dynamics and control of formation flying satellites in earth … · 2004-09-08 · dynamics and...

49
Alfriend/Barcelona 1 Dynamics and Control of Formation Flying Satellites In Earth Orbit Lecture 2 Terry Alfriend Texas A&M University

Upload: habao

Post on 03-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Alfriend/Barcelona 1

Dynamics and Control ofFormation Flying Satellites

In Earth OrbitLecture 2Terry Alfriend

Texas A&M University

Alfriend/Barcelona 2

Outline

• Example of the Error Analysis of a LEO satellite• Navigation Error Effect• Constellation Control• Impulsive and Continuous Control of Orbital

Elements

Lecture 2- Control Concepts and Navigation Error Effect

Alfriend/Barcelona 3

Error Analysis of a LEO satellite

Ref: Alfriend, K.T. and Lovell, T.A.,“Error Analysis of SatelliteFormations In Near Circular Low Earth Orbits,” Paper No. AAS03-651,2003 AAS/AIAA Astrodynamics Conference, Big Sky, MT, Aug. 2003.

Alfriend/Barcelona 4

Outline

• Background• Maneuver Strategy• Analytical Insights• Error Analysis• Conclusions

Alfriend/Barcelona 5

Background• Motivation for study was TechSat21

u 3 satellitesu Formations were designed to minimize differential J2 effects;

leader-follower, in-plane 2x1 ellipseu 550 km altitude; potential for significant differential dragu e<0.0001u One thruster, rotate satellite to fire, only out-of-plane and

tangential thrusting.u Need to maximize times between thruster firings, should be no less

than about 4 orbitsu Minimum desired separation was 30 m

• Need to determine the effects of the error sources onperformance

u Relative navigation, thrust magnitude, attitude.

Alfriend/Barcelona 6

Maneuver Strategy• Relative motion described by CW equations

u No differential inclinationu Circular orbit

• Impulsive thrusting• Control out-of-plane and in-plane separately

u One impulse for out-of-plane for maintenance, more if needed forreconfiguration

u Three impulses for in-plane, separated by 0.5 orbits.• Strategy developed using non-singular orbital elements and

Gauss’ variational equations

Use of CW equations is valid because this is an error analysis

Alfriend/Barcelona 7

Drag/ Cross Section Area Model

Satellite is thin parallelepiped that tracks the sun and slowlyrotates at orbit rate. The orientation is such that the velocityvector is nearly perpendicular to A2. Model deteriorates as sunapproaches orbit plane, but this is where differential drag effectis minimum.

A3

bSun

Orbit Normal (Z)

A2

A1

A = A1

re

u◊ re

y+ A

2

re

v◊ re

y+ A

3

re

w◊ re

y

A = 0.5A1

1 - cos b( ) sin2q + 0.5A2

1 + cos b( ) - 1 - cos b( )cos2qÈÎ ˘̊ + A3

sin b cosq

A = 0.5A1

1 - cos b( ) 4

2psin 2qdq

0

p / 2

Ú + 0.5A2

1

2p1 + cos b( ) + 1 - cos b( )cos2qÈÎ ˘̊ dq

0

2p

Ú

+ A3sin b 2

2pcosqdq

- p / 2

p / 2

Ú

A =A

1

p1 - cos b( ) + 0.5A

21 + cos b( ) +

A3

psin b

Alfriend/Barcelona 8

Drift Time StatisticsEstablish a deadband of ±D about desired positionLet t be the time in orbits to reach the deadband.The drift in the in-track direction due to differential drag is

y = -1.5

ad

n2

Ê

ËÁˆ

¯̃nt( )2

= -6pa

d

n2

Ê

ËÁˆ

¯̃t 2

t =2D

3kT 2 db

Ê

ËÁ

ˆ

¯˜

1/ 2

, k = 0.5rv2 CD

m

∂ A

∂b,db is differential attitude

ft t( ) =4K 2

2p s dbt 3exp -

K 4

2s db2 t 4

È

ÎÍÍ

˘

˚˙˙, K =

2D

3kT 2

È

ÎÍ

˘

˚˙

1/ 2

Assuming db is Gaussian the probability density function is

Alfriend/Barcelona 9

Drift Time Statistics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24Time - Orbits .

Tim

e to

Dea

dban

d D

istri

butio

n Fu

nctio

n

Deadband=5 mDeadband=10 mDeadband=20 m

Beta=30 deg

Alfriend/Barcelona 10

Relative Navigation Errors

d a = 4x + 2 &y / n

d = drift per orbit

d = -3pd a

s

d= 3ps d a

= 6p 2sx

- s &y / n( )2

+ 4sx

s &y 1 + rx&y( ) / nÈ

Î͢˚̇

1/ 2

Minimum drift occurs when r

x&y = -1. Typically - 1 < rx&y < 0

We had to use rx&y = 0 because the requirement was only

on relative position and velocity.

Requirements were

spos

= 10cm, sx

= 10 / 3cm

svel

= 0.5mm / s , sx

= 0.5 / 3mm / s

Alfriend/Barcelona 11

Relative Navigation Error Effect

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

0 0.1 0.2 0.3 0.4Relative Rate Standard Deviation - mm/s

Dri

ft R

ate S

tand

ard

Dev

iatio

n - m

/orb

it

'sig x=0 cm''sig x=2 cm''sig x=4 cm''sig x=6 cm''sig x=8 cm'Requirement

Relative velocity error is driver.

Alfriend/Barcelona 12

Relative Navigation Error Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10Time to Reach Deadband - orbits

Tim

e to

Rea

ch D

eadb

and

Dist

ribu

tion

Func

tion

'D/sd=1'D/sd=2''D/sd=3''D/sd=4''D/sd=5'

Time to reach deadband is t = D / d

ft t( ) =2

pD

sd

Ê

ËÁˆ

¯̃1

t 2

ÊËÁ

ˆ¯̃

exp -D2

2sd2t 2

Ê

ËÁ

ˆ

¯˜

Alfriend/Barcelona 13

Maneuver Strategy

e = a,q ,i,q1,q

2,W( )

q = f + w , argument of latitude

q1

= ecoswq

2= esinw

d a =d a

a

dq = dq12 + dq

22( )1/ 2

Solve in-plane and out-of-plane separately. For in-plane use only tangential impulses. Three in-planeimpulses separated by 0.5 orbits are required. Needto find time of 1st maneuver and magnitude of thethree maneuvers (Dv’s).

Alfriend/Barcelona 14

Gauss’ Variational Equations

Dq1

= 2Dv

t

vc

cosq

Dq2

= 2Dv

t

vc

sinq

Da =2

nDv

t

Di =Dv

n

vc

cosq

DW =Dv

n

vcsin i

sinq

Dq = -cot isinq

vc

Dvn

Da = -2

nDv

1+ Dv

2+ Dv

3( )Dq

1= -

2

naDv

1- Dv

2+ Dv

3( )cosq1

Dq2

= -2

naDv

1- Dv

2+ Dv

3( )sinq1

tanq

1=

Dq2

Dq1

Dvn

= Di2 + DWsin i( )2ÈÎÍ

˘˚̇

1/ 2

tanqoop

=DWsin i

Di

D denotes the change in the element.

Alfriend/Barcelona 15

Strategy

• Separate into out-of-plane and in-plane.• Out-of-plane is one maneuver.• In-plane is three maneuvers, separated by 0.5 orbit.

u Time of first maneuver determined by required elementchanges.

u 4 unknowns, four equationsu Tangential thrust only

Alfriend/Barcelona 16

In-Plane Solution

Dv2

=na

4Dq -

Da

a

ÊËÁ

ˆ¯̃

Dv1

+ Dv3

= -na

4Dq +

Da

a

ÊËÁ

ˆ¯̃

Dq = Dq1cosq

1+ Dq

2sinq

1

&q =m p

r 2=

mp3

1 + q1cosq + q

2sinq( )2

d ˙ q = dn + 2n dq1 cos q + dq2 sinq( )dn = - 3n

2daa

d &q = d n + 2n dq1cosq + dq

2sinq( )

d n = -3n

2

d a

a

D denotes element change, d denotes element error

Alfriend/Barcelona 17

In Plane

dq = dq0 + Dn q1 - q0 + 2p( ) / n + Dn 1( ) 2p / n + Dn 2( )p / n + 2 dq1 cosq + dq2 sin q( )dqq 0

q1 + 2p

Ú

+2 Dq11( ) cosq + Dq2

1( ) sin qÊ Ë Á ˆ

¯ ˜ dqq1

q1 + 2p

Ú + 2 Dq12( ) cos q + Dq2

2( ) sin qÊ Ë Á ˆ

¯ ˜ dqq1 +p

q1 + 2p

Ú

Dq = Dq0 - 3Da2a

(q1 - q0) + 2p[ ] - 3pna

2Dv1 + Dv2( ) - 2D ˜ q 0

D ˜ q 0 = Dq1 sinq0 - Dq2 cos q0

Dv1 = na6p

Dq0 - 1.5Da q1 - q0( )[ ] - na8

3Da + Dq( ) - na3p

D ˜ q 0

Dv2 = na4

Dq - Da ( )

Dv3 = - na6p

Dq0 - 1.5Da q1 - q0( )[ ] + na8

Da - Dq( ) + na3p

D ˜ q 0

Da = Daa

Dq = Dq1 cos q1 + Dq2 sin q1

D ˜ q 0 = Dq1 sinq0 - Dq2 cos q0

Alfriend/Barcelona 18

Error Sources

Table 1 Baseline Error Sources

Error Source Pointing(deg)

Position(m)

Velocity(mm/s)

Thrust(%)

Value - 1s 1/3 0.1/31/2 0.5/31/2 5

Table 2 Baseline System Parameter Values

Parameter Deadband(m)

Altitude(km)

Density(kg/m3)

A1(m2)

A2(m2)

A3(m2)

b(deg)

mass(kg)

Value 5, 10,

15,20

550 3.183 x10-13 0.575 0.82 12.984 30 170

Alfriend/Barcelona 19

Approach

• All error sources selected from random number generator withspecified standard deviation

• Start in desired formation, generate differential drag from attitudeerror.

• When 75% of deadband reached initiate maneuver decision.• To compute desired Dv’s corrupt exact relative state with navigation

system errors. Actual Dv is corrupted in magnitude by thrustmagnitude error source and direction by attitude error. New attitudeerror generated after each maneuver.

• Once maneuver initiated not recalculated based on new estimated state.Option exists to recalculate last Dv to force estimated drift to zero.Results show not effective because of navigation error.

Alfriend/Barcelona 20

In-Track Time HistoryLeader-Follower - All error sources - 10 m Deadband

35

40

45

50

55

60

65

70

75

80

85

0 10 20 30 40 50 60 70 80 90 100 110Time - orbits

In-T

rack

Disp

lace

men

t - m Deadband

Deadband

Alfriend/Barcelona 21

In-Track Time HistoryLeader-Follower - All error sources - 20 m Deadband

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100 110Time - orbits

In-T

rack

Disp

lace

men

t - m

Deadband

Deadband

Alfriend/Barcelona 22

In-Track Error Time History2x1 Ellipse - All error sources - 20 m Deadband

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110

Time - orbits

In-T

rack

Err

or- m

deadband

deadband

Alfriend/Barcelona 23

Radial Error Time History2x1 Ellipse - All error sources - 20 m Deadband

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100 110

Time - orbits

Rad

ial E

rror

- m

deadband

deadband

Alfriend/Barcelona 24

Phase Plane Time History2x1 Ellipse - All error sources - 20 m Deadband

For time between maneuvers > 4 orbits D >20 m

-50

-40

-30

-20

-10

0

10

20

30

40

-100 -80 -60 -40 -20 0 20 40 60 80 100

In-Track Displacement - m

Rad

ial D

ispla

cem

ent -

m

Alfriend/Barcelona 25

Leader FollowerAverage Time Between Maneuvers

Leader Follower

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20

Deadband - m

Ave

rage

Tim

e B

etw

een

Man

euve

rs -

or

bits

Att ErrorAll Error SourcesThrust Error

Alfriend/Barcelona 26

Leader FollowerAnnual Dv Orbit Maintenance

Leader Follower

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 6 8 10 12 14 16 18 20

Deadband - m

Ann

ual D

v -

m/s

Att Error

All Error Sources

Thrust Error

Alfriend/Barcelona 27

LF-CIPE Comparison

Average Time Between Maneuvers LF-CIPE Comparison

0

1

2

3

4

5

6

7

8

4 8 12 16 20

Deadband - m

Ave

. Tim

e B

etw

een

Man

euve

rs -

orbi

ts

LFCIPE

All Error sources

Alfriend/Barcelona 28

LF-CIPE ComparisonAnnual Dv Orbit Maintenance

LF-CIPE Comparison

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

4 8 12 16 20

Deadband - m

Ann

ual D

v -

m/s

LFCIPE

All Error sources

Alfriend/Barcelona 29

Distribution Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40Time Between Maneuvers - orbits

Dist

ribu

tion

Func

tion

TheoryAll ErrorsNav Errors

Alfriend/Barcelona 30

Conclusions• The minimum acceptable deadband is about 20 meters. Even with a

20-meter deadband the deadband may be exceeded on occasion.• To guarantee that the motion stay within the 20-meter deadband will

require a new method for formation maintenance that responds faster.This will increase the fuel consumption.

• The relative navigation errors, particularly the relative velocity error,are the driver for the minimum acceptable deadband.

• Rel nav requirements should include a requirement on cross-correlation and on drift rate.

• The fuel, or Dv, required for orbit maintenance is minimal.• The 5% 1s thrust error has very little effect on the average time

between maneuvers or the annual fuel requirement.

Alfriend/Barcelona 31

Relative Navigation Analysis

• Differential carrier phase GPS (DCGPS) is the primarysource for relative navigation in LEO.

u May need to be augmented with intersatellite ranging.• MIT group led by Dr. How have demonstrated 5 cm

relative position accuracy and 0.5 mm/s relative velocity.

• Previous discussion indicated that a good Kalman filterwould minimize the semi-major axis error and give

• Dr. How has obtained

s

d= 3ps d a

= 6p 2sx

- s &y / n( )2

+ 4sx

s &y 1 + rx&y( ) / nÈ

Î͢˚̇

1/ 2

r

x&y ª -1

r

x&y ª -0.1

Why the discrepancy in ? r

x&y

Alfriend/Barcelona 32

What are the physics?

• The coupling between x and ydot is at orbit rate.• The relative navigation filter is getting relative

position measurements at a much faster rate,approximately every 10-30 seconds.

• Due to the fast measurement rate the filter isbasically seeing three double integrators withweak coupling due to the orbit rate.

Can we prove this analytically?

Alfriend/Barcelona 33

Solution

&&x - 2n&y - 3n2x = vx

&&y + 2n &x = vy

x = x, &x, y, &y( )T

&x = Ax + Bvv = N 0,s v( ),E vvT( ) = Qc

z = Hx + w ,Measurement equationw = N 0,s w( ),E wwT( ) = Rc

H =1 0 0 00 0 1 0

È

ÎÍ

˘

˚˙

Let Dt be time between measurements and make the timetransformation

Letting the equations of motion become

t =t

Dt,( )¢ =

ddt

, ddt

=1

Dtddt

e = nDt

¢¢x = 2e ¢y + 3e 2x + Dt( )2 n x

¢¢y = -2e ¢x + Dt( )2 n y

Two weakly coupled double integrators

Alfriend/Barcelona 34

ApproachExpand in a power series in e.

A = A0 + e A1 + e 2A2

A0 =A00 00 A00

ÊËÁ

ˆ¯̃,A00 =

0 10 0

ÊËÁ

ˆ¯̃

A1 =0 A11

-A11 0ÊËÁ

ˆ¯̃,A11 =

0 00 2

ÊËÁ

ˆ¯̃

A2 =A22 00 0

ÊËÁ

ˆ¯̃,A22 =

0 03 0

ÊËÁ

ˆ¯̃

We need the covariance so we need to solve the Riccati equation. Solvethe continuous problem, not the discrete.

AP + PAT + BQBT = PH T R-1HP 4x4 nonlinear matrix equation.

P = P0

+ e P1

+ K

Alfriend/Barcelona 35

Approach (cont)P = P0 + eP1 + e 2P2 + ...

Po =P0xx 00 P0yy

ÊËÁ

ˆ¯̃.P0xx = P0yy =

P11 P12

P12 P22

ÊËÁ

ˆ¯̃

Pn =Pnxx Pnxy

PnxyT Pnyy

ÊËÁ

ˆ¯̃, n = 1,2,...

P0A1T + P1A0

T + A0P1 + A1P0 = P0DP1 + P1DP0

P1 A0T - DP0( ) + A0 - P0D( ) P1 = - P0A1

T + A1P0( )D =

C 02

02 CÊËÁ

ˆ¯̃,C =

1s wd

2

1 00 0

ÊËÁ

ˆ¯̃

At 0th order the problem is decoupled and P0xx=P0yy

Alfriend/Barcelona 36

Solution

s x2 = s y

2 = 2s vd1/2s wd

3/2 Dt

s &x2 = s &y

2 = 2s vd3/2s wd

1/2 Dt 3

rx&y = -n s wd

s vd

ÊËÁ

ˆ¯̃

1/2

sd

= 3ps d a= 6p 2s

x- s &y / n( )2

+ 4sx

s &y 1 + rx&y( ) / nÈ

Î͢˚̇

1/ 2

sd

= 3ps d a=

6pn

s &y =6p 21/ 4

ns

vd3/ 4s

wd1/ 4Dt1/ 2

For the values used by Dr. How we obtained

which confirms the concept that the filter is dominated bythe measurement rate and the primary way to reduce thesemi-major axis error is to reduce the process noise. Theagreement between the above equations and the resultsobtained by How and his students is excellent.

r

x&y ª -0.07

Alfriend/Barcelona 37

Conclusions• Due to the fast measurement rate the relative navigation

filter basically sees three weakly coupled doubleintegrators.

• The semi-major axis error resulting from the DCGPSrelative navigation is almost strictly a function of thevelocity estimate error.

• To reduce the semi-major axis error we need to reduce theprocess noise, which is a function of the model error andmany errors in processing the GPS signals.

• The correlation coefficient will not approach (-1) asexpected unless the process noise is reduced several ordersof magnitude.

Alfriend/Barcelona 38

Results

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 1 2 3 4 5 6Position Error - cm

Cor

rela

tion

Coe

ffici

ent

sigv=10^(-7)sigv=5*10^(-7)sigv=10^(-6)sigv=5*10^(-6)sigv=10^(-5)

Dt=30

Alfriend/Barcelona 39

Constellation Control

Objective: Design a control law that counters theout-of-plane drift due to J2 and minimizes systemfuel consumption and balances the fuelconsumption over all the satellites in theformation

Alfriend/Barcelona 40

Constellation ControlProjected Circular Orbit

• Fuel rqmt. to negate differentialnodal precession effect for Sat 1 istwice that for Sats 2 and 3.

• To maximize lifetime we wantequal fuel consumption for eachsatellite. r

1

2 3

Position at equator

a

y

z

xi = 0.5r sin nt + ai( )yi = r cos nt + a i( )zi = r sin nt + ai( )

Control Problemr - Dr( ) £ r £ r + Dr( )

Minimize

J = uij dtj =1

3

Â0

T

Úi =1

N

Â

umj dtj =1

3

Â0

TÚ ª unj dt

j =1

3

Â0

TÚ ,"m,n , m π n

T is large, a few months

Alfriend/Barcelona 41

Hill’s Initial Conditionsn Chief’s orbit is eccentric: e=0.005n Formation established using inclination difference only.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Along-Track (km)

Out-of-Plane (km)

Relative Orbits in the y-z plane, (2 orbits shown)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Along-Track (km)

Out-of-Plane (km)

150 Relative Orbits

Alfriend/Barcelona 42

Circular Projection Relative Orbit

Sat #1and 4 have max di

and zero dW

Sat #3 and 6 have maxdW but zero di

Sat # 1 and 4 will spendmax fuel and sat # 3 and6 will spend min fuel.

Snapshot when the chief is at the equator.Pattern repeats every orbit of the Chief

y

z

1

34

2

5

6

a

Alfriend/Barcelona 43

Constellation Control Concept

Balance the fuelconsumption over acertain period byrotating all the deputiesby an additional rate

Snapshot when the chief is atthe equator.

y

z

1

3

4

2

5

6

a

&a

Alfriend/Barcelona 44

Modified Hill’s Equations

&&x - 2nxy

&y - 3nxy2 x = u

x

&&y + 2nxy

x = uy

&&z + n 2z = uz

+ 2An cosa sin[nt]

A =3

2r J

2 n

0

Re

R

Ê

ËÁˆ

¯̃

2

sin2 i

Assume no in-track driftcondition satisfied.

n Æ n + &aThe near-resonance in the z-axis is detuned byintroducing an additional rotation.

Alfriend/Barcelona 45

Constellation Control Saves Fuel

xR

= 0.5r sin(q + a )

yR

= r cos(q + a )

zR

= r sin(q + a )

Ideal Trajectory

&a

Ideal Control for perfectcancellation of the disturbanceand for

ux

= 2n &a xR

uy

= -n &a yR

uz

= -2n &a zR

- 2An cosa sinqOptimize over time and aninfinite number of satellites

J =

1

4np 20

2p / n

Ú ux

2 + uy

2 + uz

2( )0

2p

Ú dt da0

&a

opt= -

A

3r, A =

3

2r J

2 n

0

Re

R

Ê

ËÁˆ

¯̃

2

sin2 i

J

opt=

2

3A2n

J

Brute force= A2n

Alfriend/Barcelona 46

Theoretical Results

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8x 10-5

Time (days)

cost (m

2/sec

3)

a(0)= 0a(0)= p/4a(0)= p/2a(0)= 3p/4

a=7100 km, i=70 deg, r=500m

Alfriend/Barcelona 47

Simulation Results

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6x 10-5

Time (days)

Cost (m

2/sec

3)

a=7100 km, i=70 deg, e=0.005,r=500m

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6x 10-5

Time (days)

Cost (m

2/sec

3)

Equivalent to 28 m/sec/yr/sat

0 20 40 60 80 100 120 140 160 1800

2

4

6x 10-5

Time (days)

Cost (m

2/sec

3)

a0 = 0,p

a0 = p/2,3p/2

Equivalent to 52 m/sec/yr

Alfriend/Barcelona 48

Simulation Results

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 02.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2x 10-4

adot (deg/day)

Total Cost (m

2/sec

3/yr)

Alfriend/Barcelona 49

Formation Control Comments

• Use of orbital elements in formation design and formationcontrol offers distinct advantages over the Cartesian frame.However, relative navigation measurements will be in theCartesian frame.

• The control problem should address the real problem, notthe mathematically easy problem.

• With current technology formation control usingcontinuous control is probably not feasible due to the lowthrust levels.