

//

// //

Ll+Lad//Lfd//L1d

+

//

Ll+Laq//L1q

//

// //

Ll+Laq//L1q//L2q

• Note: time constants are all in p.u. To be converted to seconds, they have to be multiplied by tbase=1/base (i.e. 1/377 for 60Hz).

38

39

Synchronous, Transient and Sub‐transient Inductances

• Under steady‐state condition: s=0 (t)Ld(0)=Ld

• During a rapid transient: s

•Without the damper winding :s>>1/T’d and 1/T’d0 but << 1/T”d and 1/T”d0

)1)(1()1)(1()(00 dd

dddd TsTs

TsTsLsL

1

0 0 1 1

( ) ad fd dd dd d d l

d d ad fd ad d fd d

L L LT TL L L LT T L L L L L L

0

( ) ad fddd d d l

d ad fd

L LTL L L LT L L

(d-axis sub-transient inductance)

(d-axis synchronous inductance)

(d-axis transient inductance)

40

Xd ≥ Xq ≥ X’q ≥ X’d ≥ X”q ≥ X”d T’d0 > T’d > >T”d0 > T”d

T’q0 > T’q > >T”q0 > T”q

41

Parameter Estimation by Frequency Response Tests

T’d0 > T’d > >T”d0 > T”d> Tkd

-20dB/decade

Bode Plot

1/T’d0 <1/ T’d << 1/T”d0 <1/T”d<1/Tkd)1)(1(

)1)(1()(00 dd

dddd TsTs

TsTsLsL

42

Swing Equations

• Define per unit inertia constant

emam TTT

dtdJ J combined moment of inertia of generator

and turbine, kgm2

m angular velocity of the rotor, mech. rad/st time, sTa accelerating torque in N.mTm mechanical torque in N.mTe electromagnetic torque in N.m

0

212 VA

m

base

JH

Some references define TM or M=2H, called the mechanical starting time, i.e. the time required for rated torque to accelerate the rotor from standstill to rated speed

basem

HJ VA220

(s) (s)

43

0

0 0

0

2

2 VA

2VA /

2

2 (in per unit)

m

m m

m

ma m e

mbase m e

m m e

base

m m e

base

rm e

dJ T T Tdt

H d T Tdt

d T THdt

d T THdt T

dH T Tdt

where r (in per unit) =

0 0 0

//

r fm r

m f

pp

Angular position of the rotor in electrical radian with respect to a synchronously rotating reference

0 0rt t in rad

0r rddt in rad/s

2

2

( )r rd dddt dt dt

in rad/s2

2

0 02

( ) ( )r rd dddt dt dt

in rad/s2

0 0

1 rr

ddt

2

20

2 m eH d T T

dt

2

20 0

2 - = - Dm e D r m e

H d K dT T K T Tdt dt

If adding a damping term

proportional to speed deviation:

where

44

Block diagram representation of swing equations

( )2 -rm e D r

dH T T Kdt

0

1 = rddt

2

20 0

2 - = - Dm e D r m e

H d K dT T K T Tdt dt

45

State‐Space Representation of a Synchronous Machine

So far, we modeled all critical dynamics about a synchronous machine:

•State variables (pX): – stator and rotor voltages, currents or flux linkages– swing equations (rotor angle and speed)

•Time constants:– Inertia: 2H– Sub‐transient and transient time constants, e.g. T’d0 and T”d0

•Other parameters– Stator and rotor self‐ or mutual‐inductances and resistances– Rotor mechanical torque Tm and stator electromagnetic torque Te

46

• Consider 5 windings: d, q, F (fd), D (1d) and Q (1q)– Voltage and flux equations:

– Swing equations:

• Define state vector x=[d fd 1d q 1q r ]T

Thus, the state‐space model:

• efd and Tm are usually known but ed and eq are related to its loading conditions (the grid), so algebraic power‐flow equations should be introduced.

• The grid model is a set of Differential‐Algebraic Equations (DAEs)

State Space Model on a Salient‐pole Machine

0 00

1 1

1 1

0

0, , ,

00

00

d dd r q

fd fdfd

d d

q q r dq

q q

ieie

iei

iei

e i Ψ ω ΩΨ

ddt

e R i L i ΩΨ Ψ L i

1( )ddt

Ψ R L Ω Ψ e

0

2 ( )

1

rm e m d q q d

r r

dH T T T i idt

ddt

( , , , , )fd m d qe T e ex f x

47

Simplified Models• [d fd 1d q 1q r ]T

• [fd 1d 1q r ]T

– Inertia 2H ~ pr

– Transient T’d0 ~ pfd

– Sub-transient T”d0 ~p1d

T”q0 ~ p1q

• [fd r ]T

– Inertia 2H ~ pr

– Transient T’d0~ pfd

• [r ]T

– Inertia 2H ~ pr

Neglect damper windings, i.e. p1dand p1q

Neglect pd, pq and variations of r(i.e. r=1 pu) in the voltage equations

Constant flux linkage assumption

(classic model)

=q= -Lqiq

=d= -Ldiq

1( )p Ψ R L Ω Ψ e

21

r m e

r

H p T Tp

48

Neglect of Stator p terms

49

Classic Model

•Eliminate the differential equations on flux linkages (swing equations are the only differential equations left)

•Assume X’d=X’q

0 0( )t a d tE E R jX I

E’ is constant and can be estimated by computing its pre-disturbance value

( )t a d tE E R jX I

21

r m e

r

H p T Tp

50

Simplified models neglecting p and saliency effects

Used in short-circuit analysis

Used for stability studies

Used for steady-state analysis

51

Comparison of PSS/E Generator Models