drug%discovery%for%malaria%dbbs.wustl.edu/curstudents/documents/markey/2014-09-09 markey...lead...

37
Marvin J. Meyers, Ph.D. Markey Pathway Washington University in St Louis September 9, 2014 CWHM Mission: Discover and advance to the clinic affordable new therapies for unmet medical needs with an emphasis on orphan diseases, neglected diseases, and diseases of poverty Drug Discovery for Malaria I. Introduc6on to Drug Discovery II. Applica6on to Iden6fica6on of New An6malarial Agents

Upload: trinhthuan

Post on 25-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Marvin J. Meyers, Ph.D.

Markey Pathway Washington University in St Louis

September 9, 2014

CWHM  Mission:    Discover  and  advance  to  the  clinic  affordable  new  therapies  for  unmet  medical  needs  with  an  emphasis  on  orphan  diseases,  

neglected  diseases,  and  diseases  of  poverty  

Drug  Discovery  for  Malaria    I.    Introduc6on  to  Drug  Discovery  II.    Applica6on  to  Iden6fica6on  of  New  An6malarial  Agents  

Research  &  Development  Process  

2  

Target Discovery Lead Discovery Lead

Optimization Preclinical

Development

•  Disease identification & therapeutic needs

•  Target identification

•  Target validation

•  Assay development •  Hit identification •  High-throughput

screening (HTS) •  Structure-activity

relationships (SAR) •  Medicinal chemistry

“hit-to-lead” •  Mechanism of

action (MOA)

•  Medicinal chemistry optimization

•  Pharmacodynamics (PD) – drug interaction with the target

•  Pharmacokinetics (PK) – getting the drug to the target

•  Absorption, distribution, metabolism, and excretion (ADME)

•  Efficacy in animal models

•  Safety & Toxicology •  Process Chemistry

& Scale-up •  Formulation &

stability •  ADME &

Pharmacology •  Patents filed •  Regulatory package

Investigational New Drug (IND)

Application

Drug Discovery: 3-7 years

Development: 7-10 years

Research  &  Development  Process  

3  

FDA Review & Approval: New Drug

Application (NDA)

Phase I Clinical Trials

Phase II Clinical Trials

Phase III Clinical Trials

Phase IV

•  Determine drug safety

•  “Is the drug safe to test?”

•  10-100 healthy volunteers

•  Unexpected side effects may be identified

•  Determine drug efficacy

•  “How well does the drug work?”

•  100-500 patients •  Most drugs fail in

Ph II due to lack of sufficient efficacy

•  Confirm findings in large patient population

•  1000-5000 patients

•  Greater chance to find rare side effects

•  Compare to “gold standard” treatment

•  Monitor long-term safety

•  Patient population more heterogeneous

•  Adverse reactions may lead to withdrawal of drug

Development: 7-10 years

Commercialization

•  Overall  R&D  process  takes  10-­‐17  years  •  Overall  average  cost  of  a  new  drug  ~$1B  

~10,000  compounds  synthesized  ~100  tested  in  animals  ~10  reach  Phase  I  clinical  trials  ~1  reaches  the  market  

4  

Target Discovery Lead Discovery Lead

Optimization Preclinical

Development Investigational New Drug (IND)

Application

Drug Discovery: 3-7 years

Development: 7-10 years

Translational Drug Discovery

Selec6ng  a  Drug  Target  

•  Understanding  the  biology  relevant  to  the  disease  of  interest  is  criKcal  to  success  •  This  is  not  always  well  understood  at  the  beginning  of  a  drug  discovery  project  •  Not  all  targets  will  produce  the  desired  biological  effect  or  to  a  sufficient  degree  to  

be  efficacious  •  Historically,  many  drugs  have  been  developed  where  the  drug  target  or  biological  

mechanism  was  not  known  

5  

Lead  Discovery  

•  Bioassays  must  be  developed  in  order  to  idenKfy  and  prioriKze  “hits”  for  medicinal  chemistry  opKmizaKon  

•  Some  assays  may  be  used  to  eliminate  certain  compounds  for  further  consideraKon  –  Off-­‐target  selecKvity,  cytotoxicity,  etc.  

DefiniKons:  •  Hit  –  a  compound  that  has  some  acKvity  against  the  chosen  biological  

target  •  Lead  –  a  compound  that  has  some  acKvity  against  the  chosen  biological  

target,  belongs  to  a  class  of  compounds  that  show  promise  to  lead  to  a  drug,  but  is  not  good  enough  to  be  the  drug  itself  

•  TesKng  Funnel  –  a  set  of  assays  used  to  filter  compounds  to  idenKfy  promising  leads  

6  

Finding  a  Hit  or  Lead  Compound  

7  

High  Throughput  Screening  (HTS)  

8  

100’s to 1,000,000’s of compounds

HTS Assay

Hits

Screening hits are potential leads that need to be validated!

Hit  Triage:    Valida6ng  the  hit  

•  Is  the  hit  real?    Need  to  validate!  

•  Confirm  idenKty  –  Resynthesize  or  purchase  pure  compound  and  retest  

•  Dose  response  curve  (IC50  determinaKon)  •  Orthogonal  tesKng  •  Secondary  tesKng  •  Confirm  mechanism  of  acKon  

9  

Selec6ng  the  Lead  

•  This  is  a  process—mulKple  hits/leads  may  be  selected  iniKally  for  followup  (Hit-­‐to-­‐Lead  phase)  –  Don’t  know  which  hit/lead  will  be  result  in  a  drug  

•  Is  the  hit  drug-­‐like?  •  Is  there  good  potenKal  for  opKmizaKon?  •  SelecKvity,  solubility,  toxicity,  etc.  •  Is  it  patentable?  •  Ease  of  synthesis?  •  Are  there  related  compounds  with  SAR  that  makes  sense?  

10  

Drug  design  is  the  applica6on  of  medicinal  chemistry  towards  the  op6miza6on  of  PD  and  PK  

•  Pharmacodynamics  (PD)  refers  to  what  the  drug  does  to  the  body  –  E.g.,  opKmizaKon  of  interacKons  of  a  drug  with  its  target  

•  PharmacokineKcs  (PK)  refers  to  what  the  body  does  to  the  drug  –  E.g.,  opKmizaKon  of  the  ability  of  a  drug  to  reach  its  target  

Aim  -­‐  To  op6mize  binding  interac6ons  with  target  

•   To  increase  ac6vity  and  reduce  dose  levels  •   To  increase  selec6vity  and  reduce  side  effects  Reasons  

Op6mizing  Pharmacodynamics  

Types  of  Binding  Interac6ons  

•  ElectrostaKc  or  ionic  bonds  (20-­‐40  kJ/mol)  •  Hydrogen  bonds  (16-­‐60  kJ/mol)  

–  Hydrogen  bond  acceptor  (HBA)  –  Hydrogen  bond  donor  (HBD)  

•  Van  der  Waals  interacKons  (2-­‐4  kJ/mol)  •  Dipole-­‐dipole/ion-­‐dipole  interacKons  •  Repulsive  interacKons  •  Hydrophobic  interacKons  

13  

Structure-­‐Ac6vity  Rela6onships  (SAR)  

•  RelaKonship  between  the  chemical  structure  of  a  molecule  and  its  biological  acKvity  

•  Determining  the  SAR  allows  for  opKmizaKon  of  potency  and  reducKon  of  off-­‐target  toxicity  

•  Typically  specific  chemical  groups  are  modified,  replaced  or  added  to  determine  the  SAR  

14  

OH

CWHM-0263D7 = 1100 nM

CWHM-1233D7 = 222 nM

O

O

CWHM-0253D7 = 7600 nM

ClCWHM-122

3D7 = 14000 nM

OH

O

CWHM-0273D7 = 560 nM

O

CWHM-1213D7 = 16000 nM 1x

-8x

2x

2x

-28x

-60x 5x

OH

CWHM-0283D7 = 6000 nM

O

-6x

N

NN

O

OR3

OH

TCMDC-124587CWHM-023

3D7 IC50 = 940 nMO

OH

Cl

H-bond donor or acceptor

aromatic center

basic or positive center

H-bond donor or acceptor

aromatic center

basic or positive center

Pharmacophore

O H

C O 2 A S P

SER

PHE

Binding site

Developing  a  Pharmacophore  

A pharmacophore is a model which describes important characteristics for binding to a target

Pharmacokine6cs:    Access  to  the  target  

•  Aqueous  Solubility  –  drug  needs  to  dissolve  

•  AbsorpKon  –  drug  needs  to  reach  blood  stream  

•  DistribuKon  –  drug  needs  to  reach  the  target  

•  Metabolism  –  need  drug  stability  to  maintain  sufficient  concentraKon  to  affect  target  over  Kme  (half-­‐life)  

•  ExcreKon  –  eliminaKon  of  drug  in  a  reasonable  Kme  period  

AD

ME

Pharmacokine6cs  &  Drug  Design  

•  Drugs  must  be  sufficiently  polar  to  be  soluble  in  aqueous  condiKons  •  Drugs  must  be  sufficiently  polar  to  interact  with  molecular  targets  •  Drugs  must  be  sufficiently  ‘greasy’  to  cross  cell  membranes    •  Drugs  must  be  sufficiently  ‘greasy’  to  avoid  rapid  excreKon  •  Drugs  must  have  a  balance  of  both  hydrophilic  and  lipophilic  

characteris?cs  

Pharmacokine6c  (PK)  Parameters  

1  

10  

100  

1000  

10000  

0   2   4   6   8   10   12  

Plasma  Co

ncen

tra6

ons  

(ng/mL)  

Time  (hr)  

IV (1 mg/kg)

PO (2.5 mg/kg)

PK  Parameters  (rat)  CL                18  mL/min/kg  T½              0.4  hour  Vdss        0.6  L/kg  BA                20%    

•  Clearance  (CL)  –  rate  at  which  a  compound  is  cleared  from  the  body  •  Half-­‐life  (t1/2)  –  period  of  Kme  in  which  half  of  the  compound  has  been  

eliminated  from  the  plasma  •  Volume  (V)  –  represents  how  widely  the  compound  is  distributed  to  the  

Kssues  •  Bioavailability  (BA  or  %F)  –  %  of  compound  that  reaches  the  blood  stream  

from  the  oral  dose  

Many  Hurdles  for  Preclinical  Drug  Discovery  

19  

•  Find  right  target  •  Develop  assays  •  Find  a  lead  •  OpKmize  potency  •  Increase  selecKvity  •  Needs  to  be  absorbed  •  Reduce  metabolism  •  Geung  to  the  target  

Kssue  •  Low  toxicity  •  Efficacious  in  animal  

model  •  Not  too  difficult  to  

synthesize  •  Stable  to  long-­‐term  

storage  •  Crystalline  compound  •  Aqueous  solubility  •  Etc…  

Alonso & Tanner, Nature Medicine 2013, 19, 150-155

•  ~225  million  cases/yr  •  ~1  million  deaths/yr  •  In  Africa:  

–  $1.8B  healthcare  costs  –  Loss  of  $12B  GDP  

•  Resistance  to  most  exisKng  drugs  is  widespread  

“Malaria  dispropor+onately  affects  poor  people  who  cannot  afford  treatment  or  have  limited  access  to  health  care,  trapping  families  and  communi+es  in  a  downward  spiral  of  poverty.”  

   –  World  Health  Organiza6on  website  

Malaria  –  The  Need  for  New  An6malarials  

Plasmodium  Life  Cycle  

Four Species P. falciparum P. vivax P. ovale P. malariae

Malaria  Medicine  Cabinet  

N

OH

HN

NCl

amodiaquine

NHN

NCl

chloroquine

HO

O

N

N

quinine

4-Aminoquinolines Aryl-amino alcohols 8-Aminoquinolines

Antifolates Peroxides

NH

N CF3CF3

HOH

mefloquine

NH2HNN

Oprimaquine

N

N

Cl NN

N

ClN

piperaquine

Napthoquinone

H2N

S NH

O O NN

OO

N

N NH2

ClNH2 Cl

HN

HN

NH

HN

NH

Cl

OHO

O

H

H

atovaquoneproguanilpyrimethaminesulfadoxine

Cl

Cl

ClOH

N

lumefantrine halofantrine

OH

N

Cl

Cl

CF3

O

O

O

H OO

H

H

O

O

O

H OO

H

H R

artemisinindihydroartemisinin R = Hartemether R = Meartesunate R = COCH2CH2CO2-

Goal:    Iden6fy  an6malarial  drug  with  novel  chemotype  and  mechanism  of  ac6on  

Poten6al  Targets  for  New  Malaria  Drugs  

Kappe et al, 2010 Science 328: 862

Russo  et  al.,  Nature  2010,  463,  632  Boddey  et  al.,  Nature  2010,  463,  627  

Plasmodium  Aspar6c  Proteases  

Asp  Protease   Func6on(s)   Poten6al  for  Drug  Disovery  

Plasmepsins  I-­‐IV   Degrade  hemoglobin  in  red  blood  cells  for  food  source  

Poor—funcKonally  redundant  with  each  other  and  falcipains  

Plasmepsin  V  Regulates  export  of  hundreds  of  parasite  proteins;  potenKal  

role  in  both  BS  and  LS  

AxracKve  but  challenging—essenKal  gene,  but  limited  tools/assays  

Plasmepsins  VI-­‐X   Unknown   Unknown  

Signal  PepKde  PepKdase  

Degrade  unstable  proteins;  potenKal  role  in  mulKple  life  

stages  

AxracKve  but  challenging—essenKal  gene,  but  limited  tools/assays  

Aspar6c  Proteases  are  Druggable  Targets  •  Renin  for  hypertension  •  β-­‐secretase  (BACE)  for  Alzheimer’s  Disease  •  HIV-­‐1  Protease  Inhibitors  

–  Ten  FDA-­‐approved  marketed  drugs,  mostly  based  on  transiKon-­‐state  mimics  –  Structure-­‐based  drug  design  (SBDD)  played  major  role  in  HIV-­‐1  protease  drug  discovery  –  Major  challenges  in  protease  inhibitor  drug  development:  high  MW,  poor  absorpKon,  

cell  permeability,  poor  aqueous  solubility,  high  hepaKc  clearance  

HN N

OH

PhO

NH

O

NH

ON

H2NO H

H HN N

OH

SO

NH

O

H

H

Ph

HO

OHN N

OH

PhO

S

O

OH

HO

O

NH2

saquinavir nelfinavir

darunavir

1995 1997

2006

O

OH

O

HNS

O ON

CF3

tipranavir2005

Plasmodium  falciparum  has  at  least  11  asparKc  proteases  

Hybrid  Approach  -­‐IdenKfy  target  of  a  phenotypic  hit  

-­‐Use  tools  of  target  based  drug  discovery  to  opKmize  

How  do  we  iden6fy  a  new  an6malarial  drug  lead?  

Phenotypic  Approach  

–  Iden6fies  compounds  that  kill  the  parasite  –  Compounds  ac6ve  in  cells—more  “drug-­‐like”  

–  Source  for  most  an6malarial  drugs    –  Target  is  usually  not  known  making  op6miza6on  emperical  

Parasite dies

Target-­‐based  Approach              –  Inhibi6on  of  a  specific  protein  target  will  lead  to  parasite  death  (presumably)  – High  throughput  tools  for  op6miza6on:  enzyme  assays,  structure-­‐based  drug  design  –  Potent  inhibitors  may  not  have  good  cell/in  vivo  potency  

Inhibition of target or

mechanism

Phenotypic  High  Throughput  Screens  

Strategy:    Mine  phenotypic  screening  databases  for  drug-­‐like  aspar6c  protease  inhibitors  as  good  lead  compounds  for  

op6miza6on  as  drugs  

Aspartic Protease Inhibitors

Antimalarial Compounds

•  Renin inhibitors •  HIV Protease inhibitors •  BACE inhibitors •  Cathepsin D/E inhibitors

•  GSK TCAMS •  SJCRH collection •  Novartis’ “Malaria Box” •  Scientific literature

Lead  compounds  for  op?miza?on  as  new  an?malarial  agents  

Pf Asp Protease

inhibitors?

Target-based Approach

Phenotypic Approach

ONH

P2 OHN

P1 ONH

P1' OHN

P2'NH

O

O-H

O

OHO-H

ONH

P2 HN

P1 ONH

P1' OHN

P2'NH

O

O

H-O

O

O OHH

ONH

P2 OHN

P1 OH2N

P1' OHN

P2'NH

O

O-H

O

O

OH

Substrate Protein Transition-State Intermediate Hydrolysis Products

Asp Asp'

Inhibi6on  of  the  Asp  Protease  Mechanism  

Phritonavir

OHN

NH

HN N

NS

O

OOH

O

NS

Ph

Known  Inhibitors  of  Asp  Protease  β-­‐Secretase  

Blue  structures  used  in  substructure  search  of  the  Tres  Cantos  AnKmalarial  Set  (TCAMS)  

= key catalytic Asp residue-binding moiety

An6malarial  Aspar6c  Protease  Inhibitors  in  TCAMS  

Gamo et al, Nature, 2010, 465, 305-310

209 examples in TCAMS Antimalarial EC50 30-5000 nM

35 examples in TCAMS Antimalarial EC50 140-1500 nM

1 examples in TCAMS Antimalarial EC50 840 nM

Hydroxyethylamines Aminohydantoins Spiropiperidines

Are  these  plasmepsin  inhibitors?  Are  they  good  drug-­‐like  starKng  points?  

Lipinski’s  Rule  of  Five  proper6es  of  “Drug-­‐like”  molecules  -­‐5  or  less  hydrogen  bond  donors  -­‐10  or  less  hydrogen  bond  acceptors  -­‐Molecular  weight  under  500  -­‐ParKKon  coefficient  log  P  less  than  5  (lipophilicity)  

Aminohydantoins  –  Med  Chem  Strategy  

NHN O

HN

4 (TCMDC-136879)

NHN O

R R

H2N R

Asp

Asp

Aminohydantoin-Aspartic Protease BACE Binding Mode

TCAMSdata mining

35 examples in TCAMSIC50 range 140-1500 nM

NHN O

X R1

R3R2

1. Prepare R1/R2/R3 analogs to develop SAR2. Derivatize X to confirm aspartic protease target

X = NH, O, S

ACS Med Chem Lett 2014, 5, 89-93

“Hit Compound”

Evidence  for  Asp  Protease  Mechanism  of  Ac6on  

CWHM-209 MW 411

cLogP 4.75 3D7 IC50 > 5 µM

PM-II IC50 >10 µM

CWHM-117 MW 393

cLogP 3.93 3D7 IC50 = 309 nM PM-II IC50 = 4 nM

PM-IV IC50 = 15 nM

CWHM-208 MW 394

cLogP 3.86 3D7 IC50 > 10 µM PM-II IC50 > 10 µM PM-IV IC50 > 10 µM

3INH. Malamas et al., J. Med. Chem., 2010, 53, 1146

Aminohydantoin/BACE Binding Mode

HNN

O

HN

O O

HNN

O

S

O O

HNN

O

O

O O

SAR  and  Selec6vity  

3INH. Malamas et al., J. Med. Chem., 2010, 53, 1146

Aminohydantoin/BACE Binding Mode

é 3D7 potency é PM2 potency é Selectivity

S3 Pocket?

NHN O

HN

O O

3D7 = 0.463 µMPM2 = 0.004 µMBACE = 12.0 µM [3000x]

NHN O

HN CH3

O O

3D7 = 7.92 µMPM2 = 0.487 µMBACE = 7.92 µM [25x]

NHN O

HN CH3

O3D7 = 6.88 µMPM2 = 1.01 µMBACE = 1.68 µM [2x]

NHN O

HN

O3D7 = 0.750 µMPM2 = 0.013 µMBACE = 18.1 µM [1400x]

N N

Iden6fica6on  of  a  Lead  Compound(s)  

!

! ! ! !cLogP! 4.0$ 2.1$ 4.3$ 2.6$

Pf!3D7!IC50!(µM,!72h)!

0.463$ 0.459$ 0.383$ 0.463$

Pf!Dd2!IC50!(µM,!72h)!

0.480$ 0.526$ 0.367$ 0.442$

Pf!3D7!IC50!(µM,!48h)!

0.751$ 0.404$ 0.339$ 0.571$

HepG2!IC50!(µM)! 9.4$ >50$ 8.0$ 30$

NHN O

HN

O O

NHN O

HN

O

O O

NHN O

HN

O O

NHN O

HN

O O

O

Pharmacokinetics (PK) in Rat •  Half-life = 2.9 h •  Bioavailability = 16%

Dose−response  in  the  P.  chabaudi  ASCQ-­‐infected  murine  four-­‐day  suppressive  test  

CWHM-117

NHN O

HN

O O

CWHM-117

Orally  efficacious  in  mice  infected  with  Plasmodium  falciparum  •  89%  suppression  of  parasitemia  achieved  at  100  mpk  (qd)  •  Full  suppression  achieved  at  300  mpk  (qd)  Goal  is  to  improve  potency  another  10-­‐fold  

“Lead Compound”

37  

Target Discovery Lead Discovery Lead

Optimization Preclinical

Development Investigational New Drug (IND)

Application

Drug Discovery: 3-7 years

Development: 7-10 years

Hits to Leads

N

NN

O

O

OH

Cl

N

NN

O

O

OH

O Cl

NHN O

HN NHN O

HN

O O

•  Potent  and  SelecKve  •  Orally  Efficacious  •  Need  10x  more  potency  

Aspar?c  protease  inhibitors  represent  novel  an?malarial  chemotypes  and  mechanism  of  ac?on