Transcript
Page 1: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

University ofCambridge

Mathematics Tripos

Part IB

Groups, Rings and Modules

Lent, 2017

Lectures byO. Randal-Williams

Notes byQiangru Kuang

Page 2: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

Contents

Contents

1 Groups 21.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Normal subgroups, Quotients and Homomorphisms . . . . . . . . 31.3 Actions & Permutations . . . . . . . . . . . . . . . . . . . . . . . 71.4 Conjugacy class, Centraliser & Normaliser . . . . . . . . . . . . . 101.5 Finite ๐‘-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.6 Finite abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . 121.7 Sylowโ€™s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Rings 172.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2 Homomorphism, Ideals and Isomorphisms . . . . . . . . . . . . . 192.3 Integral domain, Field of fractions, Maximal and Prime ideals . . 242.4 Factorisation in integral domains . . . . . . . . . . . . . . . . . . 272.5 Factoriation in polynomial rings . . . . . . . . . . . . . . . . . . . 312.6 Gaussian integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.7 Algebraic integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.8 Hilbert Basis Theorem . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Modules 403.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 Direct Sums and Free Modules . . . . . . . . . . . . . . . . . . . 433.3 Matrices over Euclidean Domains . . . . . . . . . . . . . . . . . . 463.4 F[๐‘‹]-modules and Normal Form . . . . . . . . . . . . . . . . . . 533.5 Conjugacy* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Index 60

1

Page 3: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

1 Groups

1.1 Definitions

Definition (Group). A group is a triple (๐บ, โ‹…, ๐‘’) of a set ๐บ, a functionโˆ’ โ‹… โˆ’ โˆถ ๐บ ร— ๐บ โ†’ ๐บ and ๐‘’ โˆˆ ๐บ such that

โ€ข associativity: for all ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐บ, (๐‘Ž โ‹… ๐‘) โ‹… ๐‘ = ๐‘Ž โ‹… (๐‘ โ‹… ๐‘),

โ€ข identity: for all ๐‘Ž โˆˆ ๐บ, ๐‘Ž โ‹… ๐‘’ = ๐‘Ž = ๐‘’ โ‹… ๐‘Ž,

โ€ข inverse: for all ๐‘Ž โˆˆ ๐บ, there exists ๐›ผโˆ’1 โˆˆ ๐บ such that ๐‘Ž โ‹… ๐‘Žโˆ’1 = ๐‘’ =๐‘Žโˆ’1 โ‹… ๐‘Ž.

Definition (Subgroup). If (๐บ, โ‹…, ๐‘’) is a group, ๐ป โŠ† ๐บ is a subgroup if

โ€ข ๐‘’ โˆˆ ๐ป,

โ€ข for all ๐‘Ž, ๐‘ โˆˆ ๐ป, ๐‘Ž โ‹… ๐‘ โˆˆ ๐ป.

This makes (๐ป, โ‹…, ๐‘’) into a group. Write ๐ป โ‰ค ๐บ.

Lemma 1.1. If ๐ป โŠ† ๐บ is non-empty and for all ๐‘Ž, ๐‘ โˆˆ ๐ป, ๐‘Ž โ‹… ๐‘โˆ’1 โˆˆ ๐ป then๐ป โ‰ค ๐บ.

Example.

1. Additive groups: (N, +, 0), (R, +, 0), (C, +, 0).

2. Groups of symmetries: ๐‘†๐‘›, ๐ท2๐‘›, GL๐‘›(R). They have subgroups ๐ด๐‘› โ‰ค ๐‘†๐‘›,๐ถ๐‘› โ‰ค ๐ท2๐‘›, SL๐‘›(R) โ‰ค GL๐‘›(R).

3. An group ๐บ is abelian is a group such that ๐‘Ž โ‹… ๐‘ = ๐‘ โ‹… ๐‘Ž for all ๐‘Ž, ๐‘ โˆˆ ๐บ.

If ๐ป โ‰ค ๐บ, ๐‘” โˆˆ ๐บ, we define the left ๐ป-coset of ๐บ to be

๐‘”๐ป = {๐‘”โ„Ž โˆถ โ„Ž โˆˆ ๐ป}.

As we have seen in IA Groups, the ๐ป-cosets form a partition of ๐บ and are inbijection with each other via

๐ป โ†” ๐‘”๐ปโ„Ž โ†ฆ ๐‘”โ„Ž

๐‘”โˆ’1โ„Ž โ†ค โ„Ž

We write ๐บ/๐ป for the set of left cosets.

Theorem 1.2 (Lagrange). If ๐บ is a finite group and ๐ป โ‰ค ๐บ then

|๐บ| = |๐ป| โ‹… |๐บ/๐ป|.

We call |๐บ/๐ป| the index of ๐ป in ๐บ.

2

Page 4: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Definition (Order). Given ๐‘” โˆˆ ๐บ, the order of ๐‘” is the smallest ๐‘› such that๐‘”๐‘› = ๐‘’. We write ๐‘› = ๐‘œ(๐‘”) = |๐‘”|. If no such ๐‘› exists then ๐‘” has infiniteorder.

Recall that if ๐‘”๐‘š = ๐‘’ then |๐‘”| โˆฃ ๐‘š.

Lemma 1.3. If ๐บ is finite and ๐‘” โˆˆ ๐บ then |๐‘”| โˆฃ |๐บ|.

Proof. The setโŸจ๐‘”โŸฉ = {๐‘’, ๐‘”, โ€ฆ , ๐‘”|๐‘”|โˆ’1}

is a subgroup of ๐บ. The result follows from Lagrange.

1.2 Normal subgroups, Quotients and HomomorphismsRecall that ๐‘”๐ป = ๐‘”โ€ฒ๐ป if and only if ๐‘”โˆ’1๐‘”โ€ฒ โˆˆ ๐ป. In particular, if โ„Ž โˆˆ ๐ป then๐‘”โ„Ž๐ป = ๐‘”๐ป.

Given a subgroup ๐ป โ‰ค ๐บ, we want to define a group structure on its cosets.Argurably the most natural candidate for the group operation would be

โˆ’ โ‹… โˆ’ โˆถ ๐บ/๐ป ร— ๐บ/๐ป โ†’ ๐บ/๐ป(๐‘”๐ป, ๐‘”โ€ฒ๐ป) โ†ฆ ๐‘”๐‘”โ€ฒ๐ป

But is this well-defined? Suppose ๐‘”โ€ฒ๐ป = ๐‘”โ€ฒโ„Ž๐ป, then

(๐‘”๐ป) โ‹… (๐‘”โ€ฒโ„Ž๐ป) = ๐‘”๐‘”โ€ฒโ„Ž๐ป = ๐‘”๐‘”โ€ฒ๐ป

so it is well-defined in the second coordinate. Suppose ๐‘”๐ป = ๐‘”โ„Ž๐ป, then

(๐‘”โ„Ž๐ป) โ‹… (๐‘”โ€ฒ๐ป) = ๐‘”โ„Ž๐‘”โ€ฒ๐ป ?= ๐‘”๐‘”โ€ฒ๐ป

where the last step holds if and only if (๐‘”โ€ฒ)โˆ’1โ„Ž๐‘”โ€ฒ โˆˆ ๐ป for all โ„Ž โˆˆ ๐ป, ๐‘”โ€ฒ โˆˆ ๐บ.Thus we need this true to define a group structure on the cosets. This motivatesus to define

Definition (Normal subgroup). A subgroup ๐ป โ‰ค ๐บ is normal if for allโ„Ž โˆˆ ๐ป, ๐‘” โˆˆ ๐บ, ๐‘”โˆ’1โ„Ž๐‘” โˆˆ ๐ป. Write ๐ป โŠด ๐บ.

Definition (Quotient group). If ๐ป โŠด ๐บ, then ๐บ/๐ป equipped with theproduct

๐บ/๐ป ร— ๐บ/๐ป โ†’ ๐บ/๐ป(๐‘”๐ป, ๐‘”โ€ฒ๐ป) โ†ฆ ๐‘”๐‘”โ€ฒ๐ป

and identity ๐‘’๐ป is a group. This is the quotient group of ๐บ by ๐ป.

Now we have defined and seen quite a few groups. We are interested notin the internal structure of groups but how they relate to each other. Thismotivates to define morphisms between groups:

3

Page 5: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Definition (Homomorphism). If (๐บ, โ‹…, ๐‘’๐บ) and (๐ป, โˆ—, ๐‘’๐ป) are groups, afunction ๐œ‘ โˆถ ๐บ โ†’ ๐ป is a homomorphism if for all ๐‘”, โ„Ž โˆˆ ๐บ,

๐œ‘(๐‘” โ‹… ๐‘”โ€ฒ) = ๐œ‘(๐‘”) โˆ— ๐œ‘(๐‘”โ€ฒ).

This implies that ๐œ‘(๐‘’๐บ) = ๐‘’๐ป and ๐œ‘(๐‘”โˆ’1) = ๐œ‘(๐‘”)โˆ’1. We define

ker๐œ‘ = {๐‘” โˆˆ ๐บ โˆถ ๐œ‘(๐‘”) = ๐‘’๐ป},Im๐œ‘ = {๐œ‘(๐‘”) โˆถ ๐‘” โˆˆ ๐บ}.

Lemma 1.4.

โ€ข ker๐œ‘ โŠด ๐บ,

โ€ข Im๐œ‘ โ‰ค ๐ป.

Proof. Easy.

Definition (Isomorphism). A homomorphism ๐œ‘ is an isomorphism if it isa bijection. Say ๐บ and ๐ป are isomorphic if there exists some isomorphism๐œ‘ โˆถ ๐บ โ†’ ๐ป. Write ๐บ โ‰… ๐ป.

Exercise. If ๐œ‘ is an isomorphism then the inverse ๐œ‘โˆ’1 โˆถ ๐ป โ†’ ๐บ is also anisomorphism.

Theorem 1.5 (1st Isomorphism Theorem). Let ๐œ‘ โˆถ ๐บ โ†’ ๐ป be a homomor-phism. Then ker โŠดโ‰ค ๐บ, Im๐œ‘ โ‰ค ๐บ and

๐บ/ ker๐œ‘ โ‰… Im๐œ‘.

Proof. We have done the first part. For the second part, define

๐œƒ โˆถ ๐บ/ ker๐œ‘ โ†’ Im๐œ‘๐‘” ker๐œ‘ โ†ฆ ๐œ‘(๐‘”)

๐บ ๐ป

๐บ/ ker๐œ‘

๐œ‘

๐œƒ

Check this is well-defined: if ๐‘” ker๐œ‘ = ๐‘”โ€ฒ ker๐œ‘ then ๐‘”โˆ’1๐‘”โ€ฒ โˆˆ ker๐œ‘ so ๐‘’๐ป =๐œ‘(๐‘”โˆ’1๐‘”โ€ฒ) = ๐œ‘(๐‘”)โˆ’1๐œ‘(๐‘”โ€ฒ), ๐œ‘(๐‘”) = ๐œ‘(๐‘”โ€ฒ) and ๐œƒ(๐‘” ker๐œ‘) = ๐œƒ(๐‘”โ€ฒ ker๐œ‘).

๐œƒ is a homomorphism:

๐œƒ(๐‘” ker๐œ‘ โ‹… ๐‘”โ€ฒ ker๐œ‘) = ๐œƒ(๐‘”๐‘”โ€ฒ ker๐œ‘) = ๐œ‘(๐‘”๐‘”โ€ฒ) = ๐œ‘(๐‘”)๐œ‘(๐‘”โ€ฒ) = ๐œƒ(๐‘” ker๐œ‘)๐œƒ(๐‘” ker๐œ‘).

๐œƒ is surjective and finally to show it is injective, suppose ๐œƒ(๐‘” ker๐œ‘) = ๐‘’๐ป. Then๐‘” โˆˆ ker๐œ‘ so ๐‘” ker๐œ‘ = ๐‘’ ker๐œ‘.

4

Page 6: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Example. Consider

๐œ‘ โˆถ C โ†’ C \ {0}๐‘ง โ†ฆ ๐‘’๐‘ง

๐‘’๐‘ง+๐‘ค = ๐‘’๐‘ง โ‹… ๐‘’๐‘ค so ๐œ‘ โˆถ (C, +, 0) โ†’ (C \ {0}, ร—, 1) is a homomorphism. ๐œ‘ issurjective (as log is a left inverse).

ker๐œ‘ = {๐‘ง โˆˆ C โˆถ ๐‘’๐‘ง = 1} = {2๐œ‹๐‘–๐‘˜ โˆถ ๐‘˜ โˆˆ Z} = 2๐œ‹๐‘–Z

so by 1st Isomorphism Theorem

C/2๐œ‹๐‘–Z โ‰… C \ {0}.

Theorem 1.6 (2nd Isomorphism Theorem). Let ๐ป โ‰ค ๐บ and ๐พ โŠด ๐บ. Then

๐ป๐พ โ‰ค ๐บ๐ป โˆฉ ๐พ โŠด ๐ป

๐ป๐พ/๐พ โ‰… ๐ป/(๐ป โˆฉ ๐พ)

Proof. Let โ„Ž, โ„Žโ€ฒ โˆˆ ๐ป, ๐‘˜, ๐‘˜โ€ฒ โˆˆ ๐พ. Then

(โ„Žโ€ฒ๐‘˜โ€ฒ)(โ„Ž๐‘˜)โˆ’1 = โ„Žโ€ฒ๐‘˜โ€ฒ๐‘˜โˆ’1โ„Žโˆ’1 = (โ„Žโ€ฒโ„Žโˆ’1)(โ„Ž๐‘˜โ€ฒ๐‘˜โˆ’1โ„Žโˆ’1) โˆˆ ๐ป๐พ.

Consider

๐œ‘ โˆถ ๐ป โ†’ ๐บ/๐พโ„Ž โ†ฆ โ„Ž๐พ

This is the composition ๐ป๐œ„

โ†ช ๐บ๐œ‹โ†  ๐บ/๐พ so a homomorphism. Since

ker๐œ‘ = {โ„Ž๐พ โˆถ โ„Ž๐พ = ๐‘’๐พ} = ๐ป โˆฉ ๐พ โŠด ๐ปIm๐œ‘ = {๐‘”๐พ โˆถ ๐‘”๐พ = โ„Ž๐พ for some โ„Ž โˆˆ ๐ป} = ๐ป๐พ/๐พ

so by 1st Isomorphism Theorem

๐ป/(๐ป โˆฉ ๐พ) โ‰… ๐ป๐พ/๐พ.

As a corollary we have

Theorem 1.7 (Subgroup correspondence). Let ๐พ โŠด ๐บ. There is a bijectionbetween

{subgroups of ๐บ/๐พ} โ†” {subgroups of ๐บ containing ๐พ}๐ป โ†ฆ {๐‘” โˆˆ ๐บ โˆถ ๐‘”๐พ โˆˆ ๐ป}

๐ฟ/๐พ โ†ค ๐พ โŠด ๐ฟ โ‰ค ๐บ

Moreover, the same map gives a bijection between

{normal subgroups of ๐บ/๐พ} โ†” {normal subgroups of ๐บ containing ๐พ}.

5

Page 7: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Theorem 1.8 (3rd Isomorphism Theorem). Let ๐พ โ‰ค ๐ฟ โ‰ค ๐บ be normalsubgroups. Then

๐บ/๐พ๐ฟ/๐พ

โ‰… ๐บ/๐ฟ.

Proof. Consider

๐œ‘ โˆถ ๐บ/๐พ โ†’ ๐บ/๐ฟ๐‘”๐พ โ†ฆ ๐‘”๐ฟ

Check it is well-defined: if ๐‘”๐พ = ๐‘”โ€ฒ๐พ, ๐‘”โˆ’1๐‘”โ€ฒ โˆˆ ๐พ โŠ† ๐ฟ so ๐‘”๐ฟ = ๐‘”โ€ฒ๐ฟ. ๐œ‘ is clearlysurjective and has kernel

ker๐œ‘ = {๐‘”๐พ โˆˆ ๐บ/๐พ โˆถ ๐‘”๐ฟ = ๐‘’๐ฟ} = ๐ฟ/๐พ

so by 1st Isomorphism Theorem

๐บ/๐พ๐ฟ/๐พ

โ‰… ๐บ/๐ฟ.

Definition (Simple group). A group ๐บ is simple if its only normal subgroupsare {๐‘’} and ๐บ.

Lemma 1.9. An abelian group is simple if and only if it is isomorphic to๐ถ๐‘ for some prime ๐‘.

Proof. In an abelian group every subgroup is normal. Let ๐‘” โˆˆ ๐บ be non-trivial.Then

โŸจ๐‘”โŸฉ = {โ€ฆ , ๐‘”โˆ’2, ๐‘”โˆ’1, ๐‘’, ๐‘”, ๐‘”2, โ€ฆ } โŠด ๐บ.If ๐บ is simple, this must be the whole group so ๐บ is cyclic. If ๐บ is infinite, it isisomorphic to Z which is not simple as 2Z โŠด ๐บ. Therefore ๐บ โ‰… ๐ถ๐‘› for some ๐‘›.If ๐‘› = ๐‘Ž๐‘, ๐‘Ž, ๐‘ โˆˆ N, ๐‘Ž, ๐‘ โ‰  1 then โŸจ๐‘”๐‘ŽโŸฉ โŠด ๐บ. Absurd. Thus ๐‘› is a prime.

For the other directions, note that ๐ถ๐‘ is simple for prime ๐‘ by Lagrange.

Theorem 1.10. Let ๐บ be a finite group. Then there is a chain of subgroups

๐บ = ๐ป0 โ‰ฅ ๐ป1 โ‰ฅ ๐ป2 โ‰ฅ โ‹ฏ โ‰ฅ ๐ป๐‘  = {๐‘’}

such that ๐ป๐‘›+1 โŠด ๐ป๐‘› and ๐ป๐‘›/๐ป๐‘›+1 is simple for all ๐‘›.

Proof. Let ๐ป1 be a normal subgroup of ๐ป0 = ๐บ of maximal order. If ๐ป0/๐ป1is not simple, there would be a proper normal subgroup ๐‘‹ โŠด ๐ป1/๐ป2. Thiscorresponds to a normal subgroup of ๐ป0, ๐‘Œ, which strictly contains ๐ป1. Absurd.Thus ๐ป0/๐ป1 is simple.

Choose ๐ป2 to be the maximal normal subgroup of ๐ป1 and continue. As๐ป๐‘›+1 is a proper subgroup of ๐ป๐‘›, |๐ป๐‘›+1| < |๐ป๐‘›| so this process terminates afterfinitely many steps.

6

Page 8: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

1.3 Actions & PermutationsPart of the reason we study groups is that they have interesting internal structures.However, more importantly, groups are interesting because many transformationsof an object can be described by a group. This is formalised by the concept ofgroup action in this section.

The symmetric group ๐‘†๐‘› is the set of permutations of {1, โ€ฆ , ๐‘›}. Everypermutation is a product of transpositions. A permutation is even if it is aproduct of evenly-many transpositions and odd otherwise.

The sign of a permutation is a homomorphism

sgn โˆถ ๐‘†๐‘› โ†’ {ยฑ1}

๐œŽ โ†ฆ {1 ๐œŽ is evenโˆ’1 ๐œŽ is odd

The kernel of sgn is the alternating group ๐ด๐‘› โŠด ๐‘†๐‘› of index 2 for ๐‘› โ‰ฅ 2.For any set ๐‘‹, we let Sym(๐‘‹) denote the set of all permutations of ๐‘‹, with

composition as the group operation.Here is a definition that is included in the syllabus but seems to be never

used anywhere:

Definition. A group ๐บ is a permutation group of degree ๐‘› if

๐บ โ‰ค Sym(๐‘‹)

with |๐‘‹| = ๐‘›.

Example.

1. ๐‘†๐‘› is a permutation group of order ๐‘›, so is ๐ด๐‘›.

2. ๐ท2๐‘› acts on the ๐‘› vertices of a regular ๐‘›-gon, so

๐ท2๐‘› โ‰ค ๐‘†({๐‘› vertices}).

Definition (Group action). An action of a group (๐บ, โ‹…, ๐‘’) on a set ๐‘‹ is afunction โˆ’ โˆ— โˆ’ โˆถ ๐บ ร— ๐‘‹ โ†’ ๐‘‹ such that

1. For all ๐‘”, โ„Ž โˆˆ ๐บ, ๐‘ฅ โˆˆ ๐‘‹,

๐‘” โˆ— (โ„Ž โˆ— ๐‘ฅ) = (๐‘”โ„Ž) โˆ— ๐‘ฅ.

2. For all ๐‘ฅ โˆˆ ๐‘‹,๐‘’ โˆ— ๐‘ฅ = ๐‘ฅ.

Lemma 1.11. Giving an action of ๐บ on ๐‘‹ is the same as giving a homo-morphism ๐œ‘ โˆถ ๐บ โ†’ Sym(๐‘‹).

Proof.

7

Page 9: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

โ€ข โ‡’: Let โˆ’ โˆ— โˆ’ be an action. For all ๐‘” โˆˆ ๐บ, let

๐œ‘ โˆถ ๐‘‹ โ†’ ๐‘‹๐‘ฅ โ†ฆ ๐‘” โˆ— ๐‘ฅ

This satisfies

๐œ‘(๐‘”โ„Ž)(๐‘ฅ) = (๐‘”โ„Ž) โˆ— ๐‘ฅ = ๐‘” โˆ— (โ„Ž โˆ— ๐‘ฅ) = ๐œ‘(๐‘”)(๐œ‘(โ„Ž)(๐‘ฅ)) = (๐œ‘(๐‘”) โˆ˜ ๐œ‘(โ„Ž))(๐‘ฅ)

so ๐œ‘(๐‘”โ„Ž) = ๐œ‘(๐‘”) โˆ˜ ๐œ‘(โ„Ž).In addition ๐œ‘(๐‘’)(๐‘ฅ) = ๐‘’ โˆ— ๐‘ฅ = ๐‘ฅ = id๐‘‹(๐‘ฅ) so ๐œ‘(๐‘’) = id๐‘‹. Now we notethat

id๐‘‹ = ๐œ‘(๐‘’) = ๐œ‘(๐‘”๐‘”โˆ’1) = ๐œ‘(๐‘”) โˆ˜ ๐œ‘(๐‘”โˆ’1)

so ๐œ‘(๐‘”โˆ’1) is inverse to ๐œ‘(๐‘”). In particular ๐œ‘(๐‘”) is a bijection.

โ€ข โ‡: Let ๐œ‘ โˆถ ๐บ โ†’ Sym(๐‘‹) be a homomorphism. Define

โˆ’ โˆ— โˆ’ โˆถ ๐บ ร— ๐‘‹ โ†’ ๐‘‹(๐‘”, ๐‘ฅ) โ†ฆ ๐œ‘(๐‘”)(๐‘ฅ)

Verify that

๐‘” โˆ— (โ„Ž โˆ— ๐‘ฅ) = ๐œ‘(๐‘”)(๐œ‘(โ„Ž)(๐‘ฅ)) = (๐œ‘(๐‘”) โˆ˜ ๐œ‘(โ„Ž))(๐‘ฅ) = ๐œ‘(๐‘”โ„Ž)(๐‘ฅ) = (๐‘”โ„Ž) โˆ— ๐‘ฅ๐‘’ โˆ— ๐‘ฅ = ๐œ‘(๐‘’)(๐‘ฅ) = id๐‘‹(๐‘ฅ) = ๐‘ฅ

Given a homomorphism ๐œ‘ โˆถ ๐บ โ†’ Sym(๐‘‹) induced by an action, define ๐บ๐‘‹ =Im๐œ‘, ๐บ๐‘‹ = ker๐œ‘. Then by 1st Isomorphism Theorem ๐บ๐‘‹ โŠด ๐บ, ๐บ/๐บ๐‘‹ โ‰… ๐บ๐‘‹.

If ๐บ๐‘‹ = {๐‘’}, i.e. ๐œ‘ is injective then we say ๐œ‘ is a permutation representationof ๐บ. It follows that ๐บ โ‰… ๐บ๐‘‹ โ‰ค Sym(๐‘‹).

Example.

1. Let ๐บ be the symmetries of a cube. Then ๐บ acts on the set ๐‘‹ of diagonals.|๐‘‹| = 4 and ๐œ‘ โˆถ ๐บ โ†’ Sym(๐‘‹) is surjective so ๐บ๐‘‹ = Sym(๐‘‹) โ‰… ๐‘†4.๐บ๐‘‹ = {id, antipodal map} so by Lagrange

|๐บ| = |๐บ๐‘‹| โ‹… |๐บ๐‘‹| = 48.

2. For any group ๐บ, left multiplication is a homomorphism:

๐œ‘ โˆถ ๐บ โ†’ Sym๐บ๐‘” โ†ฆ ๐‘” โ‹… โˆ’

๐บ๐‘‹ = {๐‘” โˆˆ ๐บ โˆถ ๐‘”โ„Ž = โ„Ž for all ๐บ} = {๐‘’} so ๐œ‘ is a permutation representa-tion. This is

Theorem 1.12 (Cayley). Every group is isomorphic to a subgroup ofa symmetric group.

8

Page 10: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

3. If ๐บ is a group and ๐ป โ‰ค ๐บ, we have

๐œ‘ โˆถ ๐บ โ†’ Sym(๐บ/๐ป)๐‘” โ†ฆ ๐‘” โ‹… โˆ’

๐บ๐‘‹ = {๐‘” โˆˆ ๐บ โˆถ ๐‘”๐‘Ž๐ป = ๐‘Ž๐ป for all ๐‘Ž๐ป} = โ‹‚๐‘Žโˆˆ๐บ ๐‘Ž๐ป๐‘Žโˆ’1. This is the largestsubgroup of ๐ป which is normal in ๐บ.

Theorem 1.13. Let ๐บ be a finite group and ๐ป โ‰ค ๐บ with index ๐‘›. Thenthere is a ๐พ โŠด ๐บ, ๐พ โ‰ค ๐ป such that ๐บ/๐พ is isomorphic to a subgroup of ๐‘†๐‘›.In particular

|๐บ/๐พ| โˆฃ ๐‘›!๐‘› โˆฃ |๐บ/๐พ|

Proof. Let ๐พ = ๐บ๐‘‹ for the action of ๐บ on ๐‘‹ = ๐บ/๐ป. Then

๐บ/๐บ๐‘‹ โ‰… ๐บ๐‘‹ โ‰ค Sym(๐‘‹) โ‰… ๐‘†๐‘›.

Theorem 1.14. Let ๐บ be a non-abelian simple group and ๐ป โ‰ค ๐บ is asubgroup of index ๐‘› > 1. Then ๐บ is isomorphic to a subgroup of ๐ด๐‘› for some๐‘› โ‰ฅ 5.

Proof. Let ๐บ act on ๐บ/๐ป, giving ๐œ‘ โˆถ ๐บ โ†’ Sym(๐บ/๐ป). Then ker๐œ‘ โŠด ๐บ. As ๐บis simple, ker๐œ‘ = {๐‘’} or ๐บ. But ker๐œ‘ = โ‹‚๐‘”โˆˆ๐บ ๐‘”โˆ’1๐ป๐‘” โ‰ค ๐ป, a proper subgroupof ๐บ so ker๐œ‘ = {๐‘’}. By 1st Isomorphism Theorem

๐บ = ๐บ/{๐‘’} โ‰… Im๐œ‘ = ๐บ๐‘‹ โ‰ค Sym(๐บ/๐ป) โ‰… ๐‘†๐‘›.

Applying 2nd Isomorphism Theorem to ๐ด๐‘› โŠด ๐‘†๐‘›, ๐บ๐‘‹ โ‰ค ๐‘†๐‘›, we get

๐บ๐‘‹ โˆฉ ๐ด๐‘› โŠด ๐บ๐‘‹, ๐บ๐‘‹/(๐บ๐‘‹ โˆฉ ๐ด๐‘›) โ‰… ๐บ๐‘‹๐ด๐‘›/๐ด๐‘›.

As ๐บ๐‘‹ โ‰… ๐บ is simple, ๐บ๐‘‹ โˆฉ ๐ด๐‘› is either trivial or ๐บ๐‘‹, i.e. ๐บ๐‘‹ โ‰ค ๐ด๐‘›. But if๐บ๐‘‹ โˆฉ ๐ด๐‘› = {๐‘’},

๐บ๐‘‹ โ‰… ๐บ๐‘‹๐ด๐‘›/๐ด๐‘› โ‰ค ๐‘†๐‘›/๐ด๐‘› โ‰… ๐ถ2

which contradicts ๐บ๐‘‹ โ‰… ๐บ being non-abelian. Hence ๐บ โ‰… ๐บ๐‘‹ โ‰ค ๐ด๐‘›.

1 ๐บ Sym(๐บ/๐ป) ๐ถ2๐œ‘ sgn

To see that we must have ๐‘› โ‰ฅ 5, observe that ๐ด2, ๐ด3 and ๐ด4 have nonon-abelian simple subgroup.

Corollary 1.15. If ๐บ is non-abelian simple, ๐ป โ‰ค ๐บ of index ๐‘›, then

|๐บ| โˆฃ ๐‘›!2

.

Some futher definitions we have already met in IA Groups:

9

Page 11: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Definition (Orbit & Stabiliser). If ๐บ acts on ๐‘‹, the orbit of ๐‘ฅ โˆˆ ๐‘‹ is

๐บ โ‹… ๐‘ฅ = {๐‘” โˆ— ๐‘ฅ โˆถ ๐‘” โˆˆ ๐บ}.

and the stabiliser of ๐‘ฅ is

๐บ๐‘ฅ = {๐‘” โˆˆ ๐บ โˆถ ๐‘” โˆ— ๐‘ฅ = ๐‘ฅโˆ€๐‘ฅ โˆˆ ๐‘‹}.

Theorem 1.16 (Orbit-stabiliser). If ๐บ acts on ๐‘‹, for all ๐‘ฅ โˆˆ ๐‘‹ there is abijection

๐บ โ‹… ๐‘ฅ โ†” ๐บ/๐บ๐‘ฅ

๐‘” โˆ— ๐‘ฅ โ†” ๐‘”๐บ๐‘ฅ

1.4 Conjugacy class, Centraliser & NormaliserIn the previous section we use a group action of a group on itself, namely leftmultiplication, to study the structure of a group. In this section we studyconjugation, another group action that gives much richer results.

There is an action of ๐บ on ๐‘‹ = ๐บ via ๐‘” โˆ— ๐‘ฅ = ๐‘”๐‘ฅ๐‘”โˆ’1, giving ๐œ‘ โˆถ ๐บ โ†’ Sym(๐บ).

Remark.

๐œ‘(๐‘”)(๐‘ฅ๐‘ฆ) = ๐‘”๐‘ฅ๐‘ฆ๐‘”โˆ’1 = (๐‘”๐‘ฅ๐‘”โˆ’1)(๐‘”๐‘ฆ๐‘”โˆ’1) = ๐œ‘(๐‘”)(๐‘ฅ)๐œ‘(๐‘”)(๐‘ฆ)

so ๐œ‘(๐‘”) is a group homomorphism. In fact this is an automorphism and ๐œ‘(๐‘”) โˆˆInn(๐บ), which is the group of all automorphisms arising from conjugation.

Denote

Aut(๐บ) = {๐œƒ โˆถ ๐บ โ†’ ๐บ โˆถ ๐œƒ is an isomorphism} โ‰ค Sym(๐บ).

We have shown ๐œ‘ โˆถ ๐บ โ†’ Sym(๐บ) has image in Aut(๐บ) โ‰ค Sym(๐บ), i.e. Inn(๐บ) โ‰คAut(๐บ).

Definition (Conjugacy class). The conjugacy clss of ๐‘ฅ โˆˆ ๐บ is

๐บ โ‹… ๐‘ฅ = Cl๐บ(๐‘ฅ) = {๐‘”๐‘ฅ๐‘”โˆ’1 โˆถ ๐‘” โˆˆ ๐บ}.

Definition (Centraliser). The centraliser of ๐‘ฅ โˆˆ ๐บ is

๐ถ๐บ(๐‘ฅ) = {๐‘” โˆˆ ๐บ โˆถ ๐‘”๐‘ฅ = ๐‘ฅ๐‘”}.

Definition (Centre). The centre of ๐บ is

๐‘(๐บ) = ker๐œ‘ = {๐‘” โˆˆ ๐บ โˆถ ๐‘”๐‘ฅ๐‘”โˆ’1 = ๐‘ฅโˆ€๐‘ฅ โˆˆ ๐บ}.

10

Page 12: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Definition (Normaliser). The normaliser of ๐ป โ‰ค ๐บ is

๐‘๐บ(๐ป) = {๐‘” โˆˆ ๐บ โˆถ ๐‘”๐ป๐‘”โˆ’1 = ๐ป}.

By Orbit-stabiliser, there is a bijection between

Cl๐บ(๐‘ฅ) โ†” ๐บ/๐ถ๐บ(๐‘ฅ)

so if ๐บ is finite, |Cl๐บ(๐‘ฅ)| = |๐บ/๐ถ๐บ(๐‘ฅ)| divides |๐บ|.Recall from IA Groups that in the permutation group ๐‘†๐‘›

1. every element can be written as a product of disjoint cycles,

2. permutations are conjugations if and only if they have the same cycle type.

We will use these knowledge to make our first (and the only one in thiscourse) step towards classification of finite simple groups:

Theorem 1.17. ๐ด๐‘› is simple for ๐‘› โ‰ฅ 5.

Proof. First claim ๐ด๐‘› is generated by 3-cycles. Need to show that doubletranspositions are generated by 3-cycles. There are two cases:

โ€ข (๐‘Ž๐‘)(๐‘๐‘) = (๐‘Ž๐‘๐‘),

โ€ข (๐‘Ž๐‘)(๐‘๐‘‘) = (๐‘Ž๐‘๐‘)(๐‘Ž๐‘๐‘‘).

Let ๐ป โŠด ๐ด๐‘›. Suppose ๐ป contains a 3-cycle, say (๐‘Ž๐‘๐‘). There exists ๐œŽ โˆˆ ๐‘†๐‘›such that

(๐‘Ž๐‘๐‘) = ๐œŽโˆ’1(123)๐œŽ.

If ๐œŽ โˆˆ ๐ด๐‘› then (123) โˆˆ ๐ป. If ๐œŽ โˆ‰ ๐ด๐‘›, let ๐œŽโ€ฒ = (45)๐œŽ โˆˆ ๐ด๐‘›. Here we use the factthat ๐‘› โ‰ฅ 5. Then

(๐‘Ž๐‘๐‘) = ๐œŽโ€ฒโˆ’1(45)(123)(45)๐œŽโ€ฒ = ๐œŽโ€ฒโˆ’1(123)๐œŽโ€ฒ.

Hence ๐ป contains all 3-cycles and ๐ป = ๐ด๐‘›. It then suffices to show any non-trivial๐ป โŠด ๐ด๐‘› contains a 3-cycle. Split into different cases:

โ€ข Case I: ๐ป contains ๐œŽ = (12 โ‹ฏ ๐‘Ÿ)๐œ, written in disjoint cycle notation, forsome ๐‘Ÿ โ‰ฅ 4. Let ๐œ‹ = (123) and consider the commutator

[๐œŽ, ๐œ‹] = ๐œŽโˆ’1๐œ‹โˆ’1๐œŽ๐œ‹ = ๐œโˆ’1(๐‘Ÿ โ‹ฏ 21)(132)(12 โ‹ฏ ๐‘Ÿ)๐œ(123) = (23๐‘Ÿ)

which is a 3-cycle in ๐ป.

โ€ข Case II: ๐ป contains ๐œŽ = (123)(456)๐œ. Let ๐œ‹ = (124) and consider

[๐œŽ, ๐œ‹] = ๐œโˆ’1(132)(465)(142)(123)(456)๐œ(124) = (12436)

which is a 5-cycle in ๐ป. This reduces to Cases I.

โ€ข Case III: ๐ป contains ๐œŽ = (123)๐œ and ๐œ is a product of 2-cycles. Then๐œŽ2 = (132) โˆˆ ๐ป.

11

Page 13: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

โ€ข Case IV: ๐ป contains ๐œŽ = (12)(34)๐œ where ๐œ is a product of 2-cycles. Let๐œ‹ = (123) and

๐‘ข = [๐œŽ, ๐œ‹] = (12)(34)(132)(12)(34)(123) = (14)(23).

Not let ๐‘ฃ = (125) where we used the fact ๐‘› โ‰ฅ 5 again. Then

[๐‘ข, ๐‘ฃ] = (14)(23)(152)(14)(23)(125) = (12345) โˆˆ ๐ป

which is a 5-cycle.

1.5 Finite ๐‘-groupsA finite group ๐บ is a ๐‘-group if |๐บ| = ๐‘๐‘› for some prime ๐‘.

Theorem 1.18. If ๐บ is a finite ๐‘-group then ๐‘(๐บ) โ‰  {๐‘’}.

Proof. The conjugacy classes partition ๐บ and |Cl(๐‘ฅ)| = |๐บ/๐ถ(๐‘ฅ)| which divides|๐บ|. Thus |Cl(๐‘ฅ)| is a power of ๐‘. Class equation reads

|๐บ| = |๐‘(๐บ)| + โˆ‘other cclโ€™s

|Cl(๐‘ฅ)|

Reduce mod ๐‘, we get |๐‘(๐บ)| = 0 mod ๐‘. But |๐‘(๐บ)| โ‰ฅ 1 so |๐‘(๐บ)| โ‰ฅ ๐‘.

Corollary 1.19. A group of order ๐‘๐‘›, ๐‘› > 1 is never simple.

Lemma 1.20. For any group ๐บ, if ๐บ/๐‘(๐บ) is cyclic, ๐บ is abelian.

Proof. Let ๐บ/๐‘(๐บ) = โŸจ๐‘”๐‘(๐บ)โŸฉ. Then every coset is of the form ๐‘”๐‘Ÿ๐‘(๐บ), ๐‘Ÿ โˆˆ Z.Thus every element of ๐บ is of the form ๐‘”๐‘Ÿ๐‘ง where ๐‘ง โˆˆ ๐‘(๐บ). Then

๐‘”๐‘Ÿ๐‘ง๐‘”๐‘Ÿโ€ฒ๐‘งโ€ฒ = ๐‘”๐‘Ÿ๐‘”๐‘Ÿโ€ฒ๐‘ง๐‘งโ€ฒ = ๐‘”๐‘Ÿ+๐‘Ÿโ€ฒ๐‘งโ€ฒ๐‘ง = ๐‘”๐‘Ÿโ€ฒ๐‘งโ€ฒ๐‘”๐‘Ÿ๐‘ง

and hence ๐บ is abelian.

Corollary 1.21. If |๐บ| = ๐‘2, ๐บ is abelian.

Proof. ๐‘(๐บ) โ‰  {๐‘’} so |๐‘(๐บ)| = ๐‘ or ๐‘2. Suppose |๐‘(๐บ)| = ๐‘, |๐บ/๐‘(๐บ)| = ๐‘ so๐บ/๐‘(๐บ) โ‰… ๐ถ๐‘ so by the lemma ๐บ is abelian. Absurd. Thus ๐‘(๐บ) = ๐บ and thus๐บ is abelian.

Theorem 1.22. If |๐บ| = ๐‘๐‘Ž, ๐บ has a subgroup of order ๐‘๐‘ for all 0 โ‰ค ๐‘ โ‰ค ๐‘Ž.

Proof. Induction on ๐‘Ž. If ๐‘Ž = 1 then done. Suppose ๐‘Ž > 1. Then ๐‘(๐บ) โ‰  {๐‘’}.Let ๐‘ฅ โˆˆ ๐‘(๐บ) be non-identity. Then ๐‘ฅ has order a power of ๐‘, say ๐‘๐‘–. Then๐‘ง = ๐‘ฅ๐‘๐‘–โˆ’1 has order precisely ๐‘. Let ๐ถ = โŸจ๐‘งโŸฉ โŠด ๐บ. Then ๐บ/๐ถ has order ๐‘๐‘Žโˆ’1.By induction hypothesis we can find a subgroup ๐ป โ‰ค ๐บ/๐ถ of order ๐‘๐‘โˆ’1. Then๐ป must be of the form ๐ฟ/๐ถ for some ๐ฟ โ‰ค ๐บ and |๐ฟ| = ๐‘๐‘.

1.6 Finite abelian groups

12

Page 14: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Theorem 1.23. If ๐บ is a finite abelian group then

๐บ โ‰… ๐ถ๐‘‘1ร— ๐ถ๐‘‘2

ร— โ‹ฏ ร— ๐ถ๐‘‘๐‘˜

with ๐‘‘๐‘–+1 โˆฃ ๐‘‘๐‘– for all ๐‘–.

Proof. This will be a corollary of the main result on modules by consideringabelian groups as Z-modules.

Example. If |๐บ| = 8 and ๐บ is abelian, ๐บ is isomorphic to one of ๐ถ8, ๐ถ4 ร— ๐ถ2and ๐ถ2 ร— ๐ถ2 ร— ๐ถ2.

Lemma 1.24 (Chinese Remainder Theorem). If ๐‘› and ๐‘š are coprime, then

๐ถ๐‘›๐‘š โ‰… ๐ถ๐‘› ร— ๐ถ๐‘š.

Proof. Let ๐‘” โˆˆ ๐ถ๐‘› has order ๐‘›, โ„Ž โˆˆ ๐ถ๐‘š has order ๐‘š. Consider

๐‘ฅ = (๐‘”, โ„Ž) โˆˆ ๐ถ๐‘› ร— ๐ถ๐‘š.

If ๐‘’ = ๐‘ฅ๐‘Ÿ = (๐‘”๐‘Ÿ, โ„Ž๐‘Ÿ), then ๐‘› โˆฃ ๐‘Ÿ, ๐‘š โˆฃ ๐‘Ÿ so ๐‘›๐‘š โˆฃ ๐‘Ÿ. Thus |๐‘ฅ| = ๐‘›๐‘š. The group iscyclic.

Corollary 1.25. If ๐บ is a finite abelian group then

๐บ โ‰… ๐ถ๐‘›1ร— ๐ถ๐‘›2

ร— โ‹ฏ ร— ๐ถ๐‘›โ„“

with each ๐‘›๐‘– a power of prime.

Proof. If ๐‘‘ = ๐‘๐‘Ž11 ๐‘๐‘Ž2

2 โ‹ฏ ๐‘๐‘Ž๐‘Ÿ๐‘Ÿ , a factorisation of distinct primes, the above lemmashows

๐ถ๐‘‘ โ‰… ๐ถ๐‘๐‘Ž11

ร— ๐ถ๐‘๐‘Ž22

ร— โ‹ฏ ร— ๐ถ๐‘๐‘Ž๐‘Ÿ๐‘Ÿ .

Apply this to the theorem above.

1.7 Sylowโ€™s Theorem

Theorem 1.26 (Sylowโ€™s Theorem). Let |๐บ| = ๐‘๐‘Ž โ‹… ๐‘š with (๐‘, ๐‘š) = 1 where๐‘ is a prime. Then

1. the setSyl๐‘(๐บ) = {๐‘ƒ โ‰ค ๐บ โˆถ |๐‘ƒ | = ๐‘๐‘Ž}

of Sylow ๐‘-subgroups is not empty,

2. all elements of Syl๐‘(๐บ) are conjugates in ๐บ,

3. the number๐‘›๐‘ = | Syl๐‘(๐บ)|

13

Page 15: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

satisfies๐‘›๐‘ = 1 mod ๐‘, ๐‘›๐‘ โˆฃ |๐บ|.

Lemma 1.27. If ๐‘›๐‘ = 1 then the unqiue Sylow ๐‘-subgroup is normal in ๐บ.

Proof. Let ๐‘ƒ โ‰ค ๐บ be the Sylow ๐‘-subgroup and ๐‘” โˆˆ ๐บ. As ๐‘”๐‘ƒ๐‘”โˆ’1 โˆˆ Syl๐‘(๐บ),๐‘”๐‘ƒ๐‘”โˆ’1 = ๐‘ƒ so ๐‘ƒ โŠด ๐บ.

Example. Let ๐บ be group of order 96 = 25 โ‹… 3. Then

โ€ข ๐‘›2 = 1 mod 2 and ๐‘›2 โˆฃ 3 so ๐‘›2 = 1 or 3.

โ€ข ๐‘›3 = 1 mod 3 and ๐‘›3 โˆฃ 32 so ๐‘›3 = 1, 4 or 16.

๐บ acts on the set Syl๐‘(๐บ) by conjugation. The second part of Sylowโ€™s Theoremsays that this action has precisely one orbit. The stabiliser of ๐‘ƒ โˆˆ Syl๐‘(๐บ) isthe normaliser ๐‘๐บ(๐‘ƒ ) โ‰ค ๐บ of index ๐‘›๐‘ = | Syl๐‘(๐บ)|.

Corollary 1.28. If ๐บ is non-abelian simple, then |๐บ| โˆฃ (๐‘›๐‘)!2 and ๐‘›๐‘ โ‰ฅ 5.

Proof. ๐‘๐บ(๐‘ƒ ) has index ๐‘›๐‘ so Theorem 1.14 to get the result. Alternatively,consider the conjugation action of ๐บ on Syl๐‘(๐บ).

Example (Continued). |๐บ| โˆค 3!2 so ๐บ cannot be simple.

Example. Suppose ๐บ is a simple group of order 132 = 22 โ‹… 3 โ‹… 11. We have๐‘›11 = 1 mod 11 and ๐‘›11 โˆฃ 12. As ๐บ is simple we canโ€™t have ๐‘›11 = 1 so ๐‘›11 = 12.Each Sylow 11-subgroup has order 11 so isomorphic to ๐ถ11, and thus contains10 elements of order 11. Such subgroups can only intersect in the identity so wehave 12 ร— 10 = 120 elements of order 11.

In addition we know ๐‘›3 = 1 mod 3 and ๐‘›3 โˆฃ 44, so ๐‘›3 = 4 or 22. If ๐‘›3 = 4,we must have |๐บ| โˆฃ 4!

2 by the previous corollary. Absurd. Thus ๐‘›3 = 22. Asabove, we get 22โ‹…(3โˆ’1) = 44 elements of order 3. This gives 164 > 132 elements.Absurd.

Thus there is no simple group of order 132.

Proof of Sylowโ€™s Theorem. Let |๐บ| = ๐‘๐‘› โ‹… ๐‘š.

1. Letฮฉ = {๐‘‹ โŠ† ๐บ โˆถ |๐‘‹| = ๐‘๐‘›}

and ๐บ act on ฮฉ via

๐‘” โˆ— {๐‘”1, ๐‘”2, โ€ฆ , ๐‘”๐‘๐‘›} = {๐‘”๐‘”1, ๐‘”๐‘”2, โ€ฆ , ๐‘”๐‘”๐‘๐‘›}.

Let ฮฃ โŠ† ฮฉ be an orbit of the action. If {๐‘”1, โ€ฆ , ๐‘”๐‘๐‘›} โˆˆ ฮฃ, then

(๐‘”๐‘”โˆ’11 ) โˆ— {๐‘”1, โ€ฆ , ๐‘”๐‘๐‘›} โˆˆ ฮฃ

so for all ๐‘” โˆˆ ๐บ there is an element of ฮฃ containing ๐‘”. Thus |ฮฃ| โ‰ฅ |๐บ|๐‘๐‘› = ๐‘š.

If there is some orbit ฮฃ with |ฮฃ| = ๐‘š, its stabiliser ๐บฮฃ has order ๐‘๐‘› so wehave a Sylow ๐‘-subgroup.

14

Page 16: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

To show this happens, we must show it is not possible for every orbit tohave size strictly bigger than ๐‘š. By Orbit-stabiliser, for any ฮฃ, |ฮฃ| โˆฃ ๐‘๐‘› โ‹… ๐‘šso if |ฮฃ| > ๐‘š then ๐‘ โˆฃ |ฮฃ|. If all orbits have size > ๐‘š, ๐‘ divides all of themso ๐‘ โˆฃ |ฮฉ|.Let us calculate |ฮฉ|. We have

|ฮฉ| = (๐‘๐‘› โ‹… ๐‘š๐‘๐‘› ) =

๐‘๐‘›โˆ’1

โˆ๐‘—=0

๐‘๐‘› โ‹… ๐‘š โˆ’ ๐‘—๐‘๐‘› โˆ’ ๐‘—

.

The largest power of ๐‘ dividing ๐‘๐‘› โ‹… ๐‘š โˆ’ ๐‘— is the same as the largest powerof ๐‘ dividing ๐‘—, which is the same as the largest power of ๐‘ dividing ๐‘๐‘› โˆ’ ๐‘—.Thus |ฮฉ| is not divisible by ๐‘.

2. Let us show something stronger: if ๐‘ƒ โˆˆ Syl๐‘(๐บ) and ๐‘„ is a ๐‘-subgroupthen there is a ๐‘” โˆˆ ๐บ such that ๐‘”โˆ’1๐‘„๐‘” โ‰ค ๐‘ƒ.Let ๐‘„ act on ๐บ/๐‘ƒ by

๐‘ž โˆ— ๐‘”๐‘ƒ = ๐‘ž๐‘”๐‘ƒ .By Orbit-stabiliser, the size of an orbit divides |๐‘„| = ๐‘๐‘ so it is either 1 ordivisible by ๐‘.On the other hand |๐บ/๐‘ƒ | = |๐บ|

|๐‘ƒ | = ๐‘š which is not divisible by ๐‘. Thusthere must be an orbit of size 1, say {๐‘”๐‘ƒ}, i.e. for all ๐‘ž โˆˆ ๐‘„, ๐‘ž๐‘”๐‘ƒ = ๐‘”๐‘ƒ so๐‘”โˆ’1๐‘ž๐‘” โˆˆ ๐‘ƒ. ๐‘”โˆ’1๐‘„๐‘” โ‰ค ๐‘ƒ.

3. By 2 ๐บ acts on Syl๐‘(๐บ) by conjugation with one orbit. By Orbit-stabiliser๐‘›๐‘ = | Syl๐‘(๐บ)| divides |๐บ|, which is the second part of the statement.

Now we show ๐‘›๐‘ = 1 mod ๐‘. Let ๐‘ƒ โˆˆ Syl๐‘(๐บ) and let ๐‘ƒ act on Syl๐‘(๐บ)by conjugation. By Orbit-stabiliser, the size of an orbit divides |๐‘ƒ | = ๐‘๐‘›

so each orbit either has size 1 or dividible by ๐‘. But {๐‘ƒ} is a singletonorbit. To show ๐‘›๐‘ = 1 mod ๐‘ it suffices to show every other orbit has size> 1.Suppose that {๐‘„} is another singleton orbit. Then for all ๐‘ โˆˆ ๐‘ƒ, ๐‘โˆ’1๐‘„๐‘ = ๐‘„so ๐‘ƒ โ‰ค ๐‘๐บ(๐‘„). But we also have ๐‘„ โŠด ๐‘๐บ(๐‘„) (since the normaliser is thelargest subgroup of ๐บ in which ๐‘„ is normal). Now ๐‘ƒ and ๐‘„ are Sylow๐‘-subgroups of ๐‘๐บ(๐‘„) so are conjugates in ๐‘๐บ(๐‘„). Thus there exists๐‘” โˆˆ ๐‘๐บ(๐‘„) such that ๐‘ƒ = ๐‘”โˆ’1๐‘„๐‘” = ๐‘„. Thus ๐‘ƒ = ๐‘„ which contradicts ๐‘„being different from ๐‘ƒ.

Example. Let ๐บ = GL๐‘›(F๐‘). It has order

|๐บ| = (๐‘๐‘› โˆ’ 1)(๐‘๐‘› โˆ’ ๐‘) โ‹ฏ (๐‘๐‘› โˆ’ ๐‘๐‘›โˆ’1) =๐‘›โˆ’1โˆ๐‘–=0

(๐‘๐‘› โˆ’ ๐‘๐‘–) = ๐‘๐‘›(๐‘›โˆ’1)

2

๐‘›โˆ’1โˆ๐‘–=0

(๐‘๐‘›โˆ’๐‘– โˆ’ 1).

Let ๐‘ˆ be the set of upper triangular matrices with diagonal entries 1, whichforms a subgroup of ๐บ. |๐‘ˆ| = ๐‘

๐‘›(๐‘›โˆ’1)2 so ๐‘ˆ is a Sylow ๐‘-subgroup.

Consider GL2(F๐‘). It has order (๐‘2 โˆ’ 1)(๐‘2 โˆ’ ๐‘) = ๐‘(๐‘ + 1)(๐‘ โˆ’ 1)2. Let โ„“be an odd prime dividing ๐‘ โˆ’ 1. Then โ„“ โˆค ๐‘, โ„“ โˆค ๐‘ + 1 so โ„“2 is the largest powerof โ„“ dividing |GL2(F๐‘)|.

15

Page 17: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

1 Groups

Define the unit group

(Z/๐‘Z)ร— = {๐‘ฅ โˆˆ Z/๐‘Z โˆถ โˆƒ๐‘ฆ โˆˆ Z/๐‘Z, ๐‘ฅ๐‘ฆ = 1} = {๐‘ฅ โˆˆ Z/๐‘Z โˆถ ๐‘ฅ โ‰  0}

which is isomorphic to ๐ถ๐‘โˆ’1. Thus it has a subgroup ๐ถโ„“ โ‰ค ๐ถ๐‘โˆ’1, i.e. we can find๐‘ฅ โˆˆ (Z/๐‘Z)ร— such that ๐‘ฅโ„“ = 1.

Let

๐ป = {( ๐‘Ž 00 ๐‘ ) โˆถ ๐‘Ž, ๐‘ โˆˆ (Z/๐‘Z)ร—, ๐‘Žโ„“ = ๐‘โ„“ = 1} โ‰… ๐ถโ„“ ร— ๐ถโ„“ โ‰ค GL2(F๐‘).

Then ๐ป is a Sylow โ„“-subgroup.Example. Let

SL2(F๐‘) = ker(det โˆถ GL2(F๐‘) โ†’ (Z/๐‘Z)ร—).

det is surjective as det( ๐œ† 00 1 ) = ๐œ† so SL2(F๐‘) โŠด GL2(F๐‘) has index ๐‘ โˆ’ 1. Thus

|SL2(F๐‘)| = (๐‘ โˆ’ 1)๐‘(๐‘ + 1).

Further definePSL2(F๐‘) = SL2(F๐‘)/{( ๐œ† 0

0 ๐œ† )}.If ( ๐œ† 0

0 ๐œ† ) โˆˆ SL2(F๐‘), then ๐œ†2 = 1. As long as ๐‘ > 2, there are two such ๐œ†โ€™s, ยฑ1 so

|PSL2(F๐‘)| = (๐‘ โˆ’ 1)๐‘(๐‘ + 1)2

.

Let (Z/๐‘Z)โˆž = Z/๐‘Z โˆช {โˆž}. Then PSL2(F๐‘) acts on (Z/๐‘Z)โˆž by theMรถbius map

[๐‘Ž ๐‘๐‘ ๐‘‘] โˆ— ๐‘ง = ๐‘Ž๐‘ง + ๐‘

๐‘๐‘ง + ๐‘‘.

Take ๐‘ = 5 for example, this actions gives a homomorphism

๐œ‘ โˆถ PSL2(F5) โ†’ ๐‘†6.

|PSL2(F5)| = 60. Claim ๐œ‘ is injective.

Proof. Suppose ๐‘Ž๐‘ง+๐‘๐‘๐‘ง+๐‘‘ = ๐‘ง for all ๐‘ง. Set ๐‘ง = 0, ๐‘ = 0. ๐‘ง = โˆž, ๐‘ = 0. ๐‘ง = 1, ๐‘Ž = ๐‘‘.

Thus[๐‘Ž ๐‘

๐‘ ๐‘‘] = [1 00 1] โˆˆ PSL2(F5).

Further claim Im๐œ‘ โ‰ค ๐ด6.

Proof. Consider

1 PSL2(F5) ๐‘†6 ๐ถ2.๐œ‘ sgn

Need to show ๐œ“ = sgn โˆ˜๐œ‘ is trivial. We already know elements of odd order inPSL2(F5) has be be sent to 1.

Note that ๐ป = {[ ๐œ† 00 ๐œ†โˆ’1 ], [ 0 ๐œ†

โˆ’๐œ†โˆ’1 0 ]} has order 4, so it is a Sylow 2-subgroupof PSL2(F5). Any elemnt of order 2 or 4 is conjugate to an element in the group.We will show ๐œ“(๐ป) = {๐‘’}.

๐ป is generated by [ โˆ’2 00 2 ] and [ 0 1

โˆ’1 0 ]. [ โˆ’2 00 2 ] acts on (Z/5Z)โˆž via ๐‘ง โ†ฆ โˆ’๐‘ง.

It is thus an even permutation. [ 0 1โˆ’1 0 ] acts via ๐‘ง โ†ฆ โˆ’ 1

๐‘ง , which is also an evenpermutation.

16

Page 18: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

2 Rings

2.1 Definitions

Definition (Ring). A ring is a quintuple (๐‘…, +, โ‹…, 0๐‘…, 1๐‘…) such that

โ€ข (๐‘…, +, 0๐‘…) is an abelian group,

โ€ข the operation โˆ’ โ‹… โˆ’ โˆถ ๐‘… ร— ๐‘… โ†’ ๐‘… is associative and satisfies

1๐‘… โ‹… ๐‘Ÿ = ๐‘Ÿ = ๐‘Ÿ โ‹… 1๐‘…

โ€ข ๐‘Ÿ โ‹… (๐‘Ÿ1 + ๐‘Ÿ2) = ๐‘Ÿ โ‹… ๐‘Ÿ1 + ๐‘Ÿ โ‹… ๐‘Ÿ2 and (๐‘Ÿ1 + ๐‘Ÿ2) โ‹… ๐‘Ÿ = ๐‘Ÿ1 โ‹… ๐‘Ÿ + ๐‘Ÿ2 โ‹… ๐‘Ÿ.

A ring is commutative if for all ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘Ž โ‹… ๐‘ = ๐‘ โ‹… ๐‘Ž. We will only considercommutative rings in this course.

Definition (Subring). If (๐‘…, +, โ‹…, 0๐‘…, 1๐‘…) is a ring and ๐‘† โŠ† ๐‘…, then it is asubring if 0๐‘…, 1๐‘… โˆˆ ๐‘† and +, โ‹… make ๐‘† into a ring. Write ๐‘† โ‰ค ๐‘….

Example.

1. Z โ‰ค Q โ‰ค R โ‰ค C with usual 0, 1, + and โ‹….

2. Z[๐‘–] = {๐‘Ž + ๐‘–๐‘ โˆถ ๐‘Ž, ๐‘ โˆˆ Z} is the subring of Gaussian integers.

3. Q[โˆš

2] = {๐‘Ž +โˆš

2๐‘ โˆถ ๐‘Ž, ๐‘ โˆˆ Q} โ‰ค R.

Definition (Unit). An element ๐‘Ÿ โˆˆ ๐‘… is a unit if there exists ๐‘  โˆˆ ๐‘… suchthat ๐‘  โ‹… ๐‘Ÿ = 1๐‘….

Note that being a unit depends on the ambient ring: 2 โˆˆ Z is not a unit but2 โˆˆ Q is.

If every ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ โ‰  0๐‘… is a unit, then ๐‘… is a field.

Notation. If ๐‘ฅ โˆˆ ๐‘…, write โˆ’๐‘ฅ โˆˆ ๐‘… for the inverse of ๐‘ฅ in (๐‘…, +, 0๐‘…). Write๐‘ฆ โˆ’ ๐‘ฅ = ๐‘ฆ + (โˆ’๐‘ฅ).

Example. 0๐‘… + 0๐‘… = 0๐‘… so

๐‘Ÿ โ‹… 0๐‘… = ๐‘Ÿ โ‹… (0๐‘… + 0๐‘…) = ๐‘Ÿ โ‹… 0๐‘… + ๐‘Ÿ โ‹… 0๐‘…

so ๐‘Ÿ โ‹… 0๐‘… = 0๐‘…. Thus if ๐‘… โ‰  {0}, 0๐‘… โ‰  1๐‘… since choosing ๐‘Ÿ โ‰  0๐‘…, we would get๐‘Ÿ = ๐‘Ÿ โ‹… 1๐‘… = ๐‘Ÿ โ‹… 0๐‘… = 0๐‘…. Absurd.

However, ({0}, +, โ‹…, 0, 0) is indeed a ring.

Example. If ๐‘… and ๐‘† are rings, then ๐‘… ร— ๐‘† is a ring via

(๐‘Ÿ1, ๐‘ 1) + (๐‘Ÿ2, ๐‘ 2) = (๐‘Ÿ1 + ๐‘Ÿ2, ๐‘ 1 + ๐‘ 2)(๐‘Ÿ1, ๐‘ 1) โ‹… (๐‘Ÿ2, ๐‘ 2) = (๐‘Ÿ1 โ‹… ๐‘Ÿ2, ๐‘ 1 โ‹… ๐‘ 2)

1๐‘…ร—๐‘† = (1๐‘…, 1๐‘†)0๐‘…ร—๐‘† = (0๐‘…, 0๐‘†)

17

Page 19: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Let ๐‘’1 = (1๐‘…, 0), ๐‘’2 = (0, 1๐‘†), then1

๐‘’21 = ๐‘’1

๐‘’22 = ๐‘’2

๐‘’1 + ๐‘’2 = 1๐‘…ร—๐‘†

Example (Polynomial). Let ๐‘… be a ring. A polynomial ๐‘“ over ๐‘… is an expression

๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘‹ + โ‹ฏ ๐‘Ž๐‘›๐‘‹๐‘›

with ๐‘Ž๐‘– โˆˆ ๐‘… for all ๐‘–. Note that ๐‘‹ is just a symbol and the sum is formal. Wewill consider ๐‘“ and

๐‘Ž0 + ๐‘Ž1๐‘‹ + โ‹ฏ ๐‘Ž๐‘›๐‘‹๐‘› + 0๐‘… โ‹… ๐‘‹๐‘›+1

as equal.The degree of ๐‘“ is the largest ๐‘› such that ๐‘Ž๐‘› โ‰  0. If in addition ๐‘Ž๐‘› = 1๐‘…, we

say ๐‘“ is monic.Write ๐‘…[๐‘‹] for the set of all polynomials over ๐‘…. If

๐‘” = ๐‘0 + ๐‘1๐‘‹ + โ‹ฏ + ๐‘๐‘š๐‘‹๐‘š,

we define

๐‘“ + ๐‘” =max (๐‘“,๐‘”)

โˆ‘๐‘–=0

(๐‘Ž๐‘– + ๐‘๐‘–)๐‘‹๐‘–

๐‘“ โ‹… ๐‘” = โˆ‘๐‘–

๐‘–โˆ‘๐‘—=0

๐‘Ž๐‘—๐‘๐‘–โˆ’๐‘—๐‘‹๐‘–

which make ๐‘…[๐‘‹] a ring.We consider ๐‘… as a subring of ๐‘…[๐‘‹], given by the polynomials of degree 0.

In particular, 1๐‘… โˆˆ ๐‘… gives 1๐‘…[๐‘‹].

Example. Conisder Z/2Z[๐‘‹], ๐‘“ = ๐‘‹ + ๐‘‹2 โ‰  0. We have

๐‘“(0) = 0 + 0 = 0๐‘“(1) = 1 + 1 = 0

This shows that a polynomial vanishing everywhere on a finite ring is notnecessarily zero (but necessarily so for an infinite ring).

Example. Write ๐‘…[[๐‘‹]] for the ring of formal power series with elements

๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘‹ + ๐‘Ž2๐‘‹2 + โ€ฆ

with the same addition and multiplication as above.

Example. The Laurent polynomials ๐‘…[๐‘‹, ๐‘‹โˆ’1] is the set of expressions

๐‘“ = โˆ‘๐‘–โˆˆZ

๐‘Ž๐‘–๐‘‹๐‘–

such that only finitely many ๐‘Ž๐‘–โ€™s are non-zero.1This is known as orthogonal idempotents.

18

Page 20: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Example. The ring of Laurent series are elements of the form

๐‘“ = โˆ‘๐‘–โˆˆZ

๐‘Ž๐‘–๐‘‹๐‘–

with only finitely many ๐‘– < 0 such that ๐‘Ž๐‘– โ‰  0.

Example. If ๐‘… is a ring and ๐‘‹ is a set, the set ๐‘…๐‘‹ of all functions ๐‘“ โˆถ ๐‘‹ โ†’ ๐‘…is a ring via

(๐‘“ + ๐‘”)(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)(๐‘“ โ‹… ๐‘”)(๐‘ฅ) = ๐‘“(๐‘ฅ) โ‹… ๐‘”(๐‘ฅ)(1๐‘…๐‘‹)(๐‘ฅ) = 1๐‘…

(0๐‘…๐‘‹)(๐‘ฅ) = 0๐‘…

For example, we have the following chain

R[๐‘‹] = {๐‘“ โˆถ R โ†’ R polynomial} < {๐‘“ โˆถ R โ†’ R continuous} < RR.

2.2 Homomorphism, Ideals and Isomorphisms

Definition (Homomorphism). A function ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† between rings is ahomomorphism if

โ€ข ๐œ‘(๐‘Ÿ1 + ๐‘Ÿ2) = ๐œ‘(๐‘Ÿ1) + ๐œ‘(๐‘Ÿ2), i.e. ๐œ‘ โˆถ (๐‘…, +, 0๐‘…) โ†’ (๐‘†, +, 0๐‘†) is a grouphomomorphism,

โ€ข ๐œ‘(๐‘Ÿ1๐‘Ÿ2) = ๐œ‘(๐‘Ÿ1)๐œ‘(๐‘Ÿ2),

โ€ข ๐œ‘(1๐‘…) = 1๐‘†.

If in addition ๐œ‘ is a bijection, it is an isomorphism.

The kernel of ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† is

ker๐œ‘ = {๐‘Ÿ โˆˆ ๐‘… โˆถ ๐œ‘(๐‘Ÿ) = 0๐‘†}.

Lemma 2.1. ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† is injective if and only if ker๐œ‘ = {0๐‘…}.

Proof. ๐œ‘ โˆถ (๐‘…, +, 0๐‘…) โ†’ (๐‘†, +, 0๐‘†) is a group homomorphism and its kernel asgroup homomorphism is also ker๐œ‘.

Definition (Ideal). A subset ๐ผ โŠ† ๐‘… is an ideal if

โ€ข ๐ผ is a subgroup of (๐‘…, +, 0๐‘…),

โ€ข strong (multiplicative) closure: for all ๐‘ฅ โˆˆ ๐ผ, ๐‘Ÿ โˆˆ ๐‘…, ๐‘ฅ โ‹… ๐‘Ÿ โˆˆ ๐ผ.

Write ๐ผ โŠด ๐‘….

We say ๐ผ โŠด ๐‘… is proper if ๐ผ โ‰  ๐‘….

19

Page 21: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Lemma 2.2. If ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† is a homomorphism then ker๐œ‘ โŠด ๐‘….

Proof. The first axiom holds since ๐œ‘ is a group homomorphism. Let ๐‘ฅ โˆˆ ker๐œ‘, ๐‘Ÿ โˆˆ๐‘…, then

๐œ‘(๐‘Ÿ โ‹… ๐‘ฅ) = ๐œ‘(๐‘Ÿ) โ‹… ๐œ‘(๐‘ฅ) = ๐œ‘(๐‘Ÿ) โ‹… 0๐‘† = 0๐‘†

so ๐‘Ÿ โ‹… ๐‘ฅ โˆˆ ker๐œ‘.

Example.

1. If ๐ผ โŠด ๐‘… and 1๐‘… โˆˆ ๐ผ, then for all ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ = ๐‘Ÿ โ‹… 1๐‘… โˆˆ ๐ผ so ๐ผ = ๐‘….Equivalently, if ๐ผ is a proper ideal then 1๐‘… โˆ‰ ๐ผ. Consequenctly, properideals are never subrings.

2. This can be generalaised to units: if ๐‘ข is a unit in ๐‘… with inverse ๐‘ฃ โˆˆ ๐‘…,then if ๐‘ข โˆˆ ๐ผ, so is 1๐‘… = ๐‘ข โ‹… ๐‘ฃ โˆˆ ๐‘… so ๐ผ = ๐‘….Equivalently, if ๐ผ is a proper ideal then it contains no unit.

Example. If ๐‘… is a field then {0} and ๐‘… are the only ideals.

Example. In the ring Z, all ideals are of the form

๐‘›Z = {โ€ฆ , โˆ’2๐‘›, โˆ’๐‘›, 0, ๐‘›, 2๐‘›, โ€ฆ }.

Proof. ๐‘›Z is certainly an ideal.Let ๐ผ โŠด Z be an ideal. Let ๐‘› โˆˆ ๐ผ be the smallest positive element. Then

๐‘›Z โŠ† ๐ผ. If this is not an equality, choose ๐‘š โˆˆ ๐ผ \ ๐‘›Z. By Euclidean algorithm,๐‘š = ๐‘›๐‘ž + ๐‘Ÿ with 0 โ‰ค ๐‘Ÿ < ๐‘›. So ๐‘Ÿ = ๐‘š โˆ’ ๐‘›๐‘ž โˆˆ ๐ผ. But ๐‘› is the smallest positiveelement in ๐ผ, so ๐‘Ÿ = 0. Thus ๐‘š โˆˆ ๐‘›Z.

Definition (Generated ideal). For an element ๐‘Ž โˆˆ ๐‘…, write

(๐‘Ž) = {๐‘Ž โ‹… ๐‘Ÿ โˆถ ๐‘Ÿ โˆˆ ๐‘…} โŠด ๐‘…,

the ideal generated by ๐‘Ž.More generally, for a set of elements {๐‘Ž1, โ€ฆ , ๐‘Ž๐‘ }, write

(๐‘Ž1, โ€ฆ , ๐‘Ž๐‘ ) = {๐‘Ž1๐‘Ÿ1 + โ‹ฏ + ๐‘Ž๐‘ ๐‘Ÿ๐‘  โˆถ ๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘  โˆˆ ๐‘…} โŠด ๐‘….

Definition (Principal ideal). If ๐ผ โŠด ๐‘… if of the form (๐‘Ž), we say it is aprincipal ideal.

Example.

1. ๐‘›Z = (๐‘›) โŠด Z is ideal. In fact we have shown that all ideals of Z areprincipal.

2. (๐‘‹) = {polynomials with constant coefficient 0} โŠด C[๐‘‹].

20

Page 22: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Proposition 2.3 (Quotient ring). Let ๐ผ โŠด ๐‘… be an ideal. The quotient ringis the set of cosets ๐‘Ÿ + ๐ผ (i.e. (๐‘…, +, 0)/๐ผ). Addition and multiplication aregiven by

(๐‘Ÿ1 + ๐ผ) + (๐‘Ÿ2 + ๐ผ) = ๐‘Ÿ1 + ๐‘Ÿ2 + ๐ผ(๐‘Ÿ1 + ๐ผ) โ‹… (๐‘Ÿ2 + ๐ผ) = ๐‘Ÿ1๐‘Ÿ2 + ๐ผ

with 0๐‘…/๐ผ = 0๐‘… + ๐ผ, 1๐‘…/๐ผ = 1๐‘… + ๐ผ. This is a ring, and the quotient map

๐‘… โ†’ ๐‘…/๐ผ๐‘Ÿ โ†ฆ ๐‘Ÿ + ๐ผ

is a ring homomorphism.

Proof. We already knew (๐‘…/๐ผ, +, 0๐‘…/๐ผ) is an abelian group and addition asdescribed above is well-defined. Suppose

๐‘Ÿ1 + ๐ผ = ๐‘Ÿโ€ฒ1 + ๐ผ

๐‘Ÿ2 + ๐ผ = ๐‘Ÿโ€ฒ2 + ๐ผ

then ๐‘Ÿโ€ฒ1 โˆ’ ๐‘Ÿ1 = ๐‘Ž1 โˆˆ ๐ผ, ๐‘Ÿโ€ฒ

2 โˆ’ ๐‘Ÿ2 = ๐‘Ž2 โˆˆ ๐ผ. So

๐‘Ÿโ€ฒ1๐‘Ÿโ€ฒ

2 = (๐‘Ÿ1 + ๐‘Ž1)(๐‘Ÿ2 + ๐‘Ž2) = ๐‘Ÿ1๐‘Ÿ2 + ๐‘Ÿ1๐‘Ž2 + ๐‘Ÿ2๐‘Ž1 + ๐‘Ž1๐‘Ž2โŸโŸโŸโŸโŸโŸโŸโŸโŸโˆˆ๐ผ

.

Thus ๐‘Ÿโ€ฒ1๐‘Ÿโ€ฒ

2 + ๐ผ = ๐‘Ÿ1๐‘Ÿ2 + ๐ผ. This shows multiplication is well-defined. The ringaxioms for ๐‘…/๐ผ then follow from those of ๐‘….

Example.

1. ๐‘›Z โŠด Z so Z/๐‘›Z is a ring. It has elements

0 + ๐‘›Z, 1 + ๐‘›Z, โ€ฆ , (๐‘› โˆ’ 1) + ๐‘›Z

and addition and multiplication are modular arithmetic mod ๐‘›.

2. (๐‘‹) โŠด C[๐‘‹] so C[๐‘‹]/(๐‘‹) is a ring. We have

๐‘Ž0 + ๐‘Ž1๐‘‹ + ๐‘Ž2๐‘‹2 + โ‹ฏ + ๐‘Ž๐‘›๐‘‹๐‘›โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโˆˆ(๐‘‹)

+(๐‘‹) = ๐‘Ž0 + ๐‘‹.

If ๐‘Ž0 + (๐‘‹) = ๐‘0 + (๐‘‹) then ๐‘Ž0 โˆ’ ๐‘0 โˆˆ (๐‘‹) so ๐‘Ž0 โˆ’ ๐‘0 is divisible by ๐‘‹,๐‘Ž0 โˆ’ ๐‘0 = 0. Consider

๐œ‘ โˆถ C โ†’ C[๐‘‹]/(๐‘‹)๐‘Ž โ†ฆ ๐‘Ž + (๐‘‹)

which is a bijection. Observe that ๐œ‘ is a bijection and its inverse is givenby the map ๐‘“ + (๐‘‹) โ†ฆ ๐‘“(0).

21

Page 23: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Proposition 2.4 (Euclidean algorithm for polynomials). Let ๐น be a fieldand ๐‘“, ๐‘” โˆˆ ๐น [๐‘‹]. Then we may write

๐‘“ = ๐‘” โ‹… ๐‘ž + ๐‘Ÿ

with deg ๐‘Ÿ < deg ๐‘”.

Proof. Let deg ๐‘“ = ๐‘›, deg ๐‘” = ๐‘š so

๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘‹ + โ‹ฏ + ๐‘Ž๐‘›๐‘‹๐‘›

๐‘” = ๐‘0 + ๐‘1๐‘‹ + โ‹ฏ + ๐‘๐‘š๐‘‹๐‘š

with ๐‘Ž๐‘›, ๐‘๐‘š โ‰  0.If ๐‘› < ๐‘š, let ๐‘ž = 0, ๐‘Ÿ = ๐‘“ so done. Suppose ๐‘› โ‰ฅ ๐‘š and proceed by induction

on ๐‘›. Let๐‘“1 = ๐‘“ โˆ’ ๐‘”๐‘‹๐‘›โˆ’๐‘š๐‘Ž๐‘›๐‘โˆ’1

๐‘š

where ๐‘โˆ’1๐‘š exists since ๐‘๐‘š โˆˆ ๐น and ๐‘๐‘š โ‰  0. This has degree < ๐‘›. If ๐‘› = ๐‘š then

๐‘“ = ๐‘”(๐‘‹๐‘›โˆ’๐‘š๐‘Ž๐‘›๐‘โˆ’1๐‘š ) + ๐‘“1

with deg ๐‘“1 < ๐‘› = ๐‘š = deg ๐‘”. If ๐‘› > ๐‘š, by induction we have ๐‘“1 = ๐‘”๐‘ž1 + ๐‘Ÿ withdeg ๐‘Ÿ < deg ๐‘” so

๐‘“ = ๐‘”(๐‘‹๐‘›โˆ’๐‘š๐‘Ž๐‘›๐‘โˆ’1๐‘š ) + ๐‘”๐‘ž1 + ๐‘Ÿ = ๐‘”(๐‘‹๐‘›โˆ’๐‘š๐‘Ž๐‘›๐‘โˆ’1

๐‘š + ๐‘ž1) + ๐‘Ÿ

as required.

Example. Consider (๐‘‹2 + 1) โŠด R[๐‘‹] and let ๐‘… = R[๐‘‹]/(๐‘‹2 + 1). It haselements of the form ๐‘“ + (๐‘‹2 + 1). By Euclidean algorithm for polynomials๐‘“ = (๐‘‹2 + 1)๐‘” + ๐‘Ÿ with deg ๐‘Ÿ โ‰ค 1 so ๐‘“ + (๐‘‹2 + 1) = ๐‘Ÿ + (๐‘‹2 + 1). Any elementcan be represented by a polynomial of degree โ‰ค 1, say ๐‘Ž + ๐‘๐‘‹ + (๐‘‹2 + 1). If๐‘Ž1 + ๐‘1๐‘‹ + (๐‘‹2 + 1) = ๐‘Ž2 + ๐‘2๐‘‹ + (๐‘‹2 + 1) then (๐‘Ž1 + ๐‘1๐‘‹) โˆ’ (๐‘Ž2 + ๐‘2๐‘‹) isdivisible by ๐‘‹2 + 1. But degrees add in multiplication so ๐‘Ž1 + ๐‘1๐‘‹ = ๐‘Ž2 + ๐‘2๐‘‹.Consider the bijection

๐œ‘ โˆถ ๐‘… โ†’ C๐‘Ž + ๐‘๐‘‹ + (๐‘‹2 + 1) โ†ฆ ๐‘Ž + ๐‘๐‘–

It obviously send addition to addition. For multiplication,

๐œ‘((๐‘Ž + ๐‘๐‘‹ + (๐‘‹2 + 1)) โ‹… (๐‘ + ๐‘‘๐‘‹ + (๐‘‹2 + 1)))=๐œ‘(๐‘Ž๐‘ + (๐‘๐‘ + ๐‘Ž๐‘‘)๐‘‹ + ๐‘๐‘‘๐‘‹2 + (๐‘‹2 + 1))=๐œ‘(๐‘Ž๐‘ + (๐‘๐‘ + ๐‘Ž๐‘‘)๐‘‹ + ๐‘๐‘‘(๐‘‹2 + 1) โˆ’ ๐‘๐‘‘ + (๐‘‹2 + 1)=(๐‘Ž๐‘ โˆ’ ๐‘๐‘‘) + (๐‘๐‘ + ๐‘Ž๐‘‘)๐‘–=(๐‘Ž + ๐‘๐‘–) โ‹… (๐‘ + ๐‘‘๐‘–)=๐œ‘(๐‘Ž + ๐‘๐‘‹ + (๐‘‹2 + 1)) โ‹… ๐œ‘(๐‘ + ๐‘‘๐‘‹ + (๐‘‹2 + 1))

Thus we have shown that C โ‰… R[๐‘‹]/(๐‘‹2 + 1).

Remark. The key idea in the proof is to force ๐‘‹2 + 1 to vanish by quotient thepolynomial ring by the generated ideal so that โ€œ๐‘‹ = ยฑ๐‘–โ€. Similarly Q[๐‘‹]/(๐‘‹2 โˆ’2) โ‰… Q[

โˆš2] โ‰ค R.

22

Page 24: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

This is a nice result. However, the proof is too cumbersome to be generalisedas we have to check well-definedness for each case. Instead, we have the followingtheorems stating the general results for abstract rings and ideals. The proofsare similar to those for groups and are omitted.

Theorem 2.5 (1st Isomorphism Theorem). Let ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† be a ringisomorphism. Then ker๐œ‘ โŠด ๐‘…, Im๐œ‘ โ‰ค ๐‘† and

๐‘…/ ker๐œ‘ โ†’ Im๐œ‘๐‘Ÿ + ker๐œ‘ โ†ฆ ๐œ‘(๐‘Ÿ)

is a ring isomorphism.

Theorem 2.6 (2nd Isomorphism Theorem). Let ๐‘… โ‰ค ๐‘† and ๐ฝ โŠด ๐‘†. Then๐‘… โˆฉ ๐ฝ โŠด ๐‘… and

๐‘… + ๐ฝ๐ฝ

โ‰… ๐‘…๐‘… โˆฉ ๐ฝ

as rings.

Theorem 2.7 (Subring and ideal correspondence). Let ๐ผ โŠด ๐‘…. Then thereis a bijection between

{subrings of ๐‘…/๐ผ} โ†” {subrings of ๐‘… containing ๐ผ}๐ฟ โ‰ค ๐‘…/๐ผ โ†ฆ {๐‘Ÿ โˆˆ ๐‘… โˆถ ๐‘Ÿ + ๐ผ โˆˆ ๐ฟ}

๐‘†/๐ผ โ‰ค ๐‘…/๐ผ โ†ค ๐ผ โŠด ๐‘† โ‰ค ๐‘…

and

{ideals of ๐‘…/๐ผ} โ†” {ideals of ๐‘… containing ๐ผ}๐ฟ โŠด ๐‘…/๐ผ โ†ฆ {๐‘Ÿ โˆˆ ๐‘… โˆถ ๐‘Ÿ + ๐ผ โˆˆ ๐ฟ}

๐ฝ/๐ผ โŠด ๐‘…/๐ผ โ†ค ๐ผ โŠด ๐ฝ โŠด ๐‘…

Theorem 2.8 (3rd Isomorphism Theorem). Let ๐ผ, ๐ฝ โŠด ๐‘…, ๐ผ โŠ† ๐ฝ. Then๐ฝ/๐ผ โŠด ๐‘…/๐ผ and

๐‘…/๐ผ๐ฝ/๐ผ

โ‰… ๐‘…/๐ฝ.

Example. Consider the homomorphism

๐œ‘ โˆถ R[๐‘‹] โ†’ C

โˆ‘ ๐‘Ž๐‘›๐‘‹๐‘› โ†ฆ โˆ‘ ๐‘Ž๐‘›๐‘–๐‘›

i.e. evaluation at ๐‘–. It is surjective and

ker๐œ‘ = {๐‘“ โˆˆ R[๐‘‹] โˆถ ๐‘“(๐‘–) = 0} = (๐‘‹2 + 1)

because real polynomials with ๐‘– as a root also have โˆ’๐‘– as aroot, so are divisibleby (๐‘‹ โˆ’ ๐‘–)(๐‘‹ + ๐‘–) = ๐‘‹2 + 1. By 1st Isomorphism Theorem

R[๐‘‹]/(๐‘‹2 + 1) โ‰… C.

23

Page 25: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Example (Characteristic of a ring). For any ring ๐‘… there is a unique homomor-phism

๐œ„ โˆถ Z โ†’ ๐‘…

๐‘› โ†ฆโŽง{โŽจ{โŽฉ

1๐‘… + 1๐‘… + โ‹ฏ + 1๐‘…โŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘› times

๐‘› > 0

โˆ’ (1๐‘… + 1๐‘… + โ‹ฏ + 1๐‘…)โŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘› times

๐‘› < 0

ker ๐œ„ โŠด Z so ker ๐œ„ = ๐‘›Z for some ๐‘› โ‰ฅ 0. This number ๐‘› is called the characteristicof ๐‘…, denoted ch๐‘….

For example, Z โ‰ค Q โ‰ค R โ‰ค C all have characteristic 0. Z/๐‘›Z have character-istic ๐‘›.

2.3 Integral domain, Field of fractions, Maximal and Primeideals

Definition (Integral domain). A non-zero ring ๐‘… is an integral domain iffor all ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘Ž โ‹… ๐‘ = 0 implies that ๐‘Ž = 0 or ๐‘ = 0.

Definition (Zero divisor). ๐‘ฅ is a zero divisor in ๐‘… if ๐‘ฅ โ‰  0 and there exists๐‘ฆ โ‰  0 such that ๐‘ฅ โ‹… ๐‘ฆ = 0.

Example.

1. All fields are integral domains: if ๐‘ฅ๐‘ฆ = 0 with ๐‘ฆ โ‰  0, then ๐‘ฆโˆ’1 exists and

0 = 0 โ‹… ๐‘ฆโˆ’1 = (๐‘ฅ๐‘ฆ) โ‹… ๐‘ฆโˆ’1 = ๐‘ฅ.

2. A subring of an integral domain is an integral domain. Thus Z โ‰ค Q,Z[๐‘–] โ‰คC are integral domains.

Definition (Principal ideal domain). A ring ๐‘… is a principal ideal domain(PID) if it is an integral domain and every ideal is principal, i.e. for all ๐ผ โŠด ๐‘…,there exists ๐‘Ž โˆˆ ๐‘… such that ๐ผ = (๐‘Ž).

Example. Z is a PID.

Lemma 2.9. A finite integral domain is a field.

Proof. Let ๐‘Ž โ‰  0 โˆˆ ๐‘… and consider

๐‘Ž โ‹… โˆ’ โˆถ ๐‘… โ†’ ๐‘…๐‘ โ†ฆ ๐‘Ž๐‘

This is a group homomorphism and its kernel is

ker(๐‘Ž โ‹… โˆ’) = {๐‘ โˆˆ ๐‘… โˆถ ๐‘Ž๐‘ = 0} = {0}.

Thus ๐‘Ž โ‹… โˆ’ is injective. As |๐‘…| < โˆž, ๐‘Ž โ‹… โˆ’ must also be surjective. Thus thereexists ๐‘ โˆˆ ๐‘… such that ๐‘Ž๐‘ = 1. ๐‘ = ๐‘Žโˆ’1.

24

Page 26: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Lemma 2.10. Let ๐‘… be an integral domain. Then ๐‘…[๐‘‹] is an integraldomain.

Proof. Let

๐‘“ =๐‘›

โˆ‘๐‘–=0

๐‘Ž๐‘–๐‘‹๐‘–

๐‘” =๐‘š

โˆ‘๐‘—=0

๐‘๐‘—๐‘‹๐‘—

with ๐‘Ž๐‘›, ๐‘๐‘š โ‰  0 be non-zero polynomials. Then the largest power of ๐‘‹ in ๐‘“๐‘” is๐‘‹๐‘š+๐‘› and its coefficient is ๐‘Ž๐‘›๐‘๐‘š โˆˆ ๐‘…. This is a product of non-zero elementson an integral domain so non-zero. Thus ๐‘“๐‘” โ‰  0.

This gives us a way to produce a new integral domain from old ones. Moreover,iterating this, ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] = ((๐‘…[๐‘‹1])[๐‘‹2] โ€ฆ [๐‘‹๐‘›]) is an integral domain.

Theorem 2.11 (Field of fractions). Let ๐‘… be an integral domain. There isa field of fractions ๐น of ๐‘… with the following properties:

1. ๐น is a field,

2. ๐‘… โ‰ค ๐น,

3. every element of ๐น is of the form ๐‘Ž โ‹… ๐‘โˆ’1 where ๐‘Ž, ๐‘ โˆˆ ๐‘… โ‰ค ๐น.

Proof. Consider ๐‘† = {(๐‘Ž, ๐‘) โˆˆ ๐‘…2 โˆถ ๐‘ โ‰  0} with an equivalence relation

(๐‘Ž, ๐‘) โˆผ (๐‘, ๐‘‘) โ‡” ๐‘Ž๐‘‘ = ๐‘๐‘‘ โˆˆ ๐‘….

This is reflexive and symmetric. To show it is transitive, suppose (๐‘Ž, ๐‘) โˆผ(๐‘, ๐‘‘), (๐‘, ๐‘‘) โˆผ (๐‘’, ๐‘“). Then

(๐‘Ž๐‘‘)๐‘“ = (๐‘๐‘)๐‘“ = ๐‘(๐‘๐‘“) = ๐‘(๐‘’๐‘‘)

so ๐‘‘(๐‘Ž๐‘“ โˆ’ ๐‘๐‘’) = 0. As ๐‘‘ โ‰  0 and ๐‘… is an integral domain, ๐‘Ž๐‘“ โˆ’ ๐‘๐‘’ = 0, i.e.(๐‘Ž, ๐‘) โˆผ (๐‘’, ๐‘“).

Let ๐น = ๐‘†/ โˆผ and write [(๐‘Ž, ๐‘)] = ๐‘Ž๐‘ . Define

๐‘Ž๐‘

+ ๐‘๐‘‘

= ๐‘Ž๐‘‘ + ๐‘๐‘๐‘๐‘‘

๐‘Ž๐‘

โ‹… ๐‘๐‘‘

= ๐‘Ž๐‘๐‘๐‘‘

0๐น = 01

1๐น = 11

These are well-defined. If ๐‘Ž๐‘ โ‰  0๐น = 0

1 then ๐‘Ž โ‹… 1 โ‰  0 โ‹… ๐‘ = 0. Then ๐‘๐‘Ž โˆˆ ๐น and

๐‘Ž๐‘ โ‹… ๐‘

๐‘Ž = 11 = 1๐น so ๐‘Ž

๐‘ โˆˆ ๐น has an inverse. ๐น is a field.๐‘… is a subring of ๐น via

๐‘… โ†ช ๐น

๐‘Ÿ โ†ฆ ๐‘Ÿ1

which is injective as ๐‘… is an integral domain.

25

Page 27: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Example.

1. The field of fractions of Z is Q.

2. The field of fractions of C[๐‘‹] is

C(๐‘‹) = {๐‘(๐‘‹)๐‘ž(๐‘‹)

โˆถ ๐‘(๐‘‹), ๐‘ž(๐‘‹) โˆˆ C[๐‘‹], ๐‘ž(๐‘‹) โ‰  0} ,

the field of rational functions.

As we have mentioned before, {0} is a bona fide ring although it is a (trivial)counterexample to many results. However, it is not a field as we require 0 โ‰  1.To emphasise this, we declare

Fiat. The ring {0} is not a field.

Lemma 2.12. A non-zero ring ๐‘… is a field if and only if its only ideals are{0} and ๐‘….

Proof.

โ€ข โ‡’: Suppose ๐ผ โŠด ๐‘… is a non-zero ideal, then it contains ๐‘Ž โ‰  0. But an idealcontaining a unit must be the whole ring.

โ€ข โ‡: Let ๐‘ฅ โ‰  0 โˆˆ ๐‘…. Then (๐‘ฅ) = ๐‘… as it is not the zero ideal. Thus thereexists ๐‘ฆ โˆˆ ๐‘… such that ๐‘ฅ๐‘ฆ = 1๐‘… so ๐‘ฅ is a unit.

Definition (Maximal ideal). An ideal ๐ผ โŠด ๐‘… is maximal if there is no properideal which properly contains ๐ผ.

Lemma 2.13. An ideal ๐ผ โŠด ๐‘… is maximal if and only if ๐‘…/๐ผ is a field.

Proof. ๐‘…/๐ผ is a field if and only if ๐ผ/๐ผ and ๐‘…/๐ผ are the only ideals in ๐‘…/๐ผ, if andonly if ๐ผ, ๐‘… โŠด ๐‘… are the only ideals containing ๐ผ.

Definition (Prime ideal). An ideal ๐ผ โŠด ๐‘… is prime if ๐ผ is proper and if๐‘Ž, ๐‘ โˆˆ ๐‘… such that ๐‘Ž๐‘ โˆˆ ๐ผ then ๐‘Ž โˆˆ ๐ผ or ๐‘ โˆˆ ๐ผ.

Example. The ideal ๐‘›Z is prime if and only if ๐‘› is 0 or a prime number: if ๐‘ isprime and ๐‘Ž, ๐‘ โˆˆ ๐‘Z then ๐‘ โˆฃ ๐‘Ž๐‘ so ๐‘ โˆฃ ๐‘Ž or ๐‘ โˆฃ ๐‘, i.e. ๐‘Ž โˆˆ ๐‘Z or ๐‘ โˆˆ ๐‘Z. Conversely,if ๐‘› = ๐‘ข๐‘ฃ is composite, ๐‘ข < ๐‘› then ๐‘ข๐‘ฃ โˆˆ ๐‘›Z but ๐‘ข โˆ‰ ๐‘›Z.

Lemma 2.14. ๐ผ โŠด ๐‘… is prime if and only if ๐‘…/๐ผ is an integral domain.

Proof.

26

Page 28: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

โ€ข โ‡’: Supose ๐ผ โŠด ๐‘… is prime. Let ๐‘Ž + ๐ผ, ๐‘ + ๐ผ โˆˆ ๐‘…/๐ผ be such that (๐‘Ž + ๐ผ)(๐‘ +๐ผ) = 0๐‘…/๐ผ. Since ๐‘Ž๐‘ + ๐ผ = 0๐‘…/๐ผ, ๐‘Ž๐‘ โˆˆ ๐ผ. As ๐ผ is prime, ๐‘Ž โˆˆ ๐ผ or ๐‘ โˆˆ ๐ผ, i.e.๐‘Ž + ๐ผ = 0๐‘…/๐ผ or ๐‘ + ๐ผ = 0๐‘…/๐ผ. Thus ๐‘…/๐ผ is an integral domain.

โ€ข โ‡: Suppose ๐‘…/๐ผ is an integral domain. Let ๐‘Ž, ๐‘ โˆˆ ๐‘… such that ๐‘Ž๐‘+๐ผ = 0๐‘…/๐ผ.(๐‘Ž + ๐ผ)(๐‘ + ๐ผ) = 0๐‘…/๐ผ. As ๐‘…/๐ผ is an integral domain, ๐‘Ž + ๐ผ = 0๐‘…/๐ผ or๐‘ + ๐ผ = 0๐‘…/๐ผ, i.e. ๐‘Ž โˆˆ ๐ผ or ๐‘ โˆˆ ๐ผ.

Corollary 2.15. Maximal ideals are prime.

Proof. Fields are integral domains.

Lemma 2.16. If ๐‘… is an integral domain then its characteristic is 0 or aprime number.

Proof. Consider ker(๐œ„ โˆถ Z โ†’ ๐‘…) = ๐‘›Z. By 1st Isomorphism Theorem

Z/๐‘›Z โ‰… Im ๐œ„ โ‰ค ๐‘….

As a subring of an integral domain is an integral domain, Z/๐‘›Z is an integraldomain so ๐‘›Z โŠด Z is prime. Thus ๐‘› = 0 or a prime number.

2.4 Factorisation in integral domainsLet ๐‘… be an integral domain in this section.

We begin with several definitions. Note that for every statement about anelement of the ring there is an equivalent one in terms of ideals.

Definition (Unit, divisibility, associates, irreducible, prime).

โ€ข An element ๐‘Ž โˆˆ ๐‘… is a unit if there is ๐‘ โˆˆ ๐‘… such that ๐‘Ž๐‘ = 1๐‘….Equivalently, (๐‘Ž) = ๐‘….

โ€ข ๐‘Ž โˆˆ ๐‘… divides ๐‘ โˆˆ ๐‘… if there is a ๐‘ โˆˆ ๐‘… such that ๐‘ = ๐‘Ž๐‘. Equivalently,(๐‘) โŠ† (๐‘Ž). Write ๐‘Ž โˆฃ ๐‘.

โ€ข ๐‘Ž, ๐‘ โˆˆ ๐‘… are associates if ๐‘Ž โˆฃ ๐‘ and ๐‘ โˆฃ ๐‘Ž. Equivalently, (๐‘Ž) = (๐‘).

โ€ข ๐‘Ÿ โˆˆ ๐‘… is irreducible if it is not zero, not a unit and if ๐‘Ÿ = ๐‘Ž๐‘ then ๐‘Ž or๐‘ is a unit.

โ€ข ๐‘Ÿ โˆˆ ๐‘… is prime if it is not zero, not a unit and if ๐‘Ÿ โˆฃ ๐‘Ž๐‘ then ๐‘Ÿ โˆฃ ๐‘Ž or๐‘Ÿ โˆฃ ๐‘. Equivalently, ๐‘Ž๐‘ โˆˆ (๐‘Ÿ) โ‡’ ๐‘Ž โˆˆ (๐‘Ÿ) or ๐‘ โˆˆ (๐‘Ÿ).

Remark. Being a unit/irreducible/prime depends not only on the element butalso on the ambient ring: 2๐‘‹ โˆˆ Z[๐‘‹] is not irreducible but 2๐‘‹ โˆˆ Q[๐‘‹] is.

27

Page 29: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Lemma 2.17. (๐‘Ÿ) โŠด ๐‘… is prime if and only if ๐‘Ÿ is zero or prime.

Proof.

โ€ข โ‡’: Let (๐‘Ÿ) โŠด ๐‘… be a prime ideal and ๐‘Ÿ โˆฃ ๐‘Ž๐‘. Then ๐‘Ž๐‘ โˆˆ (๐‘Ÿ) so ๐‘Ž โˆˆ (๐‘Ÿ) or๐‘ โˆˆ (๐‘Ÿ) as (๐‘Ÿ) is prime. So ๐‘Ÿ โˆฃ ๐‘Ž or ๐‘Ÿ โˆฃ ๐‘. ๐‘Ÿ is 0 or a prime.

โ€ข โ‡: If ๐‘Ÿ = 0 then (0) โŠด ๐‘… is a prime ideal since ๐‘… โ‰… ๐‘…/(0) is an integraldomain. Let ๐‘Ÿ โ‰  0 be a prime and ๐‘Ž๐‘ โˆˆ (๐‘Ÿ). Then ๐‘Ÿ โˆฃ ๐‘Ž๐‘ so ๐‘Ÿ โˆฃ ๐‘Ž or ๐‘Ÿ โˆฃ ๐‘.๐‘Ž โˆˆ (๐‘Ÿ) or ๐‘ โˆˆ (๐‘Ÿ) as required.

Lemma 2.18. If ๐‘Ÿ โˆˆ ๐‘… is prime then it is irreducible.

Proof. Let ๐‘Ÿ = ๐‘Ž๐‘. Then ๐‘Ÿ โˆฃ ๐‘Ž๐‘ so ๐‘Ÿ โˆฃ ๐‘Ž or ๐‘Ÿ โˆฃ ๐‘. Suppose ๐‘Ÿ โˆฃ ๐‘Ž wlog. Then ๐‘Ž = ๐‘Ÿ๐‘.๐‘Ÿ = (๐‘Ÿ๐‘)๐‘, ๐‘Ÿ(๐‘๐‘ โˆ’ 1) = 0. As ๐‘Ÿ โ‰  0 and ๐‘… is an integral domain, ๐‘๐‘ โˆ’ 1 = 0 so ๐‘is a unit.

Example. Let ๐‘… = Z[โˆš

โˆ’5] = {๐‘Ž + ๐‘โˆš

โˆ’5 โˆถ ๐‘Ž, ๐‘ โˆˆ Z} โ‰ค C. This is a subring ofa field so an integral domain. Define

๐‘ โˆถ ๐‘… โ†’ Zโ‰ฅ0

๐‘Ž + ๐‘โˆš

โˆ’5 โ†ฆ ๐‘Ž2 + 5๐‘2

so ๐‘(๐‘ง) = ๐‘ง๐‘ง. Note ๐‘(๐‘Ÿ1๐‘Ÿ2) = ๐‘(๐‘Ÿ1)๐‘(๐‘Ÿ2). If ๐‘Ÿ is a unit then there exists ๐‘  โˆˆ ๐‘…such that ๐‘Ÿ๐‘  = 1, then ๐‘(๐‘Ÿ)๐‘(๐‘ ) = ๐‘(1) = 1, so ๐‘(๐‘Ÿ) = 1. So ๐‘Ÿ = ๐‘Ž + ๐‘

โˆšโˆ’5

such that ๐‘Ž2 + 5๐‘2 = 1. The only possibility is ๐‘Ÿ = ยฑ1. Claim that 2 โˆˆ ๐‘… isirreducible:

Proof. Let 2 = ๐‘Ž๐‘ so ๐‘(๐‘Ž)๐‘(๐‘) = 4. ๐‘(๐‘Ž) = 1, 2 or 4. But ๐‘(๐‘Ž) โ‰  2 so๐‘(๐‘Ž) = 1 or 4, ๐‘(๐‘) = 4 or 1 so ๐‘Ž or ๐‘ is a unit.

Similarly we can show that 3 and 1 ยฑโˆš

โˆ’5 are irreducible.Note that

(1 +โˆš

โˆ’5)(1 โˆ’โˆš

โˆ’5) = 1 + 5 = 6 = 2 โ‹… 3

so 2 โˆฃ (1 +โˆš

โˆ’5)(1 โˆ’โˆš

โˆ’5) but ๐‘(1 ยฑโˆš

โˆ’5) = 6 is not divisible by ๐‘(2) = 4 so2 โˆค 1 ยฑ

โˆšโˆ’5. Thus 2 โˆˆ ๐‘… is not prime.

We also find that 6 = 2 โ‹… 3 = (1 +โˆš

โˆ’5)(1 โˆ’โˆš

โˆ’5) has two different factori-sations into irreducibles.

Definition (Euclidean domain). An integral domain ๐‘… is a Euclidean domain(ED) if there is a function ๐œ‘ โˆถ ๐‘… \ {0} โ†’ Zโ‰ฅ0, a Euclidean function such that

1. โˆ€๐‘Ž, ๐‘ โˆˆ ๐‘… \ {0}, ๐œ‘(๐‘Ž๐‘) โ‰ฅ ๐œ‘(๐‘Ž),

2. โˆ€๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘ โ‰  0, we have ๐‘Ž = ๐‘๐‘ž + ๐‘Ÿ with ๐‘Ÿ = 0 or ๐œ‘(๐‘Ÿ) < ๐œ‘(๐‘).

Example.

1. Z is a Euclidean domain with ๐œ‘(๐‘›) = |๐‘›|.

28

Page 30: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

2. For a field F, F[๐‘‹] is a Euclidean domain with ๐œ‘(๐‘“) = deg ๐‘“.

3. Z[๐‘–] is a Euclidean domain with ๐œ‘(๐‘Ž + ๐‘–๐‘) = ๐‘Ž2 + ๐‘2 = (๐‘Ž + ๐‘–๐‘)(๐‘Ž โˆ’ ๐‘–๐‘).

Proof. Let ๐‘ง1, ๐‘ง2 โˆˆ Z[๐‘–], ๐‘ง2 โ‰  0. Consider ๐‘ง1๐‘ง2

โˆˆ C. By considering thelattice of Gaussian integers on the complex plane, we can find ๐‘ž โˆˆ Z[๐‘–]such that โˆฃ ๐‘ง1

๐‘ง2โˆ’ ๐‘žโˆฃ < 1. Consider ๐‘Ÿ = ๐‘ง1 โˆ’ ๐‘ž๐‘ง2 โˆˆ Z[๐‘–],

โˆฃ ๐‘Ÿ๐‘ง2

โˆฃ = โˆฃ๐‘ง1๐‘ง2

โˆ’ ๐‘žโˆฃ < 1

so |๐‘Ÿ| < |๐‘ง2| so ๐œ‘(๐‘Ÿ) = |๐‘Ÿ|2 < |๐‘ง2|2 = ๐œ‘(๐‘ง2).

4. Similarly we can show Z[โˆš

โˆ’2] is a Euclidean domain.

Proposition 2.19. If ๐‘… is a ED then it is a PID.

This proof is a generalisation of the proof that Z is a PID.

Proof. Let ๐ผ โŠด ๐‘… and choose 0 โ‰  ๐‘ โˆˆ ๐ผ such that ๐œ‘(๐‘) is minimal. If ๐‘Ž โˆˆ ๐ผthen Euclidean property gives ๐‘Ž = ๐‘ž๐‘ + ๐‘Ÿ with ๐œ‘(๐‘Ÿ) < ๐œ‘(๐‘) or ๐‘Ÿ = 0. Then๐‘Ÿ = ๐‘Ž โˆ’ ๐‘ž๐‘ โˆˆ ๐ผ but if ๐‘Ÿ โ‰  0 then minimality of ๐œ‘(๐‘) is contradicted. Thus ๐‘Ÿ = 0and ๐‘Ž โˆˆ (๐‘). ๐ผ = (๐‘).

Example. Z,F[๐‘‹] and Z[๐‘–] are PIDs.

Example. Z[๐‘‹] is not a PID. Consider (2, ๐‘‹) โŠด Z[๐‘‹]. Suppose (2, ๐‘‹) = (๐‘“)for some ๐‘“ โˆˆ Z[๐‘‹], then ๐‘“ โˆฃ 2. Degrees of polynomials on an integral domain addunder multiplication so if ๐‘“ divides a constant polynomial it must be constant.Thus ๐‘“ = ยฑ1, ยฑ2. If ๐‘“ = ยฑ2, ยฑ2 โˆค ๐‘‹. Absurd. Thus ๐‘“ = ยฑ1, (๐‘“) = Z[๐‘‹]. But1 โ‰  (2, ๐‘‹). Absurd.

Example. Let F be a field and ๐ด โˆˆ โ„ณ๐‘›(F). Consider

๐ผ = {๐‘“ โˆˆ F[๐‘‹] โˆถ ๐‘“(๐ด) = 0}.

If ๐‘“, ๐‘” โˆˆ ๐ผ, (๐‘“ + ๐‘”)(๐ด) = ๐‘“(๐ด) + ๐‘”(๐ด) = 0. If โ„Ž โˆˆ F[๐‘‹], (๐‘“โ„Ž)(๐ด) = ๐‘“(๐ด)โ„Ž(๐ด) = 0so ๐ผ โŠด F[๐‘‹]. As F[๐‘‹] is a PID, ๐ผ = (๐‘š๐ด) for some ๐‘š๐ด โˆˆ F[๐‘‹]. This ๐‘š๐ด is theminimal polynomial of ๐ด and it follows that it is unique up to a unit.

Definition (Unique factorisation domain). An integral domain is a uniquefactoriation domain (UFD) if

โ€ข every non-zero, non-unit is a product of irreducibles,

โ€ข if ๐‘1 โ‹ฏ ๐‘๐‘› = ๐‘ž1 โ‹ฏ ๐‘ž๐‘š are factorisations into irreducibles, then ๐‘› = ๐‘šand ๐‘๐‘– is an associate of ๐‘ž๐‘– up to reordering.

We will show that PIDs are UFDs.

29

Page 31: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Lemma 2.20. If ๐‘… is a PID then irreducibles are primes.

Proof. Let ๐‘ โˆˆ ๐‘… be irreducible and suppose ๐‘  โˆฃ ๐‘Ž๐‘. Need to show that ๐‘ โˆฃ ๐‘Ž or๐‘ โˆฃ ๐‘. Suppose ๐‘ โˆค ๐‘Ž. Consider (๐‘, ๐‘Ž) โŠด ๐‘…. As ๐‘… is a PID, there exists ๐‘‘ โˆˆ ๐‘…such that (๐‘‘) = (๐‘, ๐‘Ž), so ๐‘ = ๐‘ž1๐‘‘, ๐‘Ž = ๐‘ž2๐‘‘. As ๐‘ is irreducible, either ๐‘ž1 or ๐‘‘ isa unit. If ๐‘ž1 is a unit then ๐‘Ž = ๐‘ž2๐‘‘ = ๐‘ž2(๐‘žโˆ’1

1 ๐‘) so ๐‘ โˆฃ ๐‘Ž. Thus ๐‘‘ must be a unitand (๐‘, ๐‘Ž) = (๐‘‘) = ๐‘…. Thus 1๐‘… = ๐‘Ÿ๐‘ + ๐‘ ๐‘Ž for some ๐‘Ÿ and ๐‘ . ๐‘ = ๐‘๐‘Ÿ๐‘ + ๐‘Ž๐‘๐‘  so๐‘ โˆฃ ๐‘.

Lemma 2.21. Let ๐‘… be a PID and ๐ผ1 โŠ† ๐ผ2 โŠ† ๐ผ2 โŠ† โ‹ฏ be an increasingsequence of ideal. Then there exists ๐‘ โˆˆ N such that for all ๐‘› โ‰ฅ ๐‘, ๐ผ๐‘› = ๐ผ๐‘›+1.

Definition (Noetherian). The above condition is the ascending chain con-dition. A chain satisfying the above condition is Noetherian.

Proof. Let ๐ผ = โ‹ƒโˆž๐‘›=1 ๐ผ๐‘› which is again an ideal so ๐ผ = (๐‘Ž) for some ๐‘Ž โˆˆ ๐‘…. Then

๐‘Ž โˆˆ ๐ผ so there exists ๐‘ โˆˆ N such that ๐‘Ž โˆˆ ๐ผ๐‘. Then

(๐‘Ž) โŠ† ๐ผ๐‘ โŠ† ๐ผ๐‘+1 โ‹ฏ โŠ† (๐‘Ž)

so equality throughout.

Theorem 2.22. PID is UFD.

Proof. Let ๐‘… be a PID. The proof consists of two parts: first show the existenceof factorisation in ๐‘… (the proof thereof generalises to all Noetherian rings), andthen show its uniqueness.

1. Suppose for contradiction there exists ๐‘Ž โˆˆ ๐‘… which cannot be written as aproduct of irreducibles. then ๐‘Ž is not irreducible so ๐‘Ž = ๐‘Ž1๐‘1 with ๐‘Ž1, ๐‘1not units and one of then cannot be written as a product of irreducibles(otherwise ๐‘Ž would be), say it is ๐‘Ž1. Hence ๐‘Ž1 = ๐‘Ž2๐‘2 where ๐‘Ž2, ๐‘2 arenot units and wlog ๐‘Ž2 could not be written as a product of irreducibles.Continue this way. Now

(๐‘Ž) โŠ† (๐‘Ž1) โŠ† (๐‘Ž2) โŠ† โ‹ฏ

is an ascending chain so by ACC we must have (๐‘Ž๐‘) = (๐‘Ž๐‘+1) for some ๐‘,i.e. ๐‘Ž๐‘ = ๐‘Ž๐‘+1๐‘๐‘+1 with ๐‘๐‘+1 a unit.

2. Let ๐‘1 โ‹ฏ ๐‘๐‘› = ๐‘ž1 โ‹ฏ ๐‘ž๐‘š be factorisations into irreducibles. Thus ๐‘1 โˆฃ ๐‘ž1 โ‹ฏ ๐‘ž๐‘›.In a PID irreducibles are primes so ๐‘1 โˆฃ ๐‘ž๐‘– for some ๐‘–. After reordering๐‘1 โˆฃ ๐‘ž1 so ๐‘ž1 = ๐‘1 โ‹… ๐‘Ž. As ๐‘ž1 is irreducible, ๐‘Ž is a unit so ๐‘1 and ๐‘ž1are associates. Now ๐‘1(๐‘2 โ‹ฏ ๐‘๐‘› โˆ’ ๐‘Ž๐‘ž2 โ‹ฏ ๐‘ž๐‘š) = 0. As ๐‘… is an integraldomain ๐‘2 โ‹ฏ ๐‘๐‘› = (๐‘Ž๐‘ž2) โ‹ฏ ๐‘ž๐‘š. Continue this way, we get ๐‘› โ‰ค ๐‘š and1 = (unit) โ‹… ๐‘ž๐‘›+1 โ‹ฏ ๐‘ž๐‘š. Thus ๐‘ž๐‘›+1, โ€ฆ ๐‘ž๐‘š are units. Absrud. Thus ๐‘› = ๐‘šand ๐‘๐‘–โ€™s and ๐‘ž๐‘–โ€™s are associates up to reordering.

30

Page 32: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Definition (gcd, lcm).

โ€ข ๐‘‘ is a greatest common divisor (gcd) of ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›, written gcd(๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›),if ๐‘‘ โˆฃ ๐‘Ž๐‘– for all ๐‘– and if ๐‘‘โ€ฒ โˆฃ ๐‘Ž๐‘– for all ๐‘– then ๐‘‘โ€ฒ โˆฃ ๐‘‘.

โ€ข ๐‘‘ is a lowest common multiple (lcm) of ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›, written lcm(๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›),if ๐‘Ž๐‘– โˆฃ ๐‘š for all ๐‘– and if ๐‘Ž๐‘– โˆฃ ๐‘‘โ€ฒ for all ๐‘– then ๐‘‘ โˆฃ ๐‘‘โ€ฒ.

It is easy to see that if gcd or lcm exists then it is unique up to associates.

Proposition 2.23. If ๐‘… is a UFD then gcdโ€™s and lcmโ€™s exist.

Proof. Write each ๐‘Ž๐‘– as a product

๐‘Ž๐‘– = ๐‘ข๐‘– โ‹… โˆ๐‘—

๐‘๐‘›๐‘–๐‘—๐‘—

where ๐‘ข๐‘– is a unit and ๐‘๐‘—โ€™s are (the same) irreducibles which are not associatesof each other. Set

๐‘‘ = โˆ๐‘—

๐‘๐‘š๐‘—๐‘—

where ๐‘š๐‘— = min๐‘– ๐‘›๐‘–๐‘—. Certainly ๐‘‘ โˆฃ ๐‘Ž๐‘– for all ๐‘–. If ๐‘‘โ€ฒ โˆฃ ๐‘Ž๐‘– for all ๐‘– then write

๐‘‘โ€ฒ = ๐‘ข โ‹… โˆ๐‘—

๐‘๐‘ก๐‘—๐‘—

for some ๐‘ก๐‘—. As ๐‘‘โ€ฒ โˆฃ ๐‘Ž we must have ๐‘ก๐‘— โ‰ค ๐‘›๐‘–๐‘— for all ๐‘– so ๐‘ก๐‘— โ‰ค min๐‘– ๐‘›๐‘–๐‘— = ๐‘š๐‘— forall ๐‘—. Thus ๐‘‘โ€ฒ โˆฃ ๐‘‘.

The argument for lcm is similar.

2.5 Factoriation in polynomial ringsFor a field F we know F[๐‘‹] is a ED, so also a PID and UFD so

1. any ๐ผ โŠด F[๐‘‹] is principal, i.e. ๐ผ = (๐‘“) for some ๐‘“;

2. ๐‘“ โˆˆ F[๐‘‹] is irreducible if and only if ๐‘“ is prime;

3. let ๐‘“ โˆˆ F[๐‘‹] be irreducible and (๐‘“) โŠ† ๐ฝ โŠด F[๐‘‹] be a larger ideal. Then๐ฝ = (๐‘”) for some ๐‘” โˆˆ F[๐‘‹] so (๐‘“) โŠ† (๐‘”), i.e. ๐‘” โˆฃ ๐‘“. But ๐‘“ is irreducible soeither ๐‘” is a unit, then (๐‘”) = F[๐‘‹], or ๐‘” is an associate of ๐‘“, so (๐‘”) = (๐‘“).Thus (๐‘“) is maximal;

4.(๐‘“) prime โŸน ๐‘“ prime โŸน ๐‘“ irreducible โŸน (๐‘“) maximal

so prime ideals of F[๐‘‹] are precisely the maximal ideals;

5. ๐‘“ โˆˆ F[๐‘‹] is irreducible if and only if (๐‘“) is maximal, if and only if F[๐‘‹]/(๐‘“)is a field.

31

Page 33: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Definition (Content). Let ๐‘… be a UFD and

๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘‹ + โ€ฆ ๐‘Ž๐‘›๐‘‹๐‘› โˆˆ ๐‘…[๐‘‹]

with ๐‘Ž๐‘› โ‰  0. The content is

๐‘(๐‘“) = gcd(๐‘Ž0, โ€ฆ , ๐‘Ž๐‘›).

Definition (Primitive). ๐‘“ above is primitive if ๐‘(๐‘“) is a unit, i.e. ๐‘Ž๐‘–โ€™s arecoprime.

Theorem 2.24 (Gaussโ€™ Lemma). Let ๐‘… be a UFD and ๐น be its field offractions. Let ๐‘“ โˆˆ ๐‘…[๐‘‹] be primitive. Then ๐‘“ is irreducible in ๐‘…[๐‘‹] if andonly if ๐‘“ is irreducible in ๐น[๐‘‹].

Example. Let ๐‘“ = 1 + ๐‘‹ + ๐‘‹3 โˆˆ Z[๐‘‹]. ๐‘(๐‘“) = 1 so ๐‘“ is primitive. Suppose๐‘“ = ๐‘”โ„Ž, a product of irreducibles in Z[๐‘‹]. As ๐‘“ is primitive, neither ๐‘” nor โ„Žcan be a constant polynomial so they have degree 1 and 2 respectively. Wlogsuppose ๐‘” = ๐‘0 +๐‘1๐‘‹, โ„Ž = ๐‘0 +๐‘1๐‘‹ +๐‘2๐‘‹2 โˆˆ Z[๐‘‹]. Expanding out and equatingthe coefficients, ๐‘0๐‘0 = 1, ๐‘1๐‘2 = 1 so ๐‘0๐‘1 = ยฑ1. Thus ๐‘” has one of ยฑ1 as aroot and so does ๐‘“. But it doesnโ€™t so such factorisation does not exist. ThusQ[๐‘‹]/(1 + ๐‘‹ + ๐‘‹3) is a field.

Lemma 2.25. Let ๐‘… be a UFD. If ๐‘“, ๐‘” โˆˆ ๐น [๐‘‹] are primitives then so is ๐‘“๐‘”.

Proof. Let

๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘‹ + โ‹ฏ + ๐‘Ž๐‘›๐‘‹๐‘›

๐‘” = ๐‘0 + ๐‘1๐‘‹ + โ‹ฏ + ๐‘๐‘š๐‘‹๐‘š

with ๐‘Ž๐‘›, ๐‘๐‘š โ‰  0. If ๐‘“๐‘” is not primitive, then ๐‘(๐‘“๐‘”) is not a unit so there is anirreducible ๐‘ โˆฃ ๐‘(๐‘“๐‘”). As ๐‘(๐‘“) and ๐‘(๐‘”) are units, we have

๐‘ โˆฃ ๐‘Ž0, ๐‘ โˆฃ ๐‘Ž1, โ€ฆ , ๐‘ โˆฃ ๐‘Ž๐‘˜โˆ’1, ๐‘ โˆค ๐‘Ž๐‘˜

๐‘ โˆฃ ๐‘0, ๐‘ โˆฃ ๐‘1, โ€ฆ , ๐‘ โˆฃ ๐‘โ„“โˆ’1, ๐‘ โˆค ๐‘โ„“

The coefficients of ๐‘‹๐‘˜+โ„“ in ๐‘“๐‘” is

โˆ‘๐‘–+๐‘—=๐‘˜+โ„“

๐‘Ž๐‘–๐‘๐‘— = โ‹ฏ + ๐‘Ž๐‘˜+1๐‘โ„“โˆ’1 + ๐‘Ž๐‘˜๐‘โ„“ + ๐‘Ž๐‘˜โˆ’1๐‘โ„“+1 + โ‹ฏ

where LHS is divisible by ๐‘ so ๐‘ โˆฃ ๐‘Ž๐‘˜๐‘โ„“ but ๐‘ is prime so ๐‘ โˆฃ ๐‘Ž๐‘˜ or ๐‘ โˆฃ ๐‘โ„“. Absurd.Thus ๐‘(๐‘“๐‘”) is a unit and ๐‘“๐‘” is a primitive.

Corollary 2.26. Let ๐‘… be a UFD. Then ๐‘(๐‘“๐‘”) is an associate of ๐‘(๐‘“)๐‘(๐‘”).

Proof. Let ๐‘“ = ๐‘(๐‘“) โ‹… ๐‘“1, ๐‘” = ๐‘(๐‘“) โ‹… ๐‘”1 with ๐‘“1, ๐‘”1 primitive. Then

๐‘“๐‘” = ๐‘(๐‘“)๐‘(๐‘”) โ‹… (๐‘“1๐‘”1)

where ๐‘“1๐‘”1 is primitive by the lemma above. Thus ๐‘(๐‘“)๐‘(๐‘”) is a gcd of thecoefficients of ๐‘“๐‘”.

32

Page 34: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Proof of Gaussโ€™ Lemma. Let ๐‘“ โˆˆ ๐‘…[๐‘‹] be primitive. If ๐‘“ = ๐‘”โ„Ž is reducible in๐‘…[๐‘‹] then ๐‘”, โ„Ž cannot be constants as otherwise ๐‘“ would not be primitive. Thus๐‘”, โ„Ž โˆˆ ๐น [๐‘‹] are not units so ๐‘“ โˆˆ ๐น [๐‘‹] is reducible.

Suppose instead ๐‘“ is reducible in ๐น[๐‘‹], say ๐‘“ = ๐‘”โ„Ž. We can โ€œclear thedenominatorsโ€: find ๐‘Ž, ๐‘ โˆˆ ๐‘… such that ๐‘Ž๐‘”, ๐‘โ„Ž โˆˆ ๐‘…[๐‘‹], then

๐‘Ž๐‘๐‘“ = (๐‘Ž๐‘”) โ‹… (๐‘โ„Ž) โˆˆ ๐‘…[๐‘‹].

Take contents, ๐‘Ž๐‘” = ๐‘(๐‘Ž๐‘”) โ‹… ๐‘”1, ๐‘โ„Ž = ๐‘(๐‘โ„Ž) โ‹… โ„Ž1 with ๐‘”1, โ„Ž1 primitive. Then

๐‘Ž๐‘ โ‹… ๐‘“ = ๐‘(๐‘Ž๐‘”)๐‘(๐‘๐‘“) ๐‘”1โ„Ž1โŸprimitive

so ๐‘Ž๐‘ is an associate of ๐‘(๐‘Ž๐‘”)๐‘(๐‘โ„Ž) so ๐‘(๐‘Ž๐‘”)๐‘(๐‘โ„Ž) = ๐‘ข๐‘Ž๐‘ where ๐‘ข is a unit. Thus๐‘Ž๐‘๐‘“ = ๐‘ข๐‘Ž๐‘๐‘”1โ„Ž1 and cancel to get ๐‘“ = (๐‘ข๐‘”1)โ„Ž1 is reducible in ๐‘…[๐‘‹].

Proposition 2.27. Let ๐‘… be a UFD and ๐‘” โˆˆ ๐‘…[๐‘‹] primitive. Let ๐ผ = (๐‘”) โŠด๐น[๐‘‹] where ๐น is the field of fraction of ๐‘… and ๐ฝ = (๐‘”) โŠด ๐‘…[๐‘‹]. Then

๐ฝ = ๐ผ โˆฉ ๐‘…[๐‘‹].

Equivalently, if ๐‘“ โˆˆ ๐‘…[๐‘‹] is divisible by a primitive ๐‘” โˆˆ ๐น [๐‘‹] then it isdivisible by ๐‘” in ๐‘…[๐‘‹].

Proof. The โŠ† inclusion is clear. To show the other direction, let ๐‘“ = ๐‘”โ„Ž โˆˆ ๐น[๐‘‹].Clear denominators by find ๐‘ โˆˆ ๐‘… such that ๐‘โ„Ž โˆˆ ๐‘…[๐‘‹] so ๐‘๐‘“ = (๐‘โ„Ž) โ‹… ๐‘” โˆˆ ๐‘…[๐‘‹].Thus ๐‘๐‘“ = ๐‘(๐‘โ„Ž)โ„Ž1๐‘” with โ„Ž1 primitive. Now it follows that ๐‘ โˆฃ ๐‘(๐‘โ„Ž), as๐‘๐‘(๐‘“) = ๐‘(๐‘โ„Ž), so we get ๐‘“ = ๐‘(๐‘“) โ‹… โ„Ž1๐‘” โˆˆ ๐‘…[๐‘‹]. ๐‘” divides ๐‘“ in ๐‘…[๐‘‹].

Theorem 2.28. If ๐‘… is a UFD then so is ๐‘…[๐‘‹].

Proof. To show existence, let ๐‘“ โˆˆ ๐‘…[๐‘‹] and write ๐‘“ = ๐‘(๐‘“) โ‹… ๐‘“1 with ๐‘“1 primitive.As ๐‘… is a UFD we can write ๐‘(๐‘“) = ๐‘1 โ‹ฏ ๐‘๐‘› โˆˆ ๐‘… with ๐‘๐‘– irreducible in ๐‘…, soalso irreducible in ๐‘…[๐‘‹]. If ๐‘“1 is not irreducible, write ๐‘“1 = ๐‘“2 โ‹… ๐‘“3with ๐‘“2, ๐‘“3 notunits and are primitive. Thus ๐‘“2, ๐‘“3 are not constants so have degree smallerthan that of ๐‘“1. If ๐‘“2 or ๐‘“3 is irreducible, factor again. The degree continues tostrictly decrease and this stops eventually. So

๐‘“ = ๐‘1 โ‹ฏ ๐‘๐‘›๐‘ž1 โ‹ฏ ๐‘ž๐‘š,

a product of irreducibles.Now for the uniqueness part, note ๐‘1 โ‹ฏ ๐‘๐‘› = ๐‘(๐‘“) โˆˆ ๐‘…, a UFD so the

๐‘๐‘–โ€™s are unique up to reordering and associates. Thus it suffices to show if๐‘ž1 โ‹ฏ ๐‘ž๐‘š = ๐‘Ÿ1 โ‹ฏ ๐‘Ÿโ„“ as products of primitive polynomials then ๐‘š = โ„“ and the ๐‘ž๐‘–โ€™sand ๐‘Ÿ๐‘–โ€™s are the same up to reordering and associates. Since ๐น[๐‘‹] is a PID andthus UFD, ๐‘ž1 โ‹ฏ ๐‘ž๐‘š = ๐‘Ÿ1 โ‹ฏ ๐‘Ÿโ„“ โˆˆ ๐‘…[๐‘‹] โŠ† ๐น[๐‘‹] implise that ๐‘š = โ„“ and ๐‘ž๐‘–โ€™s equalto ๐‘Ÿ๐‘–โ€™s in ๐น[๐‘‹]. If ๐‘ž1 is an associate of ๐‘Ÿ1 in ๐น[๐‘‹] then ๐‘ž1 = ๐‘ข๐‘Ÿ1 for some unit๐‘ข โˆˆ ๐น[๐‘‹]. Then ๐‘ข โˆˆ ๐น is a unit, write ๐‘ข = ๐‘Ž

๐‘ . Get ๐‘๐‘ž1 = ๐‘Ž๐‘Ÿ1 โˆˆ ๐‘…[๐‘‹]. Takingcontents, it follows that ๐‘ is an associate of ๐‘Ž in ๐‘…. Cancel to get ๐‘ž1 = ๐‘Ž๐‘Ÿ1 โˆˆ ๐‘…[๐‘‹].Repeat for ๐‘ž๐‘–โ€™s and ๐‘Ÿ๐‘–โ€™s.

33

Page 35: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Example.

1. Z[๐‘‹] is a UFD.

2. If ๐‘… is a UFD then so is ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›].

Proposition 2.29 (Eisensteinโ€™s criterion). Let ๐‘… be a UFD and ๐‘“ = ๐‘Ž0 +๐‘Ž1๐‘‹ + โ‹ฏ + ๐‘Ž๐‘›๐‘‹๐‘› โˆˆ ๐‘…[๐‘‹] with ๐‘Ž๐‘› โ‰  0 be primitive. Suppose ๐‘ โˆˆ ๐‘… is anirreducible such that

โ€ข ๐‘ โˆค ๐‘Ž๐‘›,

โ€ข ๐‘ โˆฃ ๐‘Ž๐‘– for ๐‘– = 0, 1, โ€ฆ , ๐‘› โˆ’ 1,

โ€ข ๐‘2 โˆค ๐‘Ž0

then ๐‘“ is irreducible in ๐‘…[๐‘‹], so also in ๐น[๐‘‹].

Proof. Let ๐‘“ = ๐‘”โ„Ž with

๐‘” = ๐‘Ÿ0 + ๐‘Ÿ1๐‘‹ + โ‹ฏ + ๐‘Ÿ๐‘˜๐‘‹๐‘˜

โ„Ž = ๐‘ 0 + ๐‘ 1๐‘‹ + โ‹ฏ + ๐‘Ÿโ„“๐‘‹โ„“

with ๐‘Ÿ๐‘˜, ๐‘ โ„“ โ‰  0. Then ๐‘˜ + โ„“ = ๐‘› and ๐‘Ž๐‘› = ๐‘Ÿ๐‘˜๐‘ โ„“. As ๐‘ โˆค ๐‘Ž๐‘›, ๐‘ โˆค ๐‘Ÿ๐‘˜ and๐‘ โˆค ๐‘ โ„“. Since ๐‘ โˆฃ ๐‘Ž0 and ๐‘2 โˆค ๐‘Ž0, suppose wlog that ๐‘ โˆฃ ๐‘Ÿ0, ๐‘ โˆค ๐‘ 0. Suppose๐‘ โˆฃ ๐‘Ÿ0, ๐‘ โˆฃ ๐‘Ÿ1, ๐‘ โˆฃ ๐‘Ÿ๐‘—โˆ’1, ๐‘ โˆค ๐‘Ÿ๐‘—. Then

๐‘Ž๐‘— = ๐‘ 0๐‘Ÿ๐‘— + ๐‘ 1๐‘Ÿ๐‘—โˆ’1 + ๐‘ 2๐‘Ÿ๐‘—โˆ’2 + โ‹ฏ + ๐‘ ๐‘—๐‘Ÿ0

so ๐‘ โˆค ๐‘Ž๐‘— and by 2 ๐‘— = ๐‘›. Thus deg ๐‘” = ๐‘› and โ„Ž is a constant. As ๐‘“ (and hence ๐‘”and โ„Ž) is a primitive โ„Ž is a unit.

Example. For ๐‘ โˆˆ Z prime, ๐‘“ = ๐‘‹๐‘š โˆ’ ๐‘ โˆˆ Z[๐‘‹] is irreducible in Z[๐‘‹] andQ[๐‘‹] so ๐‘“ does not have a root in Q. In particular, this shows that ๐‘š

โˆš๐‘ โˆ‰ Q).This will be important in IID Galois Theory.

Example. For ๐‘ โˆˆ Z prime, let

๐‘“ = ๐‘‹๐‘โˆ’1 + ๐‘‹๐‘โˆ’2 + โ‹ฏ + ๐‘‹ + 1 โˆˆ Z[๐‘‹].

Note that (๐‘‹ โˆ’ 1)๐‘“ = ๐‘‹๐‘ โˆ’ 1. Consider the ring isomorphism

๐œ‘ โˆถ Z[๐‘‹] โ†’ Z[๐‘‹]๐‘‹ โ†ฆ ๐‘‹ + 1

Then

๐œ‘(๐‘“) = ๐‘‹๐‘โˆ’1โŸ๐‘โˆค

+ (๐‘1)

โŸ๐‘โˆฃ

๐‘‹๐‘โˆ’1 + โ‹ฏ + ( ๐‘๐‘ โˆ’ 2

)โŸ

๐‘โˆฃ

๐‘‹ + ( ๐‘๐‘ โˆ’ 1

)โŸ

=๐‘

so Eisensteinโ€™s criterion says that ๐œ‘(๐‘“) is irreducible, so is ๐‘“.

Remark. The hypothesis of Eisensteinโ€™s criterion depends on the ambient ringwhile the conclusiohn does not. As a heuristics, we can apply ring isomorphismsto reduce the problem sometimes.

34

Page 36: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

2.6 Gaussian integersRecall

Z[๐‘–] = {๐‘Ž + ๐‘๐‘– โˆถ ๐‘Ž, ๐‘ โˆˆ Z} โ‰ค C.

It has a norm ๐‘(๐‘Ž + ๐‘–๐‘) = ๐‘Ž2 + ๐‘2, making it a ED, and thus a PID and UFD.In particular primes and irreducibles agree. The units in Z[๐‘–] are ยฑ1, ยฑ๐‘– as theyare the only elements of norm 1. In addition, we have the following observations:

1. 2 = (1 + ๐‘–)(1 โˆ’ ๐‘–) is not a prime.

2. ๐‘(3) = 9. If 3 = ๐‘ฅ๐‘ฆ then 9 = ๐‘(๐‘ฅ)๐‘(๐‘ฆ). Either ๐‘ฅ or ๐‘ฆ is a unit or๐‘(๐‘ฅ) = ๐‘(๐‘ฆ) = 3. But the norm is never 3 so 3 is a prime.

3. 5 = (2 + ๐‘–)(2 โˆ’ ๐‘–) is not a prime.

4. 7 is a prime.

Proposition 2.30. A prime ๐‘ โˆˆ Z is a prime in Z[๐‘–] if and only if ๐‘ โ‰  ๐‘Ž2+๐‘2

for ๐‘Ž, ๐‘ โˆˆ Z.

Proof.

โ€ข โ‡’: If ๐‘ = ๐‘Ž2 + ๐‘2 = (๐‘Ž + ๐‘–๐‘)(๐‘Ž โˆ’ ๐‘–๐‘), it is reducible and thus not a prime.

โ€ข โ‡: Note ๐‘(๐‘) = ๐‘2. If ๐‘ factors as ๐‘ข๐‘ฃ with ๐‘ข, ๐‘ฃ not units then ๐‘(๐‘ข) =๐‘(๐‘ฃ) = ๐‘. Write ๐‘ข = ๐‘Ž + ๐‘–๐‘, we have ๐‘ = ๐‘(๐‘ข) = ๐‘Ž2 + ๐‘2.

Now we prove a lemma regarding the multiplicative group of a finite field:

Lemma 2.31. Let F๐‘ = Z/๐‘Z be a field with ๐‘ elements and ๐‘ prime. ThenFร—

๐‘ = F๐‘ \ {0} is a group under multiplication and is isomorphic to ๐ถ๐‘โˆ’1.

Proof. Certainly Fร—๐‘ is an abelian group of order ๐‘ โˆ’ 1. By the classification

theorem of finite abelain groups, Fร—๐‘ is either cyclic or contains ๐ถ๐‘š ร— ๐ถ๐‘š as a

subgroup for some ๐‘š โ‰ฅ 2.Suppose ๐ถ๐‘š ร— ๐ถ๐‘š โ‰ค Fร—

๐‘ . Consider ๐‘“ = ๐‘‹๐‘š โˆ’ 1 โˆˆ F๐‘[๐‘‹]. Each element of๐ถ๐‘š ร— ๐ถ๐‘š โ‰ค Fร—

๐‘ โŠ† F๐‘ gives a root of ๐‘“ so it has at least ๐‘š2 distinct roots. Butas F๐‘[๐‘‹] is a ED and thus UFD, it can be factorised into at most ๐‘š uniqueirreducibles. Thus it has at most ๐‘š distinct roots in F๐‘. Thus there is nosubgroup ๐ถ๐‘š ร— ๐ถ๐‘š in Fร—

๐‘ and Fร—๐‘ is cyclic.

Proposition 2.32. The primes in Z[๐‘–] are, up to associates,

1. prime ๐‘ โˆˆ Z with ๐‘ = 3 mod 4,

2. ๐‘ง โˆˆ Z[๐‘–] such that ๐‘(๐‘ง) = ๐‘ where ๐‘ is a prime and ๐‘ = 2, or ๐‘ = 1mod 4.

Proof. First show what we claimed are indeed primes, i.e. irreducibles:

35

Page 37: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

1. if ๐‘ = 3 mod 4, ๐‘ โ‰  ๐‘Ž2 + ๐‘2 so ๐‘ โˆˆ Z[๐‘–] is a prime.

2. suppose ๐‘ง = ๐‘ข๐‘ฃ then ๐‘(๐‘ข)๐‘(๐‘ฃ) = ๐‘ so ๐‘(๐‘ข) or ๐‘(๐‘ฃ) = 1. ๐‘ข or ๐‘ฃ is a unitso ๐‘ง is irreducible.

Now let ๐‘ง โˆˆ Z[๐‘–] be a prime. Then ๐‘ง is irreducible too so ๐‘(๐‘ง) = ๐‘ง๐‘ง is afactorisation of ๐‘(๐‘ง) into irreducibles in Z[๐‘–]. Let ๐‘ โˆˆ Z be a prime dividing๐‘(๐‘ง).

โ€ข Case 1: ๐‘ = 3 mod 4. Then ๐‘ is irreducible in Z[๐‘–]. As ๐‘ โˆฃ ๐‘(๐‘ง), ๐‘ โˆฃ ๐‘ง or๐‘ โˆฃ ๐‘ง. Wlog ๐‘ โˆฃ ๐‘ง. As ๐‘ and ๐‘ง are both irreducibles, they are associates.

โ€ข Case 2: ๐‘ = 2, or ๐‘ = 1 mod 4. If ๐‘ = 1 mod 4, consider Fร—๐‘ โ‰… ๐ถ๐‘โˆ’1 =

๐ถ4๐‘˜. It has a unique element of order 2, namely [โˆ’1]. As 4 โˆฃ ๐‘ โˆ’ 1, there isalso an element [๐‘Ž] โˆˆ Fร—

๐‘ order 4. Then [๐‘Ž2] has order 2 and thus ๐‘Ž2 = โˆ’1mod ๐‘. Thus there exists ๐‘ โˆˆ Z such that ๐‘Ž2 + 1 = ๐‘๐‘, ๐‘ โˆฃ (๐‘Ž + ๐‘–)(๐‘Ž โˆ’ ๐‘–).If ๐‘ = 2 then ๐‘ โˆฃ (1 + ๐‘–)(1 โˆ’ ๐‘–).But ๐‘ โˆค ๐‘Ž + ๐‘–, ๐‘ โˆค ๐‘Ž โˆ’ ๐‘– so ๐‘ โˆˆ Z[๐‘–] is not prime and thus not irreducible.Hence ๐‘ = ๐‘ง1๐‘ง2 with ๐‘ง1, ๐‘ง2 not units. ๐‘2 = ๐‘(๐‘) = ๐‘(๐‘ง1)๐‘(๐‘ง2), ๐‘(๐‘ง1) =๐‘(๐‘ง2) = ๐‘ so ๐‘ = ๐‘ง1๐‘ง1 = ๐‘ง2๐‘ง2. But also ๐‘ = ๐‘ง1๐‘ง2 so ๐‘ง2 = ๐‘ง1.We choose ๐‘ such that ๐‘ โˆฃ ๐‘(๐‘ง) so ๐‘ง1๐‘ง1 โˆฃ ๐‘ง๐‘ง and ๐‘ง is prime so ๐‘ง โˆฃ ๐‘ง1 or๐‘ง โˆฃ ๐‘ง1. ๐‘ง1 or ๐‘ง1 is an associate of ๐‘ง. ๐‘(๐‘ง) = ๐‘(๐‘ง1) or ๐‘(๐‘ง1) = ๐‘.

Corollary 2.33. An integer ๐‘› โˆˆ Z > 0 can be written as ๐‘Ž2 + ๐‘2, ๐‘Ž, ๐‘ โˆˆ Zif and only if when we write ๐‘› = ๐‘๐‘›1

1 ๐‘๐‘›22 โ‹ฏ ๐‘๐‘›๐‘˜

๐‘˜ with ๐‘๐‘–โ€™s distinct, if ๐‘๐‘– = 3mod 4 then ๐‘›๐‘–โ€™s are even.

Proof. Let ๐‘› = ๐‘Ž2 + ๐‘2 = (๐‘Ž + ๐‘–๐‘)(๐‘Ž โˆ’ ๐‘–๐‘) = ๐‘(๐‘Ž + ๐‘–๐‘). Let ๐‘ง = ๐‘Ž + ๐‘–๐‘.Then ๐‘ง = ๐›ผ1 โ‹ฏ ๐›ผ๐‘  as a product of irreducibles (i.e. primes) in Z[๐‘–]. Then๐‘› = ๐‘(๐›ผ1) โ‹ฏ ๐‘(๐›ผ๐‘ ). Each ๐›ผ๐‘– is either a prime ๐‘ congruent to 3 mod 4 so๐‘(๐›ผ๐‘–) = ๐‘2, or has ๐‘(๐›ผ๐‘–) = ๐‘ž, a prime not congruent to 3 mod 4. Thus ๐‘› canbe written as a product of primes as claimed.

Conversely, suppose ๐‘› = ๐‘๐‘›11 โ‹ฏ ๐‘๐‘›๐‘˜

๐‘˜ with ๐‘›๐‘– even if ๐‘ = 3 mod 4. For each ๐‘–if ๐‘๐‘– = 3 mod 4 then ๐‘(๐‘๐‘–) = ๐‘2

๐‘– , ๐‘๐‘›๐‘–๐‘– = ๐‘(๐‘๐‘›๐‘–/2

๐‘– ). As ๐‘› is a product of norms ofGaussian integers, it is the norm of a Gaussian integer so is a sum of squares.

Example. In how many ways can 65 be written as a sum of two squares?65 = 5 ร— 13, 5 = 12 + 22 = (2 + ๐‘–)(2 + ๐‘–), 13 = 22 + 32 = (2 + 3๐‘–)(2 + 3๐‘–) so

65 = (2 + ๐‘–)(2 + 3๐‘–)(2 + ๐‘–)(2 + 3๐‘–)= ๐‘((2 + ๐‘–)(2 + 3๐‘–)) = ๐‘(1 + 8๐‘–) = 12 + 82

= ๐‘((2 + ๐‘–)(2 โˆ’ 3๐‘–)) = ๐‘(7 โˆ’ 4๐‘–) = 72 + 42

Exercise (Challenge). Find conditions such that ๐‘› = ๐‘Ž2 + 2๐‘2 and ๐‘Ž2 + 3๐‘2 inZ[

โˆšโˆ’2] and Z[

โˆšโˆ’3].

2.7 Algebraic integers

36

Page 38: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Definition (Algebraic integer). A complex number ๐›ผ โˆˆ C is an algebraicinteger if it is a root of a monic polynomial with integer coefficients.

If ๐›ผ is an algebraic integer, let Z[๐›ผ] โ‰ค C be the smallest subring containing๐›ผ, i.e. it is the image of the ring homomorphism

๐œ‘ โˆถ Z[๐‘‹] โ†’ C๐‘‹ โ†ฆ ๐›ผ

Thus by 1st Isomorphism Theorem Z[๐›ผ] โ‰… Z[๐‘‹]/๐ผ where ๐ผ = ker๐œ‘.

Proposition 2.34 (Minimal polynomial). If ๐›ผ is an algebraic integer then๐ผ = ker๐œ‘ is principal and is generated by an irreducible ๐‘“๐›ผ โˆˆ Z[๐‘‹], theminimal polynomial of ๐›ผ.

Proof. As ๐›ผ is an algebraic integer, it is a root of some ๐‘“ โˆˆ Z[๐‘‹] so ๐‘“ โˆˆ ๐ผ. Let๐‘“๐›ผ โˆˆ ๐ผ be a polynomial of minimal degree, which we may assume is positive. Wewant to show that

1. ๐ผ = (๐‘“๐›ผ),

2. ๐‘“๐›ผ is irreducible.

1. Let โ„Ž โˆˆ ๐ผ. Now Q[๐‘‹] is a ED so we can write โ„Ž = ๐‘ž๐‘“๐›ผ + ๐‘Ÿ โˆˆ Q[๐‘‹] with๐‘Ÿ = 0 or deg ๐‘Ÿ < deg ๐‘“๐›ผ. Clearing denominators, there is an ๐‘Ž โˆˆ Z suchthat ๐‘Ž๐‘ž, ๐‘Ž๐‘Ÿ โˆˆ Z[๐‘‹], so ๐‘Žโ„Ž = (๐‘Ž๐‘ž)๐‘“๐›ผ + ๐‘Ž๐‘Ÿ โˆˆ Z[๐‘‹]. ๐›ผ is a root of โ„Ž and of ๐‘“๐›ผso is also a root of ๐‘Ž๐‘Ÿ. As ๐‘“๐›ผ has minimal degree among polynomials with๐›ผ as a root, we must have ๐‘Ž๐‘Ÿ = 0. Thus ๐‘Žโ„Ž = (๐‘Ž๐‘ž)๐‘“๐›ผ. Now ๐‘(๐‘Žโ„Ž) = ๐‘Žโ‹…๐‘(โ„Ž),๐‘((๐‘Ž๐‘ž)๐‘“๐›ผ) = ๐‘(๐‘Ž๐‘ž) so ๐‘Ž โˆฃ ๐‘(๐‘Ž๐‘ž) so ๐‘Ž๐‘ž = ๐‘Ž๐‘ž with ๐‘ž โˆˆ Z[๐‘‹]. Cancelling showsthat ๐‘ž = ๐‘ž. Thus โ„Ž = ๐‘ž๐‘“๐›ผ so โ„Ž โˆˆ (๐‘“๐›ผ).

2. Z[๐‘‹]/(๐‘“๐›ผ) โ‰… Z[๐›ผ] โ‰ค C. As C is an integral domain, so is Z[๐›ผ]. Thus (๐‘“๐›ผ)is prime. Thus ๐‘“๐›ผ โˆˆ Z[๐‘‹] is a prime and hence irreducible.

Example.

1. ๐›ผ = ๐‘–, ๐‘“๐›ผ = ๐‘‹2 + 1.

2. ๐›ผ =โˆš

2, ๐‘“๐›ผ = ๐‘‹2 โˆ’ 2.

3. ๐›ผ = 1+โˆš

โˆ’32 , ๐‘“๐›ผ = ๐‘‹2 โˆ’ ๐‘‹ + 1.

4. Less trivially, for ๐‘‘ โˆˆ Z, ๐‘‹5 โˆ’ ๐‘‹ + ๐‘‘ has a unique real root ๐›ผ. This ๐›ผcannot be constructed using (Z, +, ร—,

โˆš). c.f. IID Galois Theory.

Lemma 2.35. If ๐›ผ is an algebraic integer and ๐›ผ โˆˆ Q then ๐›ผ โˆˆ Z.

Proof. ๐‘“๐›ผ โˆˆ Z[๐‘‹] is irreducible and primitive. By Gaussโ€™ Lemma ๐‘“๐›ผ โˆˆ Q[๐‘‹] isalso irreducible. But if ๐›ผ โˆˆ Q, ๐‘‹ โˆ’๐›ผ โˆฃ ๐‘“๐›ผ in Q[๐‘‹] so ๐‘“๐›ผ = ๐‘‹ โˆ’๐‘Ž. But ๐‘“๐›ผ โˆˆ Z[๐‘‹]so ๐›ผ โˆˆ Z.

37

Page 39: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

2.8 Hilbert Basis TheoremRecall that a ring ๐‘… satisfies the ascending chain condition (ACC) if whenever

๐ผ1 โŠ† ๐ผ2 โŠ† โ‹ฏ

ais an increasing sequence of ideals then there exists ๐‘ โˆˆ N such that for all๐‘› โ‰ฅ ๐‘, ๐ผ๐‘› = ๐ผ๐‘›+1.

A ring satisfying ACC is called Noetherian.We have shown that a PID is Noetherian.

Lemma 2.36. A ring ๐‘… is Noetherian if and only if every ideal of ๐‘… iffinitely generated.

Proof.

โ€ข โ‡: Let ๐ผ1 โŠ† ๐ผ2 โŠ† โ‹ฏ be an ascending chain of ideal and ๐ผ = โ‹ƒ๐‘› ๐ผ๐‘›. Then๐ผ = (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›) for some ๐‘Ž๐‘– โˆˆ ๐‘…. For all ๐‘– there exists ๐‘›๐‘– โˆˆ N such that๐‘Ž๐‘– โˆˆ ๐ผ๐‘›๐‘–

so(๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›) โŠ† ๐ผmax๐‘– ๐‘›๐‘–

โŠ† ๐ผ.Take ๐‘ = max๐‘– ๐‘›๐‘– and the result follows.

โ€ข Suppose ๐‘… is Noetherian and ๐ผ โŠด ๐‘…. Choose ๐‘Ž1 โˆˆ ๐ผ. If ๐ผ = (๐‘Ž1) then done,so suppose not. Then choose ๐‘Ž2 โˆˆ ๐ผ \ (๐‘Ž1). If ๐ผ = (๐‘Ž1, ๐‘Ž2) then done, sosuppose not. If we are never finished by this process then we get

(๐‘Ž1) โŠ† (๐‘Ž1, ๐‘Ž2) โŠ† โ‹ฏ

which is impossible as ๐‘… is Noetherian. Thus ๐ผ = (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›) for some ๐‘›.

Theorem 2.37 (Hilbert Basis Theorem). If ๐‘… is Noetherian then so is๐‘…[๐‘‹].

Proof. Let ๐ฝ โŠด ๐‘…[๐‘‹]. Let ๐‘“1 โˆˆ ๐ฝ be of minimal minimal degree. If ๐ฝ = (๐‘“1)then done, else choose ๐‘“2 โˆˆ ๐ฝ \ (๐‘“1) of minimal degree. Suppose we have

(๐‘“1) โŠ† (๐‘“1, ๐‘“2) โŠ† โ‹ฏ

as an ascending chain of non-stabilising ideas. Let ๐‘Ž๐‘– โˆˆ ๐‘… be the coefficient ofthe largest power of ๐‘‹ in ๐‘“๐‘– and consider

(๐‘Ž1) โŠ† (๐‘Ž1, ๐‘Ž2) โŠ† โ‹ฏ โŠด ๐‘….

As ๐‘… is Noetherian this chain stabilises, i.e. there exists ๐‘š โˆˆ N such that all ๐‘Ž๐‘–โ€™slie in (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘š). In particular, ๐‘Ž๐‘š+1 = โˆ‘๐‘š

๐‘–=1 ๐‘Ž๐‘–๐‘๐‘– for some ๐‘๐‘– โˆˆ ๐‘…. Let

๐‘” =๐‘š

โˆ‘๐‘–=1

๐‘๐‘–๐‘“๐‘–๐‘‹deg ๐‘“๐‘š+1โˆ’deg ๐‘“๐‘–

which has leading term๐‘š

โˆ‘๐‘–=1

๐‘๐‘–๐‘Ž๐‘–๐‘‹deg ๐‘“๐‘š+1 = ๐‘Ž๐‘š+1๐‘‹deg ๐‘“๐‘š+1 .

38

Page 40: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

2 Rings

Thus deg(๐‘“๐‘š+1 โˆ’ ๐‘”) < deg ๐‘“๐‘š+1. But ๐‘” โˆˆ (๐‘“1, โ€ฆ , ๐‘“๐‘š) but ๐‘“๐‘š+1 โˆ‰ (๐‘“1, โ€ฆ , ๐‘“๐‘š)so ๐‘“๐‘š+1 โˆ’ ๐‘” โˆ‰ (๐‘“1, โ€ฆ , ๐‘“๐‘š). This contradicts the minimality of the degree of๐‘“๐‘š+1.

Example. Z[๐‘‹1, โ€ฆ , ๐‘‹๐‘›], F[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] are Noetherian.

Lemma 2.38. A quotient of a Noetherian ring is Noetherian.

Corollary 2.39. Any ring which may be generated by finitely many elementsis Noetherian.

Example (Non-example). Z[๐‘‹1, ๐‘‹2, โ€ฆ ] is not Noetherian since

(๐‘‹1) โŠ† (๐‘‹1, ๐‘‹2) โŠ† โ‹ฏ

is an non-stabilising ascending chain.

Remark. Suppose โ„ฑ โŠ† F[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] is a set of polynomials. ๐›ผ = (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›) โˆˆF๐‘› is a solution of โ„ฑ if and only if โ„ฑ is contained in the kernel of

๐œ‘๐‘Ž โˆถ F[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] โ†’ F๐‘‹๐‘– โ†ฆ ๐‘Ž๐‘–

As F[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] is Noetherian, (โ„ฑ) = (๐‘“1, โ€ฆ , ๐‘“๐‘š) for finitely many ๐‘“๐‘–โ€™s. ๐›ผ isa simultaneous solution to โ„ฑ if and only if ker๐œ‘๐›ผ โŠ‡ (โ„ฑ) = (๐‘“1, โ€ฆ , ๐‘“๐‘š), if andonly if ๐›ผ is a simultaneous solution to ๐‘“1, โ€ฆ , ๐‘“๐‘›. That is to say, we only have toconsider a finite family of polynomials of which ๐›ผ is a root. This is important inalgebraic geometry.

39

Page 41: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

3 Modules

3.1 Definitions

Definition (Module). Let ๐‘… be a commutative ring. A quadruple (๐‘€, +, 0๐‘€, โ‹…)is an ๐‘…-module if (๐‘€, +, 0๐‘€) is an abelian group and the operation โˆ’ โ‹… โˆ’ โˆถ๐‘… ร— ๐‘€ โ†’ ๐‘€ satisfies

โ€ข (๐‘Ÿ1 + ๐‘Ÿ2) โ‹… ๐‘š = ๐‘Ÿ1 โ‹… ๐‘š + ๐‘Ÿ2 โ‹… ๐‘š,

โ€ข ๐‘Ÿ โ‹… (๐‘š1 + ๐‘š2) = ๐‘Ÿ โ‹… ๐‘š1 + ๐‘Ÿ โ‹… ๐‘š2,

โ€ข ๐‘Ÿ2 โ‹… (๐‘Ÿ1 โ‹… ๐‘š) = (๐‘Ÿ2๐‘Ÿ2) โ‹… ๐‘š,

โ€ข 1๐‘… โ‹… ๐‘š = ๐‘š.

Example.1. If ๐‘… = F is a field then an ๐‘…-module is precisely an F-vector space.

2. For any ring ๐‘…, ๐‘…๐‘› = ๐‘… ร— โ‹ฏ ร— ๐‘…โŸโŸโŸโŸโŸ๐‘› times

is an R-module via

๐‘Ÿ โ‹… (๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘›) = (๐‘Ÿ๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘Ÿ๐‘›).

In particular for ๐‘› = 1, ๐‘… is an ๐‘…-module.

3. If ๐ผ โŠด ๐‘… then ๐ผ is an ๐‘…-module via

๐‘Ÿ โ‹… ๐‘Ž = ๐‘Ÿ๐‘Ž โˆˆ ๐ผ.

Also ๐‘…/๐ผ is an R-module via

๐‘Ÿ โ‹… (๐‘Ÿ1 + ๐ผ) = ๐‘Ÿ๐‘Ÿ1 + ๐ผ โˆˆ ๐‘…/๐ผ.

4. For ๐‘… = Z, an R-module is precisely an abelian group. This is because theaxiom for โ‹… says that

โˆ’ โ‹… โˆ’ โˆถ Z ร— ๐‘€ โ†’ ๐‘€

(๐‘›, ๐‘š) โ†ฆโŽง{โŽจ{โŽฉ

๐‘š + โ‹ฏ + ๐‘šโŸโŸโŸโŸโŸ๐‘› times

๐‘› โ‰ฅ 0

โˆ’(๐‘š + โ‹ฏ + ๐‘šโŸโŸโŸโŸโŸ๐‘› times

) ๐‘› < 0

so โ‹… is determined by the abelian structure on ๐‘€.

5. Let F be a field and ๐‘‰ be a vector space over F. Let ๐›ผ โˆถ ๐‘‰ โ†’ ๐‘‰ be a linearmap. Then we can make ๐‘‰ into an F[๐‘‹]-module via

F[๐‘‹] ร— ๐‘‰ โ†’ ๐‘‰(๐‘“, ๐‘ฃ) โ†ฆ ๐‘“(๐›ผ)(๐‘ฃ)

Different ๐›ผโ€™s make ๐‘‰ into different F[๐‘ฅ]-modules.

6. Restriction of scalars: if ๐œ‘ โˆถ ๐‘… โ†’ ๐‘† is a ring homomorphism and ๐‘€ is an๐‘†-module, then ๐‘€ becomes an ๐‘…-modules via

๐‘Ÿ โ‹…๐‘… ๐‘š = ๐œ‘(๐‘Ÿ) โ‹…๐‘  ๐‘š.

40

Page 42: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Definition (Submodule). If ๐‘€ is an R-module, ๐‘ โŠ† ๐‘€ is a submodule if๐‘ is a subgroup of (๐‘€, +, 0๐‘€) and for any ๐‘› โˆˆ ๐‘, ๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ โ‹… ๐‘› โˆˆ ๐‘. Write๐‘ โ‰ค ๐‘€.

Example. A subset of ๐‘… is a submodule if and only if it is an ideal.

Definition (Quotient module). If ๐‘ โ‰ค ๐‘€ is a submodule, the quotientmodule ๐‘€/๐‘ is the set of ๐‘-cosets in (๐‘€, +, 0๐‘€), i.e. the quotient abeliangroup with

๐‘Ÿ โ‹… (๐‘š + ๐‘) = ๐‘Ÿ โ‹… ๐‘š + ๐‘.

Definition (Homomorphism). A function ๐‘“ โˆถ ๐‘€ โ†’ ๐‘ is an R-modulehomomorphism if it is a homomorphism of abelian groups and ๐‘“(๐‘Ÿ โ‹… ๐‘š) =๐‘Ÿ โ‹… ๐‘“(๐‘š).

Example. If ๐‘… = F is a field and ๐‘‰ and ๐‘Š are F-modules (i.e. F-vector spaces),then a map is an F-module homomorphism if and only if it is an F-linear map.

Theorem 3.1 (1st Isomorphism Theorem). If ๐‘“ โˆถ ๐‘€ โ†’ ๐‘ is an ๐‘…-modulehomomorphism then

ker ๐‘“ = {๐‘š โˆˆ ๐‘€ โˆถ ๐‘“(๐‘š) = 0} โ‰ค ๐‘€Im ๐‘“ = {๐‘› โˆˆ ๐‘ โˆถ ๐‘› = ๐‘“(๐‘š)} โ‰ค ๐‘

and๐‘€/ ker ๐‘“ โ‰… Im ๐‘“.

Theorem 3.2 (2nd Isomorphism Theorem). Let ๐ด, ๐ต โ‰ค ๐‘€ be submodules.Then

๐ด + ๐ต = {๐‘š โˆˆ ๐‘€ โˆถ ๐‘š = ๐‘Ž + ๐‘, ๐‘Ž โˆˆ ๐ด, ๐‘ โˆˆ ๐ต} โ‰ค ๐‘€๐ด โˆฉ ๐ต โ‰ค ๐‘€

and(๐ด + ๐ต)/๐ด โ‰… ๐ต/(๐ด โˆฉ ๐ต).

Theorem 3.3 (3rd Isomorphism Theorem). Let ๐‘ โ‰ค ๐ฟ โ‰ค ๐‘€ be a chain ofsubmodules. Then

๐‘€/๐‘๐ฟ/๐‘

โ‰… ๐‘€/๐ฟ.

Definition (Annihilator). If ๐‘€ is an ๐‘…-module and ๐‘š โˆˆ ๐‘€, the annihilatorof ๐‘š is

Ann(๐‘š) = {๐‘Ÿ โˆˆ ๐‘… โˆถ ๐‘Ÿ โ‹… ๐‘š = 0๐‘€} โŠด ๐‘….

41

Page 43: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

The annihilator of ๐‘€ is

Ann(๐‘€) = โ‹‚๐‘šโˆˆ๐‘€

Ann(๐‘š) โŠด ๐‘….

Definition (Generated submodule). If ๐‘€ is an ๐‘…-module and ๐‘š โˆˆ ๐‘€, thesubmodule generated by ๐‘š is

๐‘…๐‘š = {๐‘Ÿ โ‹… ๐‘š โˆˆ ๐‘€ โˆถ ๐‘Ÿ โˆˆ ๐‘…}.

Note. Intuitively, the annihilator of an element is the stabiliser of a ring actionand that of a module is the kernel. We also have

๐‘…๐‘š โ‰… ๐‘…/Ann(๐‘š).

Definition (Finitely generated). ๐‘€ is finitely generated if there are ๐‘š1, โ€ฆ , ๐‘š๐‘› โˆˆ๐‘€ such that

๐‘€ = ๐‘…๐‘š1 + โ€ฆ ๐‘…๐‘š๐‘› = {๐‘Ÿ1๐‘š1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘š๐‘› โˆถ ๐‘Ÿ๐‘– โˆˆ ๐‘…}.

Lemma 3.4. An ๐‘…-module ๐‘€ is finitely generated if and only if there is asurjection ๐œ‘ โˆถ ๐‘…๐‘› โ†  ๐‘€ for some ๐‘›.

Proof.

โ€ข โ‡’: Suppose ๐‘€ = ๐‘…๐‘š1 + โ‹ฏ + ๐‘…๐‘š๐‘›. Define

๐œ‘ โˆถ ๐‘…๐‘› โ†’ ๐‘€(๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘›) โ†ฆ ๐‘Ÿ1๐‘š1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘š๐‘š

This is an ๐‘…-module homomorphism and is surjective.

โ€ข โ‡: Let ๐‘š๐‘– = ๐œ‘((0, โ€ฆ , 0, 1, 0, โ€ฆ , 0)) with 1 in the ๐‘–th position. Then

๐œ‘((๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘›)) = ๐œ‘((๐‘Ÿ1, 0, โ€ฆ , 0) + โ‹ฏ + (0, โ€ฆ , 0, ๐‘Ÿ๐‘›))= ๐œ‘((๐‘Ÿ1, 0, โ€ฆ , 0)) + โ‹ฏ + ๐œ‘((0, โ€ฆ , 0, ๐‘Ÿ๐‘›))= ๐‘Ÿ1๐œ‘((1, 0, โ€ฆ , 0)) + โ‹ฏ + ๐‘Ÿ๐‘›๐œ‘((0, โ€ฆ , 0, 1))= ๐‘Ÿ1๐‘š1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘š๐‘›

As ๐œ‘ is surjective, ๐‘€ = ๐‘…๐‘š1 + โ‹ฏ + ๐‘…๐‘š๐‘›.

Corollary 3.5. Let ๐‘€ be an ๐‘…-module and ๐‘ โ‰ค ๐‘€. If ๐‘€ is finitely generatedthe so is ๐‘€/๐‘.

Proof.๐‘…๐‘› ๐‘€ ๐‘€/๐‘.๐‘“ ๐œ‹

42

Page 44: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Note. A submodule of a finitely generated ๐‘…-module need not be finitelygenerated. For example,

(๐‘‹1, ๐‘‹2, โ€ฆ ) โŠด Z[๐‘‹1, ๐‘‹2, โ€ฆ ] = ๐‘…

is an ๐‘…-module but not finitely generated, as otherwise it would be a finitelygenerated ideal.

Example. For ๐›ผ โˆˆ C, ๐›ผ is an algebraic integer if and only if Z[๐›ผ] is a finitelygenerated Z-module.

3.2 Direct Sums and Free Modules

Definition (Direct sum). If ๐‘€1, โ€ฆ , ๐‘€๐‘˜ are ๐‘…-modules, the direct sum๐‘€1 โŠ• โ‹ฏ โŠ• ๐‘€๐‘˜ is the set ๐‘€1 ร— โ‹ฏ ร— ๐‘€๐‘˜ with addition

(๐‘š1, โ€ฆ , ๐‘š๐‘˜) + (๐‘šโ€ฒ1, โ€ฆ , ๐‘šโ€ฒ

๐‘˜) = (๐‘š1 + ๐‘šโ€ฒ1, โ€ฆ , ๐‘š๐‘˜ + ๐‘šโ€ฒ

๐‘˜)

and ๐‘…-module structure

๐‘Ÿ โ‹… (๐‘š1, โ€ฆ , ๐‘š๐‘˜) = (๐‘Ÿ๐‘š1, โ€ฆ , ๐‘Ÿ๐‘š๐‘˜).

Example.๐‘…๐‘› = ๐‘… โŠ• โ‹ฏ โŠ• ๐‘…โŸโŸโŸโŸโŸ

๐‘› times.

Definition (Independence). Let ๐‘š1, โ€ฆ ๐‘š๐‘˜ โˆˆ ๐‘€. They are independent if

โˆ‘๐‘–

๐‘Ÿ๐‘– โ‹… ๐‘š๐‘– = 0

implies that ๐‘Ÿ๐‘– = 0 for all 1 โ‰ค ๐‘– โ‰ค ๐‘˜.

Definition (Free generation). A subset ๐‘† โŠ† ๐‘€ generates ๐‘€ freely if

1. ๐‘† generates ๐‘€.

2. Any function ๐œ“ โˆถ ๐‘† โ†’ ๐‘ to an ๐‘…-module ๐‘ extends to an ๐‘…-modulehomomorphism ๐œƒ โˆถ ๐‘€ โ†’ ๐‘.

๐‘† ๐‘…๐‘†

๐‘๐œ“

๐œƒ

Note. We can show this extension is unique: given ๐œƒ1, ๐œƒ2 โˆถ ๐‘€ โ†’ ๐‘ twoextensions of ๐œ“, ๐œƒ1 โˆ’ ๐œƒ2 โˆถ ๐‘€ โ†’ ๐‘ is an ๐‘…-module homomorphism so ker(๐œƒ1 โˆ’๐œƒ2) โ‰ค ๐‘€. But ๐œƒ1, ๐œƒ2 both extend ๐œ“ so ๐‘† โŠ† ker(๐œƒ1 โˆ’ ๐œƒ2). As ๐‘† generates ๐‘€,๐‘€ โ‰ค ker(๐œƒ1 โˆ’ ๐œƒ2) so ๐œƒ1 = ๐œƒ2.

An ๐‘…-module which is freely generated by ๐‘† โŠ† ๐‘€ is said to be free and ๐‘† iscalled a basis.

43

Page 45: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Proposition 3.6. For a finite subset ๐‘† = {๐‘š1, โ€ฆ , ๐‘š๐‘˜} โŠ† ๐‘€, TFAE:

1. ๐‘€ is freely generated by ๐‘†.

2. ๐‘€ is generated by ๐‘† and ๐‘† is independent.

3. Every ๐‘š โˆˆ ๐‘€ can be written as ๐‘Ÿ1๐‘š1 + โ‹ฏ + ๐‘Ÿ๐‘˜๐‘š๐‘˜ for some unique๐‘Ÿ๐‘– โˆˆ ๐‘….

Proof.

โ€ข 1 โ‡’ 2: Let ๐‘† generate ๐‘€ freely. If ๐‘† is not independent, then there is anon-trivial relation

๐‘˜โˆ‘๐‘–=1

๐‘Ÿ๐‘–๐‘š๐‘– = 0

with ๐‘Ÿ๐‘— โ‰  0. Let

๐œ“ โˆถ ๐‘† โ†’ ๐‘…

๐‘š๐‘– โ†ฆ {0๐‘… ๐‘– โ‰  ๐‘—1๐‘… ๐‘– = ๐‘—

This extends to an ๐‘…-module homomorphism ๐œƒ โˆถ ๐‘€ โ†’ ๐‘…. Then

0 = ๐œƒ(0) = ๐œƒ (โˆ‘ ๐‘Ÿ๐‘–๐‘š๐‘–) = โˆ‘ ๐‘Ÿ๐‘–๐œƒ(๐‘š๐‘–) = ๐‘Ÿ๐‘—.

Absurd. Thus ๐‘† is independent.

โ€ข The other steps follow similarly from those in IB Linear Algebra.

Example. Unlike vector spaces, a minimal generating set need not be inde-pendent. For example {2, 3} โŠ† Z generates Z but is not linear independent as(โˆ’3) โ‹… 2 + (2) โ‹… 3 = 0.

However, like vector spaces, in case a module is freely generated, it isisomorphic to direct sums of copies of the ring:

Lemma 3.7. If ๐‘† = {๐‘š1, โ€ฆ , ๐‘š๐‘˜} โŠ† ๐‘€ freely generates ๐‘€ then

๐‘€ โ‰… ๐‘…๐‘˜

as an ๐‘…-module.

Proof. This is entirely analogous to vector spaces. Let

๐‘“ โˆถ ๐‘…๐‘˜ โ†’ ๐‘€

(๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘˜) โ†ฆ โˆ‘๐‘–

๐‘Ÿ๐‘–๐‘š๐‘–

It is surjective as ๐‘† generates ๐‘€ and injective as ๐‘š๐‘–โ€™s are independent.

If an ๐‘…-module is generated by ๐‘š1, โ€ฆ , ๐‘š๐‘˜, we have seen before that there isa surjection ๐‘“ โˆถ ๐‘…๐‘˜ โ†  ๐‘€. We define

44

Page 46: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Definition (Relation module). The relation module for the generators is

ker ๐‘“ โ‰ค ๐‘…๐‘˜.

As ๐‘€ โ‰… ๐‘…๐‘˜/ ker ๐‘“, knowing ๐‘€ is equivalent to knowing the relation module.

Definition (Finitely presented). ๐‘€ is finitely presented if there is a finitegenerating set ๐‘š1, โ€ฆ , ๐‘š๐‘˜ for which the associated relation module is finitelygenerated.

Let {๐‘›1, โ€ฆ , ๐‘›๐‘Ÿ} โŠ† ker ๐‘“ โ‰ค ๐‘…๐‘˜ be a set of generators. Then

๐‘›๐‘– = (๐‘Ÿ๐‘–1, ๐‘Ÿ๐‘–2, โ€ฆ , ๐‘Ÿ๐‘–๐‘˜)

and ๐‘€ is generated by ๐‘š1, โ€ฆ , ๐‘š๐‘˜ subject to relations๐‘˜

โˆ‘๐‘—=1

๐‘Ÿ๐‘–๐‘—๐‘š๐‘— = 0

for 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ.

Proposition 3.8 (Invariance of Dimension). If ๐‘…๐‘› โ‰… ๐‘…๐‘š then ๐‘› = ๐‘š.

Note. This does not hold in general for modules over non-commutative rings.Proof. As a general strategy, let ๐ผ โŠด ๐‘…. Then

๐ผ๐‘€ = {โˆ‘ ๐‘Ž๐‘–๐‘š๐‘– โˆถ ๐‘Ž๐‘– โˆˆ ๐ผ, ๐‘š๐‘– โˆˆ ๐‘€} โ‰ค ๐‘€

is a submodule as๐‘Ÿ โ‹… โˆ‘ ๐‘Ž๐‘–๐‘š๐‘– = โˆ‘(๐‘Ÿ๐‘Ž๐‘–)๐‘š๐‘– โˆˆ ๐ผ๐‘€.

Thus we have a quotient ๐‘…-module ๐‘€/๐ผ๐‘€. We can make this into an ๐‘…/๐ผ-modulevia

(๐‘Ÿ + ๐ผ) โ‹… (๐‘š + ๐ผ๐‘€) = ๐‘Ÿ๐‘š + ๐ผ๐‘€.Let ๐ผ โŠด ๐‘… be a maximal proper ideal (this requires Zornโ€™s Lemma). Then

๐‘…/๐ผ is a field and therefore ๐‘…๐‘› โ‰… ๐‘…๐‘š implies

๐‘…๐‘›/๐ผ๐‘…๐‘› โ‰… ๐‘…๐‘š/๐ผ๐‘…๐‘š

(๐‘…/๐ผ)๐‘› โ‰… (๐‘…/๐ผ)๐‘š

This is a vector space isomorphism so ๐‘› = ๐‘š.

We have classified all finite abelian groups (well, at least we claimed so), i.e.Z-modules. What if we want to classify all ๐‘…-modules? That is going to be thefinal goal we will build towards.

Recall that ๐‘€ is finitely generated by ๐‘š1, โ€ฆ , ๐‘š๐‘˜ if and only if there is asurjection ๐‘“ โˆถ ๐‘…๐‘˜ โ†  ๐‘€. ๐‘€ is finitely presentely if and only ker ๐‘“ is finitelygenerated, say ๐‘›1, โ€ฆ , ๐‘›โ„“. Let

๐‘›๐‘– = (๐‘Ÿ๐‘–1, ๐‘Ÿ๐‘–2, โ€ฆ , ๐‘Ÿ๐‘–๐‘˜)

then such an ๐‘…-module ๐‘€ is determined by the matrix

โŽ›โŽœโŽœโŽœโŽ

๐‘Ÿ11 ๐‘Ÿ12 โ‹ฏ ๐‘Ÿ1โ„“๐‘Ÿ๐‘Ÿ1โ‹ฎ โ‹ฑ

๐‘Ÿ๐‘˜1 ๐‘Ÿ๐‘˜โ„“

โŽžโŽŸโŽŸโŽŸโŽ 

โˆˆ โ„ณ๐‘˜,โ„“(๐‘…).

45

Page 47: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

3.3 Matrices over Euclidean DomainsFor this section assume ๐‘… to be a Euclidean domain and let ๐œ‘ โˆถ ๐‘… \ {0} โ†’ Zโ‰ฅ0be the Euclidean function. For ๐‘Ž, ๐‘ โˆˆ ๐‘…, we have shown that gcd(๐‘Ž, ๐‘) existsand is unique up to associates. In addition, the Euclidean algorithm shows thatgcd(๐‘Ž, ๐‘) = ๐‘Ž๐‘ฅ + ๐‘๐‘ฆ for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘….

What follows would be very similar to what we have learned in IB LinearAlgebra โ€” in fact identical except a single modification:

Definition (Elementary row operation). Elementary row operation on an๐‘š ร— ๐‘› matrix with entries in ๐‘… are

1. Add ๐œ† โˆˆ ๐‘… times the ๐‘–th row to the ๐‘—th row where ๐‘– โ‰  ๐‘—. This can berealised by left multiplication by ๐ผ + ๐ถ where ๐ถ is ๐œ† in (๐‘—, ๐‘–)th positionand 0 elsewhere.

2. Swapping the ๐‘–th and ๐‘—th row where ๐‘– โ‰  ๐‘—. Realised by left multiplica-tion by

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 โ‹ฏ 0โ‹ฎ โ‹ฑ โ‹ฎ

0 1 00 โ‹ฏ 0 โ‹ฑ 0 0

1 0 0โ‹ฎ โ‹ฑ0 โ‹ฏ โ‹ฏ 0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

3. Multiply the ๐‘–th row by a unit ๐‘ โˆˆ ๐‘…. Realised by left multiplicationby

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 โ‹ฏ 0โ‹ฑ

โ‹ฎ ๐‘ โ‹ฎโ‹ฑ

0 โ‹ฏ 0 1

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Definition (Elementary column operation). Defined analogously by replac-ing โ€œrowโ€ with โ€œcolumnโ€.

Similarly to IB Linear Algebra, we define an equivalence relation

Definition (Equivalence). ๐ด, ๐ต โˆˆ โ„ณ๐‘š,๐‘›(๐‘…) are equivalent if there is asequence of elementary row and column operations taking ๐ด to ๐ต.

If ๐ด and ๐ต are equivalent then there are invertible square matrices ๐‘ƒ and ๐‘„such that

๐ต = ๐‘„๐ด๐‘ƒ โˆ’1.

Theorem 3.9 (Smith Normal Form). An ๐‘› ร— ๐‘š matrix over a Euclidean

46

Page 48: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

domain ๐‘… is equivalent to

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘1๐‘‘2

โ‹ฑ๐‘‘๐‘Ÿ

0โ‹ฑ

0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

where the ๐‘‘๐‘–โ€™s are non-zero and

๐‘‘1 โˆฃ ๐‘‘2 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ.Proof. This proof is going to be algorithmic. If the matrix ๐ด = 0 we are done.Otherwise there is a ๐ด๐‘–๐‘— โ‰  0. By swapping 1st and ๐‘–th row, and 1st and ๐‘—thcolumn we may suppose ๐ด11 โ‰  0. We want to reduce ๐œ‘(๐ด11) as much as possible.Split into three cases:

โ€ข Case 1: if there is a ๐ด1๐‘— not divisible by ๐ด11 then have

๐ด1๐‘— = ๐‘ž๐ด11 + ๐‘Ÿ

with ๐œ‘(๐‘Ÿ) < ๐œ‘(๐ด11). Add โˆ’๐‘ž times the 1st column to the ๐‘—th. This makesthe (1, ๐‘—)th entry ๐‘Ÿ. Swap 1st and ๐‘—th column to get ๐ด11 = ๐‘Ÿ. Thus wehave strictly decreased the ๐œ‘ value of the (1, 1) entry.

โ€ข Case 2: if ๐ด11 does not divide some ๐ด๐‘–1, do the analogous to entries in thefirst column to strictly reduce ๐œ‘(๐ด11).As ๐œ‘(๐ด11) can only strictly decrease finitely many times, after some appli-cations of Case 1 and 2 we can assumes ๐ด11 divides all the entries in the1st row and 1st column. If ๐ด1๐‘— = ๐‘ž๐ด11 then we can add โˆ’๐‘ž times the 1stcolumn to the ๐‘—th row to make the (๐‘–, ๐‘—)th entry 0. Thus we obtain

๐ด = (๐‘‘ 00 ๐ถ)

โ€ข Case 3: if there is an entry ๐‘๐‘–๐‘— of ๐ถ not divisible by ๐‘‘, write

๐‘๐‘–๐‘— = ๐‘ž๐‘‘ + ๐‘Ÿ

where ๐œ‘(๐‘Ÿ) < ๐œ‘(๐‘‘). Conduct the following series of elementary operations

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘ 0 โ‹ฏ 0 โ‹ฏ 00โ‹ฎ0 ๐‘๐‘–๐‘—โ‹ฎ0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

EC 1โ†’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘ 0 โ‹ฏ ๐‘‘ โ‹ฏ 00โ‹ฎ0 ๐‘๐‘–๐‘—โ‹ฎ0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

ER 1โ†’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘ 0 โ‹ฏ ๐‘‘ โ‹ฏ 00โ‹ฎ

โˆ’๐‘ž๐‘‘ ๐‘Ÿโ‹ฎ0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

ER 2,EC 2โ†’

โŽ›โŽœโŽœโŽœโŽ

๐‘Ÿ โˆ— โ‹ฏ โˆ—โˆ—โ‹ฎ โˆ—โˆ—

โŽžโŽŸโŽŸโŽŸโŽ 

47

Page 49: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Repeat Case 1 and 2, we finally get

(๐‘‘โ€ฒ

๐ถโ€ฒ)

where ๐œ‘(๐‘‘โ€ฒ) < ๐œ‘(๐‘‘).

Eventually we can suppose that ๐‘‘โ€ฒ divides every entry of ๐ถโ€ฒ. By induction๐ถโ€ฒ is equivalent to

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘2๐‘‘3

โ‹ฑ๐‘‘๐‘Ÿ

0โ‹ฑ

0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

with๐‘‘2 โˆฃ ๐‘‘3 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ

and we must have ๐‘‘โ€ฒ โˆฃ ๐‘‘๐‘– for ๐‘– > 1.

Remark. The ๐‘‘๐‘–โ€™s in Smith Normal Form are unique up to associates.

Certainly Smith Normal Form is a nice form and the algorithm guaranteesits existence and uniqueness (up to associates). However, the computation istoo cumbersome to be useful. However, if we could prove it is invariant undermatrix conjugation, we may apply some clever tricks to extract the ๐‘‘๐‘–โ€™s in SmithNormal Form without explicitly computing them.

Definition (Minor). A ๐‘˜ ร— ๐‘˜ minor of a matrix ๐ด is the determinant of amatrix formed by forgetting all but ๐‘˜ rows and ๐‘˜ columns of ๐ด.

Definition (Fitting ideal). The ๐‘˜th Fitting ideal of ๐ด Fit๐‘˜(๐ด) โŠด ๐‘… is theideal generated by all ๐‘˜ ร— ๐‘˜ minors of ๐ด.

Given a matrix ๐ด in Smith Normal Form as above with ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ, theonly ๐‘˜ ร— ๐‘˜ submatrices which do not have a whole row or column 0 are thosewhich keep both ๐‘–1th row and ๐‘–1th column, both ๐‘–2th row and ๐‘–2th column, etc.Therefore

Fit๐‘˜(๐ด) =โŽ›โŽœโŽœโŽœโŽœโŽ

detโŽ›โŽœโŽœโŽœโŽœโŽ

๐‘‘๐‘–1๐‘‘๐‘–2

โ‹ฑ๐‘‘๐‘–๐‘˜

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

= (๐‘‘๐‘–1โ‹ฏ ๐‘‘๐‘–๐‘˜

โˆถ sequences ๐‘–1, โ€ฆ , ๐‘–๐‘˜)= (๐‘‘1๐‘‘2 โ‹ฏ ๐‘‘๐‘˜)

as ๐‘‘๐‘š โˆฃ ๐‘‘๐‘–๐‘šfor all ๐‘š.

Therefore from the above computation Fit๐‘˜(๐ด) and Fit๐‘˜โˆ’1(๐ด) determine ๐‘‘๐‘˜up to associates.

48

Page 50: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Lemma 3.10. If ๐ด and ๐ต are equivalent matrices then Fit๐‘˜(๐ด) = Fit๐‘˜(๐ต)for all ๐‘˜.

Proof. It amounts to show that elementary operations does not change Fit๐‘˜(๐ด) โŠด๐‘…. We do the first type of row operation. Fix a ๐‘˜ ร— ๐‘˜ submatrix ๐ถ in ๐ด. Recallthat this row operation adds ๐œ† times the ๐‘–th row to the ๐‘—th row. Depending on๐‘– and ๐‘—, split into three cases:

โ€ข Case 1: if the ๐‘—th row is not in ๐ถ then ๐ถ is unchanged, so is its determinant.

โ€ข Case 2: if the ๐‘–th and ๐‘—th rows are both in ๐ถ, the operation changes ๐ถ bya row operation so its determinant is unchanged.

โ€ข Cases 3: if the ๐‘—th row is in ๐ถ but the ๐‘–th is not, suppose wlog the ๐‘–th rowof ๐ด corresponding to columns of ๐ถ has entries (๐‘“1, ๐‘“2, โ€ฆ , ๐‘“๐‘˜). After therow operation, ๐ถ is changed to ๐ถโ€ฒ whose ๐‘—th row is

(๐‘๐‘—,1 + ๐œ†๐‘“1, ๐‘๐‘—,2 + ๐œ†๐‘“2, โ€ฆ , ๐‘๐‘—,๐‘˜ + ๐œ†๐‘“๐‘˜).

By expansion along the ๐‘—th row,

det๐ถโ€ฒ = det๐ถ ยฑ ๐œ† det๐ท

where ๐ท is the matrix obtained by replacing the ๐‘—th row of ๐ถ with(๐‘“1, โ€ฆ , ๐‘“๐‘˜), which is a ๐‘˜ ร— ๐‘˜ submatrix of ๐ด up to reordering (which isaccounted for by the ยฑ sign), by multilinearity of det. So det๐ถโ€ฒ โˆˆ Fit๐‘˜(๐ด)as it is a linear combination of minors. Therefore Fit๐‘˜(๐ดโ€ฒ) โŠ† Fit๐‘˜(๐ด)where ๐ดโ€ฒ is obtained from ๐ด by this operation. As row operations areinvertible, we must have equality.

The other two types of row operations are similar but easier. Columnoperations follow analogously.

Example. Let

๐ด = (2 โˆ’11 2 ) โˆˆ โ„ณ2,2(Z).

Algorithmically, we can carry out the following sequence of operations to obtainSmith Normal Form:

(2 โˆ’11 2 )

ER 2โ†’ (1 2

2 โˆ’1)ER 1โ†’ (1 2

0 โˆ’5)ER 1โ†’ (1 0

0 โˆ’5)ER 3โ†’ (1 0

0 5)

Alternatively, using what we have just proved,

Fit1(๐ด) = (2, โˆ’1, 2, 1) = (1)Fit2(๐ด) = (det๐ด) = (5)

so ๐‘‘1 = 1, ๐‘‘1๐‘‘2 = 5 so ๐‘‘2 = 5.

Recall that we have remarked that a submodule of a finitely genereatedmodule may not be finitely generated. However the following lemma tells us thatsubmodules of finitely generated free modules over some particular rings are so:

49

Page 51: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Lemma 3.11. Let ๐‘… be a PID. Any submodule of ๐‘…๐‘› is generated by atmost ๐‘› elements.

Proof. Let ๐‘ โ‰ค ๐‘…๐‘› and consider the ideal

๐ผ = {๐‘Ÿ โˆˆ ๐‘… โˆถ โˆƒ๐‘Ÿ2, โ€ฆ , ๐‘Ÿ๐‘› such that (๐‘Ÿ, ๐‘Ÿ2, โ€ฆ , ๐‘Ÿ๐‘›) โˆˆ ๐‘},

which is the image of ๐‘๐œ„

โ†’ ๐‘…๐‘›๐œ‹1โ†’ ๐‘…, a submodule of ๐‘….

As ๐‘… is a PID, ๐ผ = (๐‘Ž) โŠด ๐‘… for some ๐‘Ž โˆˆ ๐‘…. Thus there is some

๐‘›1 = (๐‘Ž, ๐‘Ž2, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘›) โˆˆ ๐‘.

Suppose (๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ , ๐‘Ÿ๐‘›) โˆˆ ๐‘. Then there exists some ๐‘ฅ โˆˆ ๐‘… such that ๐‘Ÿ1 = ๐‘Ž๐‘ฅ.Then

(๐‘Ÿ1, โ€ฆ , ๐‘Ÿ๐‘›) โˆ’ ๐‘ฅ โ‹… ๐‘›1 = (0, ๐‘Ÿ2 โˆ’ ๐‘ฅ๐‘Ž2, โ€ฆ , ๐‘Ÿ๐‘› โˆ’ ๐‘ฅ๐‘Ž๐‘›) โˆˆ ๐‘ โˆฉ (0 โŠ• ๐‘…๐‘›โˆ’1).

By induction ๐‘ โˆฉ (0 โŠ• ๐‘…๐‘›โˆ’1) โ‰… ๐‘ โ€ฒ โ‰ค ๐‘…๐‘›โˆ’1 is generated by ๐‘›2, โ€ฆ , ๐‘›๐‘› so๐‘›1, โ€ฆ , ๐‘›๐‘› generate ๐‘.

Theorem 3.12. Let ๐‘… be a Euclidean domain and ๐‘ โ‰ค ๐‘…๐‘›. Then there isa basis ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› of ๐‘…๐‘› such that ๐‘ is generated by ๐‘‘1๐‘ฃ1, โ€ฆ , ๐‘‘๐‘Ÿ๐‘ฃ๐‘Ÿ for some0 โ‰ค ๐‘Ÿ โ‰ค ๐‘› and some ๐‘‘1 โˆฃ โ€ฆ โˆฃ ๐‘‘๐‘Ÿ.

Proof. By the previous lemma there are ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘š โˆˆ ๐‘ which generate ๐‘ and0 โ‰ค ๐‘š โ‰ค ๐‘›. Each ๐‘ฅ๐‘– is an element of ๐‘…๐‘› so we can form an ๐‘› ร— ๐‘š matrix whosefirst ๐‘š columns are ๐‘ฅ๐‘–, i.e.

๐ด = โŽ›โŽœโŽ

โ†‘ โ†‘ โ†‘๐‘ฅ1 ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐‘šโ†“ โ†“ โ†“

โŽžโŽŸโŽ 

โˆˆ โ„ณ๐‘›,๐‘š(๐‘…)

We can put ๐ด into Smith Normal Form with diagonal entries ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿby elementary operations. Each row operation is given by a change of basisof ๐‘…๐‘› and each column operation is given by rechoosing the generating set๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘š. Thus after a change of basis of ๐‘…๐‘› to ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›, ๐‘ is generated by๐‘‘1๐‘ฃ1, โ€ฆ , ๐‘‘๐‘Ÿ๐‘ฃ๐‘Ÿ.

Corollary 3.13. A submodule ๐‘ โ‰ค ๐‘…๐‘› is isomorphic to ๐‘…๐‘š for some๐‘š โ‰ค ๐‘›.

Proof. By the theorem above, we can find a basis ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› for ๐‘…๐‘› such that ๐‘is generated by ๐‘‘1๐‘ฃ1, โ€ฆ , ๐‘‘๐‘š๐‘ฃ๐‘š. These are linearly independent as a dependencebetween them would give a dependence between ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›.

Now we are ready for the big theorem in this course:

Theorem 3.14 (Classification Theorem for Finitely Generated Modulesover Euclidean Domain). Let ๐‘… be a Euclidean domain and ๐‘€ a finitelygenerated ๐‘…-modules. Then

๐‘€ โ‰… ๐‘…(๐‘‘1)

โŠ• ๐‘…(๐‘‘2)

โŠ• โ‹ฏ โŠ• ๐‘…(๐‘‘๐‘Ÿ)

โŠ• ๐‘… โŠ• โ‹ฏ โŠ• ๐‘…

50

Page 52: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

for some ๐‘‘๐‘– โ‰  0 with ๐‘‘1 โˆฃ ๐‘‘2 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ.

Proof. Let ๐‘€ be generated by ๐‘š1, โ€ฆ , ๐‘š๐‘› โˆˆ ๐‘€, giving a surjection ๐œ‘ โˆถ ๐‘…๐‘› โ†  ๐‘€so ๐‘€ โ‰… ๐‘…๐‘›/ ker๐œ‘. By the previous theorem there is a basis ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› of ๐‘…๐‘›

such that ker๐œ‘ is generated by ๐‘‘1๐‘ฃ1, โ€ฆ , ๐‘‘๐‘Ÿ๐‘ฃ๐‘Ÿ with ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ. Thus by changingthe basis of ๐‘…๐‘› to ๐‘ฃ๐‘–โ€™s, ker๐œ‘ is generated by columns of

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘1๐‘‘2

โ‹ฑ๐‘‘๐‘Ÿ

0โ‹ฑ

0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

so๐‘€ โ‰… ๐‘…๐‘›

ker๐œ‘โ‰… (

๐‘Ÿโจ๐‘–=1

๐‘…(๐‘‘๐‘–)

) โŠ• ๐‘… โŠ• โ‹ฏ โŠ• ๐‘…

as required.

Example. Let ๐‘… = Z, a Euclidean domain, and ๐ด be the abelian group (i.e.Z-module) generated by ๐‘Ž, ๐‘, ๐‘, subject to

โŽง{โŽจ{โŽฉ

2๐‘Ž + 3๐‘ + ๐‘ = 0๐‘Ž + 2๐‘ = 05๐‘Ž + 6๐‘ + 7๐‘ = 0

Thus ๐ด = Z3/๐‘ where ๐‘ โ‰ค Z3 is generated by (2, 3, 1)๐‘‡, (1, 2, 0)๐‘‡, (5, 6, 7)๐‘‡.The matrix ๐ด whose columns are these vectors

๐ด = โŽ›โŽœโŽ

2 1 53 2 61 0 7

โŽžโŽŸโŽ 

has Smith Normal Form with diagonal entries 1, 1, 3:

Proof.

Fit1(๐ด) = (1)

Fit2(๐ด) โŠ‡ (det(2 13 2)) = (1)

Fit3(๐ด) = (det๐ด) = 3

so ๐‘‘1 = 1, ๐‘‘1๐‘‘2 = 1, ๐‘‘1๐‘‘2๐‘‘3 = 3.

After change of basis, ๐‘ is generated by (1, 0, 0)๐‘‡, (0, 1, 0)๐‘‡, (0, 0, 3)๐‘‡ so

๐ด โ‰… Z/1Z โŠ• Z/1Z โŠ• Z/3Z โ‰… Z/3Z.

We can derive, as a corollary actually, what we stated earlier without proof

51

Page 53: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Theorem 3.15 (Structure Theorem for Finitely Generated Abelian Groups).Any finitely generated abelian group is isomorphic to

๐ถ๐‘‘1ร— ๐ถ๐‘‘2

ร— โ‹ฏ ร— ๐ถ๐‘‘๐‘Ÿร— ๐ถโˆž ร— โ‹ฏ ร— ๐ถโˆž

with ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ.

Proof. โ€œTrivialโ€ should suffice here but let us spell it out: apply ClassificationTheorem for Finitely Generated Modules over Euclidean Domain to Z, and notethat

Z/(๐‘‘) = ๐ถ๐‘‘, Z = ๐ถโˆž.

The above classification theorem decompose into modules whose relationmodulesโ€™ principal ideals form a descending chain by divisibility. It turns outit is also possible to decompose by the coprime factors of the relation modules.Before that let us prove something we have known for a (very) long time, but ata higher level:

Lemma 3.16 (Chinese Remainder Theorem). Let ๐‘… be a Euclidean domainand ๐‘Ž, ๐‘ โˆˆ ๐‘… with gcd(๐‘Ž, ๐‘) = 1. Then

๐‘…/(๐‘Ž๐‘) โ‰… ๐‘…(๐‘Ž) โŠ• ๐‘…/(๐‘).

Proof. Consider the ๐‘…-module homomorphism

๐œ‘ โˆถ ๐‘…/(๐‘Ž) โŠ• ๐‘…/(๐‘) โ†’ ๐‘…/(๐‘Ž๐‘)(๐‘Ÿ1 + (๐‘Ž), ๐‘Ÿ2 + (๐‘)) โ†ฆ ๐‘๐‘Ÿ1 + ๐‘Ž๐‘Ÿ2 + (๐‘Ž๐‘)

As gcd(๐‘Ž, ๐‘) = 1, (๐‘Ž, ๐‘) = (1) so 1 = ๐‘ฅ๐‘Ž + ๐‘ฆ๐‘ for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘…. Therefore for๐‘Ÿ โˆˆ ๐‘…, ๐‘Ÿ = ๐‘Ÿ๐‘ฅ๐‘Ž + ๐‘Ÿ๐‘ฆ๐‘ so

๐‘Ÿ + (๐‘Ž๐‘) = ๐‘Ÿ๐‘ฅ๐‘Ž + ๐‘Ÿ๐‘ฆ๐‘ + (๐‘Ž๐‘) = ๐œ‘((๐‘Ÿ๐‘ฆ + (๐‘Ž), ๐‘Ÿ๐‘ฅ + (๐‘)))

and so ๐œ‘ is surjective.If ๐œ‘((๐‘Ÿ1 + (๐‘Ž), ๐‘Ÿ2 + (๐‘))) = 0 then ๐‘๐‘Ÿ1 + ๐‘Ž๐‘Ÿ2 โˆˆ (๐‘Ž๐‘). Thus ๐‘Ž โˆฃ ๐‘๐‘Ÿ1 + ๐‘Ž๐‘Ÿ2, ๐‘Ž โˆฃ ๐‘๐‘Ÿ1.

As gcd(๐‘Ž, ๐‘) = 1, ๐‘Ž โˆฃ ๐‘Ÿ1 so ๐‘Ÿ1 + (๐‘Ž) = 0 + (๐‘Ž). Similarly ๐‘Ÿ2 + (๐‘) = 0 + (๐‘) so ๐œ‘ isinjective.

We thus have

Theorem 3.17 (Primary Decomposition Theorem). Let ๐‘… be a Euclideandomain and ๐‘€ be a finitely generated ๐‘…-module. Then

๐‘€ โ‰…๐‘›

โจ๐‘–=1

๐‘๐‘–

with each ๐‘๐‘– either equal to ๐‘… or ๐‘…/(๐‘๐‘š) for some prime ๐‘ โˆˆ ๐‘… and ๐‘› โ‰ฅ 1.

Proof. Note that if ๐‘‘ = ๐‘๐‘š11 โ‹ฏ ๐‘๐‘š๐‘˜

๐‘˜ with ๐‘๐‘– โˆˆ ๐‘… distinct primes, by the previouslemma

๐‘…(๐‘‘)

โ‰… ๐‘…(๐‘๐‘›1

1 )โŠ• โ‹ฏ โŠ• ๐‘…

(๐‘๐‘š๐‘˜๐‘˜ )

.

52

Page 54: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Plug this into Classification Theorem for Finitely Generated Modules overEuclidean Domain to get the required result.

3.4 F[๐‘‹]-modules and Normal FormFor any field F, F[๐‘‹] is a Euclidean domain and so results of the last sectionapply. If ๐‘‰ is an F-vector space and ๐›ผ โˆถ ๐‘‰ โ†’ ๐‘‰ is an endomorphism, then wehave

F[๐‘‹] ร— ๐‘‰ โ†’ ๐‘‰(๐‘“, ๐‘ฃ) โ†ฆ ๐‘“(๐›ผ)(๐‘ฃ)

which makes ๐‘‰ into an F[๐‘‹]-module, call it ๐‘‰๐›ผ. It turns out that F[๐‘‹]-module isthe correct tool to study endomorphisms and many results in IB Linear Algebra,as well as many further results in algebra, can be obtained by looking into theF[๐‘‹]-module structure.

Lemma 3.18. If ๐‘‰ is finite-dimensional then ๐‘‰๐›ผ is finitely generated as anF[๐‘‹]-module.

Proof. ๐‘‰ is a finitely generated F-module and F โ‰ค F[๐‘‹] so ๐‘‰ is also a finitelygenerated F[๐‘‹]-module.

Example.

1. Suppose ๐‘‰๐›ผ โ‰… F[๐‘‹]/(๐‘‹๐‘Ÿ) as an F[๐‘‹]-module. This has F-basis {๐‘‹๐‘–}๐‘Ÿโˆ’1๐‘–=0

and the action of ๐›ผ corresponds to multiplication by ๐‘‹. Thus in this basis๐›ผ has matrix representation

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ

01 0

1 0โ‹ฑ1 0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

2. Suppose ๐‘‰๐›ผ โ‰… F[๐‘‹]/((๐‘‹ โˆ’ ๐œ†)๐‘Ÿ). Consider ๐›ฝ = ๐›ผ โˆ’ ๐œ† โ‹… id. Then ๐‘‰๐›ฝ โ‰…F[๐‘Œ ]/(๐‘Œ ๐‘Ÿ) as an F[๐‘Œ ]-module. By the previous example ๐‘‰ has a basis sothat ๐›ฝ is given by the matrix above and ๐›ผ is given by

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ†1 ๐œ†

1 ๐œ†โ‹ฑ1 ๐œ†

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

3. Suppose ๐‘‰๐›ผ โ‰… F[๐‘‹]/(๐‘“) where

๐‘“ = ๐‘‹๐‘Ÿ + ๐‘Ž๐‘Ÿโˆ’1๐‘‹๐‘Ÿโˆ’1 + โ‹ฏ + ๐‘Ž1๐‘‹ + ๐‘Ž0.

53

Page 55: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Then {๐‘‹๐‘–}๐‘Ÿโˆ’1๐‘–=0 is an F-basis and in this basis ๐›ผ is given by

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

0 โˆ’๐‘Ž01 0 โˆ’๐‘Ž1

1 0 โˆ’๐‘Ž21 0 โˆ’๐‘Ž3

โ‹ฑ โ‹ฎ1 โˆ’๐‘Ž๐‘Ÿโˆ’1

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

This matrix is called the companion matrix for ๐‘“, written ๐ถ(๐‘“).

Theorem 3.19 (Rational Canonical Form). Let ๐‘‰ be a finite-dimensionalF-vector space and ๐›ผ โˆถ ๐‘‰ โ†’ ๐‘‰ be linear. Regard ๐‘‰ as an F[๐‘‹]-module ๐‘‰๐›ผ, wehave

๐‘‰๐›ผ โ‰… F[๐‘‹](๐‘‘1)

โŠ• โ‹ฏ โŠ• F[๐‘‹](๐‘‘๐‘Ÿ)

with ๐‘‘1 โˆฃ ๐‘‘2 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ. There is a basis of ๐‘‰ with respect to which ๐›ผ is given by

โŽ›โŽœโŽœโŽœโŽ

๐ถ(๐‘‘1)๐ถ(๐‘‘2)

โ‹ฑ๐ถ(๐‘‘๐‘Ÿ)

โŽžโŽŸโŽŸโŽŸโŽ 

Proof. Apply Classification Theorem for Finitely Generated Modules over Eu-clidean Domain to F[๐‘‹], a Euclidean domain. Note that no copies of F[๐‘‹] appearas it has infinite dimension over ๐‘‰.

Some observations:

1. If ๐›ผ is represented by a matrix ๐ด in some basis, then ๐ด is conjugate to theabove matrix.

2. The minimal polynomial of ๐›ผ is ๐‘‘๐‘Ÿ โˆˆ F[๐‘‹].

3. The characteristic polynomial of ๐›ผ is ๐‘‘1๐‘‘2 โ‹ฏ ๐‘‘๐‘Ÿ.

Recall that we have two classification theorems for modules over Euclideandomain. The above theorem corresponds to invariant decomposition. One mightnaturally ask what result follows from primary decomposition. Before that letโ€™sconvince ourselves that primes in C[๐‘‹] are as simple as they can be:

Lemma 3.20. The primes in C[๐‘‹] are ๐‘‹ โˆ’ ๐œ† for ๐œ† โˆˆ C up to associates.

Proof. If ๐‘“ โˆˆ C[๐‘‹] is irreducible then Fundamental Theorem of Algebra saysthat ๐‘“ has a root ๐œ†, or ๐‘“ is a constant. If it is constant then it is 0 or a unit,absurd. Thus (๐‘‹ โˆ’ ๐œ†) โˆฃ ๐‘“, write ๐‘“ = (๐‘‹ โˆ’ ๐œ†)๐‘”. But ๐‘“ is irreducible so ๐‘” is a unit.Thus ๐‘“ is an associate of ๐‘‹ โˆ’ ๐œ†.

Remark. The lemma is equivalent to the statement that C is algebraicallyclosed, which says that every polynomial with coefficients in C factorises intolinear factors over C. In fact, every field can be extended to an algebraicallyclosed one. This will be discussed in detail in IID Galois Theory.

54

Page 56: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Theorem 3.21 (Jordan Normal Form). Let ๐‘‰ be a finite-dimensional C-vector space and ๐›ผ โˆถ ๐‘‰ โ†’ ๐‘‰ linear. Consider ๐‘‰๐›ผ as an C[๐‘‹]-module, then

๐‘‰๐›ผ โ‰… C[๐‘‹]((๐‘‹ โˆ’ ๐œ†1)๐‘Ž1)

โŠ• C[๐‘‹]((๐‘‹ โˆ’ ๐œ†2)๐‘Ž2)

โŠ• โ‹ฏ โŠ• C[๐‘‹]((๐‘‹ โˆ’ ๐œ†๐‘Ÿ)๐‘Ž๐‘Ÿ)

where the ๐œ†๐‘–โ€™s are not necessarily distinct. There is a basis of ๐‘‰ with respectto which ๐›ผ is given by

โŽ›โŽœโŽœโŽœโŽœโŽ

๐ฝ๐‘Ž1(๐œ†1)

๐ฝ๐‘Ž2(๐œ†2)

โ‹ฑ๐ฝ๐‘Ž๐‘Ÿ

(๐œ†๐‘Ÿ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

where

๐ฝ๐‘š(๐œ†) =โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ†1 ๐œ†

1 ๐œ†โ‹ฑ1 ๐œ†

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

has size ๐‘š.Proof. Immediate from Primary Decomposition Theorem and knowing all theprimes in C[๐‘‹].

Remark.1. The ๐ฝ๐‘š(๐œ†) are called Jordan ๐œ†-blocks.

2. The minimal polynomial of ๐›ผ is

๐‘š๐›ผ(๐‘ก) = โˆ๐œ†

(๐‘‹ โˆ’ ๐œ†)๐‘Ž๐œ†

where ๐‘Ž๐œ† is the largest ๐œ†-block.

3. The characteristic polynomial of ๐›ผ is

๐œ’๐›ผ(๐‘ก) = โˆ๐œ†

(๐‘‹ โˆ’ ๐œ†)๐‘๐œ†

where ๐‘๐œ† is the sum of the sizes of the ๐œ†-blocks.

4. Consider ker(๐‘‹ โ‹… โˆ’ โˆถ ๐‘‰๐›ผ โ†’ ๐‘‰๐›ผ). What is its dimension?On C[๐‘‹]/(๐‘‹ โˆ’ ๐œ†)๐‘Ž, if ๐œ† โ‰  0 then the map ๐‘‹ โ‹… โˆ’ is an isomorphism since

ker(๐‘‹ โ‹… โˆ’) = {๐‘“ + ((๐‘‹ โˆ’ ๐œ†)๐‘Ž) โˆถ ๐‘‹๐‘“ โˆˆ ((๐‘‹ โˆ’ ๐œ†)๐‘Ž)}

so if ๐‘‹๐‘“ = (๐‘‹ โˆ’ ๐œ†)๐‘Ž โ‹… ๐‘”, as ๐‘‹ and ๐‘‹ โˆ’ ๐œ† are coprime, ๐‘‹ โˆฃ ๐‘”, (๐‘‹ โˆ’ ๐œ†)๐‘Ž โˆฃ ๐‘“so ker(๐‘‹ โ‹… โˆ’) = 0.If ๐œ† = 0, ๐‘‹ โ‹… โˆ’ โˆถ C[๐‘‹]/(๐‘‹๐‘Ž) โ†’ C[๐‘‹]/(๐‘‹๐‘Ž) has matrix

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ

01 0

1 0โ‹ฑ1 0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

55

Page 57: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

so 1-dimensional kernel. Thus

dimker(๐‘‹ โ‹… โˆ’ โˆถ ๐‘‰๐›ผ โ†’ ๐‘‰๐›ผ) = #Jordan 0-blocks.

5. Similarly, ๐‘‹2 โ‹… โˆ’ โˆถ C[๐‘‹]/((๐‘‹ โˆ’ ๐œ†)๐‘Ž) โ†’ C[๐‘‹]/((๐‘‹ โˆ’ ๐œ†)๐‘Ž) is an isomorphismfor ๐œ† โ‰  0 and for ๐œ† = 0 is given by the matrix

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

00 01 0 0

1 0โ‹ฑ

0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

which has 2-dimensional kernel if ๐‘Ž > 1 and 1-dimensional kernel if ๐‘Ž = 1.Therefore

dimker(๐‘‹2 โ‹… โˆ’ โˆถ ๐‘‰๐›ผ โ†’ ๐‘‰๐›ผ) = #Jordan 0-blocks+ #Jordan 0-blocks of size > 1.

so

#Jordan 0-blocks of size 1 = 2 dimker(๐‘‹ โ‹… โˆ’) โˆ’ dimker(๐‘‹2 โ‹… โˆ’).

Using the same method we can find Jordan 0-blocks of other sizes.

3.5 Conjugacy*

Lemma 3.22. If ๐›ผ โˆถ ๐‘‰ โ†’ ๐‘‰ and ๐›ฝ โˆถ ๐‘Š โ†’ ๐‘Š are endomorphism of F-vectorspaces, then ๐‘‰๐›ผ โ‰… ๐‘Š๐›ฝ as F[๐‘‹]-modules if and only if there is an isomorphism๐›พ โˆถ ๐‘‰ โ†’ ๐‘Š such that

๐›พโˆ’1๐›ฝ๐›พ = ๐›ผ,

i.e. ๐›ผ and ๐›ฝ are conjugates.

Proof. Let ฬ‚๐›พ โˆถ ๐‘‰๐›ผ โ†’ ๐‘Š๐›ฝ be an F[๐‘‹]-module isomorphism. In particular ฬ‚๐›พ givesan F-vector space isomorphism ๐›พ โˆถ ๐‘‰ โ†’ ๐‘Š. Then

๐›ฝ โˆ˜ ๐›พ โˆถ ๐‘Š๐›ฝ โ†’ ๐‘Š๐›ฝ

๐‘ฃ โ†ฆ ๐‘‹ โ‹… ๐›พ(๐‘ฃ)

Now

๐‘‹ โ‹… ๐›พ(๐‘ฃ) = ๐‘‹ โ‹… ฬ‚๐›พ(๐‘ฃ) ฬ‚๐›พ as an F[๐‘‹]-module map= ฬ‚๐›พ(๐‘‹ โ‹… ๐‘ฃ) in F[๐‘‹]-module ๐‘‰๐›ผ

= ฬ‚๐›พ(๐›ผ(๐‘ฃ))= ๐›พ(๐›ผ(๐‘ฃ))

so ๐›ฝ โˆ˜ ๐›พ = ๐›พ โˆ˜ ๐›ผ, ๐›พโˆ’1 โˆ˜ ๐›ฝ โˆ˜ ๐›พ = ๐›ผ. Therefore if ๐‘Š = ๐‘‰ then ๐‘‰๐›ผ โ‰… ๐‘‰๐›ฝ if and only if๐›ผ and ๐›ฝ are conjugates.

๐‘‰ ๐‘‰ ๐‘‰๐›ผ ๐‘‰๐›ผ

๐‘Š ๐‘Š ๐‘Š๐›ฝ ๐‘Š๐›ฝ

๐›ผ

๐›พ ๐›พ

๐›ผ=๐‘‹โ‹…โˆ’

๏ฟฝฬ‚๏ฟฝ ๏ฟฝฬ‚๏ฟฝ๐›ฝ ๐›ฝ=๐‘‹โ‹…โˆ’

56

Page 58: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Applying Classification Theorem for Finitely Generated Modules over Eu-clidean Domain, we get

Corollary 3.23. There is a bijection

{conjugacy class of โ„ณ๐‘›(F)} โ†” { sequence of monic polynomials ๐‘‘1, โ€ฆ , ๐‘‘๐‘Ÿwhere ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿ and deg(๐‘‘1 โ‹ฏ ๐‘‘๐‘Ÿ) = ๐‘› }

Example. Consider GL2(F). The conjugacy classes are described by ๐‘‘1 โˆฃ โ‹ฏ โˆฃ ๐‘‘๐‘Ÿwhere deg(๐‘‘1 โ‹ฏ ๐‘‘๐‘Ÿ) = 2. Therefore we have one of the followings:

1. deg ๐‘‘1 = 2,

2. deg ๐‘‘1 = deg ๐‘‘2 = 1. As ๐‘‘1 โˆฃ ๐‘‘2, ๐‘‘1 = ๐‘‘2.

These give us respecively

1. F[๐‘‹]/(๐‘‹2 + ๐‘Ž1๐‘‹ + ๐‘Ž0),

2. F[๐‘‹]/(๐‘‹ โˆ’ ๐œ†) โŠ• F[๐‘‹]/(๐‘‹ โˆ’ ๐œ†).

Therefore any ๐ด โˆˆ GL2(F) is conjugate to one of

(0 โˆ’๐‘Ž01 โˆ’๐‘Ž1

) , (๐œ† 00 ๐œ†)

They are not conjugates.The first case be futher split into two cases. If ๐‘‹2 + ๐‘Ž1๐‘‹ + ๐‘Ž0 is reducible

they it factorises as either (๐‘‹ โˆ’ ๐œ†)2 or (๐‘‹ โˆ’ ๐œ†)(๐‘‹ โˆ’ ๐œ‡) where ๐œ† โ‰  ๐œ‡. Thus weget one of

(๐œ† 01 ๐œ†) , (๐œ† 0

0 ๐œ‡)

Example. Let F = Z/3Z. For what ๐‘Ž1, ๐‘Ž0 is ๐‘‹2 + ๐‘Ž1๐‘‹ + ๐‘Ž0 โˆˆ F[๐‘‹] irreducible?There are 3 ร— 3 = 9 polynomials in total, of which (3

1) + (32) = 6 are reducible.

Guess (any verify!) that the irreducibles are ๐‘‹2 + 1, ๐‘‹2 + 2๐‘‹ + 2, ๐‘‹2 + 2๐‘‹ + 2.Therefore the conjugacy classes in GL2(Z/3Z) are

( 0 โˆ’11 0 ) ( 0 โˆ’2

1 โˆ’1 ) ( 0 โˆ’21 โˆ’2 )

( ๐œ† 01 ๐œ† ) ๐œ† โ‰  0

( ๐œ† 00 ๐œ‡ ) ๐œ†, ๐œ‡ โ‰  0

so there are in total 8 conjugacy classes. They have order

( 0 21 0 ) ( 0 1

1 2 ) ( 0 11 1 ) ( 1 0

1 1 ) ( 2 01 2 ) ( ๐œ† 0

0 ๐œ‡ )4 8 8 3 6 2

Just for fun, letโ€™s use what we deduced above and knowledge about Sylow๐‘-subgroups way back in the beginning of the course to determine the groupstructure of GL2(Z/3/๐‘).

Recall that|๐บ๐ฟ2(Z/3Z)| = (32 โˆ’ 1)(32 โˆ’ 3) = 24 โ‹… 3

57

Page 59: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

so the Sylow 2-subgroup has order 24 = 16. There are no elements of order 16so it cannot be cyclic. Let

๐ด = (0 21 0) , ๐ต = (0 1

1 2)

so๐ดโˆ’1๐ต๐ด = (2 2

2 0) = ๐ต3.

Therefore โŸจ๐ตโŸฉ โŠด โŸจ๐ด, ๐ตโŸฉ โ‰ค GL2(Z/3Z). The 2nd Isomorphism Theorem saysthat

โŸจ๐ด, ๐ตโŸฉ/โŸจ๐ตโŸฉ โ‰… โŸจ๐ดโŸฉ/(โŸจ๐ดโŸฉ โˆฉ โŸจ๐ตโŸฉ).

Now โŸจ๐ดโŸฉ โˆฉ โŸจ๐ตโŸฉ = โŸจ( 2 00 2 )โŸฉ, a group of order 2. Therefore

|โŸจ๐ด, ๐ตโŸฉ| = |โŸจ๐ดโŸฉ| โ‹… |โŸจ๐ตโŸฉ||โŸจ๐ดโŸฉ โˆฉ โŸจ๐ตโŸฉ|

= 8 โ‹… 42

= 16

which is a Sylow 2-subgroup of GL2(Z/3Z). It has presentation

โŸจ๐ด, ๐ต|๐ด4 = ๐ต8 = 1, ๐ดโˆ’1๐ต๐ด = ๐ต3โŸฉ,

the semidihedral group of order 16.Since we still have time left, we can do one more fun example.

Example. Let ๐‘… = Z[๐‘‹]/(๐‘‹2 + 5) โ‰… Z[โˆš

โˆ’5] โ‰ค C. Then

(1 + ๐‘‹)(1 โˆ’ ๐‘‹) = 1 โˆ’ ๐‘‹2 = 1 + 5 = 6 = 2 โ‹… 3.

As 1 ยฑ ๐‘‹, 2 and 3 are irreducibles ๐‘… is not a UFD. Let

๐ผ1 = (3, 1 + ๐‘‹), ๐ผ2 = (3, 1 โˆ’ ๐‘ฅ)

be submodules of ๐‘…. Consider

๐œ‘ โˆถ ๐ผ1 โŠ• ๐ผ2 โ†’ ๐‘…(๐‘Ž, ๐‘) โ†’ ๐‘Ž + ๐‘

Then Im๐œ‘ = (3, 1 + ๐‘‹, 1 โˆ’ ๐‘‹). Since 3 โˆ’ (1 + ๐‘‹) โˆ’ (1 โˆ’ ๐‘‹) = 1, Im๐œ‘ = ๐‘…. Also

ker๐œ‘ = {(๐‘Ž, ๐‘) โˆˆ ๐ผ1 โŠ• ๐ผ2 โˆถ ๐‘Ž + ๐‘ = 0} โ‰… ๐ผ1 โˆฉ ๐ผ2

where the last isomorphism can be deduced from the map (๐‘ฅ, โˆ’๐‘ฅ) โ†ค ๐‘ฅ. Notethat (3) โŠ† ๐ผ1 โˆฉ ๐ผ2. Let

๐‘  โ‹… 3 + ๐‘ก โ‹… (1 + ๐‘‹) โˆˆ (3, 1 โˆ’ ๐‘‹) โŠ† ๐‘… = Z[๐‘‹]/(๐‘‹2 โˆ’ 5).

Reduce mod 3, we get

๐‘ก โ‹… (1 + ๐‘‹) = (1 โˆ’ ๐‘‹)๐‘ mod (3, ๐‘‹2 + 5) = (3, ๐‘‹2 โˆ’ 1) = (2, (๐‘‹ + 1)(๐‘‹ โˆ’ 1))

so 1 โˆ’ ๐‘‹ โˆฃ ๐‘ก, (1 + ๐‘‹)(1 โˆ’ ๐‘‹) โˆฃ ๐‘ก(1 + ๐‘‹) so

๐‘ก(1 + ๐‘‹) = ๐‘ž(๐‘‹2 โˆ’ 1) = ๐‘ž(๐‘‹2 + 5 โˆ’ 6) = 3(โˆ’2๐‘ž).

58

Page 60: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

3 Modules

Then ๐‘  โ‹… 3 + ๐‘ก โ‹… (1 + ๐‘‹) is divisible by 3 so ๐ผ1 โˆฉ ๐ผ2 โŠ† (3). Equality follows.From example sheet 4 we know that if ๐‘ โ‰ค ๐‘€ and ๐‘€/๐‘ โ‰… R๐‘› then

๐‘€ โ‰… ๐‘ โŠ• ๐‘…๐‘›. Here๐ผ1 โŠ• ๐ผ2/ ker๐œ‘ โ‰… Im๐œ‘ = ๐‘…

so๐ผ1 โŠ• ๐ผ2 โ‰… ๐‘… โŠ• ker๐œ‘ = ๐‘… โŠ• (3).

Consider

๐œ“ โˆถ ๐‘… โ†’ (3)๐‘ฅ โ†ฆ 3๐‘ฅ

a surjective ๐‘…-module map. ker๐œ‘ = 0 as ๐‘… is an integral domain so ๐œ‘ is anisomorphism. Thus

๐ผ1 โŠ• ๐ผ2 โ‰… ๐‘… โŠ• ๐‘… = ๐‘…2.

In particular this shows that sums of non-free modules can be free.Next we claim that ๐ผ1 is not principal. If ๐ผ1 = (๐‘Ž + ๐‘๐‘‹) then ๐ผ2 = (๐‘Ž + ๐‘๐‘‹).

This is because ๐ผ1 = (3, 1 + ๐‘‹) and ๐ผ2 = (3, 1 โˆ’ ๐‘‹) and ๐‘… has automorphism๐‘‹ โ†ฆ โˆ’๐‘‹ which interchanging ๐ผ1 and ๐ผ2.1 But then

(3) = ๐ผ1 โˆฉ ๐ผ2 = ((๐‘Ž + ๐‘๐‘‹)(๐‘Ž โˆ’ ๐‘๐‘‹)) = (๐‘Ž2 โˆ’ ๐‘2๐‘‹2) = (๐‘Ž2 + 5๐‘2)

so ๐‘Ž2 + 5๐‘2 โˆฃ 3, absurd.In summary, we have shown that

1. ๐ผ1 needs 2 elements to generate (as it is not principal), but it is not thefree module ๐‘…2.

2. ๐ผ1 is a direct summand of ๐‘…2.

1This technique will play a central role in IID Galois Theory.

59

Page 61: Groups, Rings and Modulesqk206.user.srcf.net/notes/groups_rings_and_modules.pdfย ยท 2018. 6. 4.ย ยท 1 Groups 1 Groups 1.1 Definitions Definition(Group).A groupis a triple (๐บ,โ‹…,๐‘’)of

Index

algebraic integer, 37annihilator, 41ascending chain condition, 30associate, 27

basis, 43

Cayleyโ€™s theorem, 8centraliser, 10centre, 10Chinese Remainder Theorem, 13conjugacy class, 10content, 32

direct sum, 43

Eisensteinโ€™s criterion, 34equivalence, 46Euclidean domain, 28

field of fractions, 25finitely generated, 42finitely presented, 45Fitting ideal, 48free generation, 43free module, 43

Gaussโ€™ Lemma, 32group, 2

abelian, 2homomorphism, 4index, 2isomorphism, 4quotient, 3subgroup, 2normal, 3

group action, 7

Hilbert Basis Theorem, 38

ideal, 19generated, 20maximal, 26prime, 26principal, 20

independence, 43

integral domain, 24irreducible, 27isomorphism theorem, 4, 23, 41

Jordan normal form, 55

Lagrangeโ€™s Theorem, 2

minimal polynomial, 37minor, 48module, 40

homomorphism, 41quotient, 41submodule, 41

generated, 42

Noetherian, 30normaliser, 11

Orbit-stabiliser theorem, 10order, 3

PID, 24primary decomposition, 52prime, 27primitive, 32

Rational Canonical Form, 54relation module, 45ring, 17

homomorphism, 19quotient, 21subring, 17

sign, 7Simith Normal Form, 46simple group, 6Structural Theorem for modules, 50Sylow subgroup, 13Sylowโ€™s Theorem, 13symmetric group, 7

unique factorisation domain, 29unit, 17, 27

zero divisor, 24

60


Top Related