Transcript
  • Heave compensationPassiveActiveCombined passive / active

    Single versus two degrees of freedom system

    Modes of operationConstant tension(drill strings, risers, guidelines)Motion control (landing on bottom)Slack prevention (lift off)Snap load prevention (towing)

    Heave_compensation.PRZ 1

  • Passive compensator

    Combined passive / active compensator

    Heave_compensation.PRZ 2

  • Dynamic model

    Load

    Compensator mass

    Compensator stiffness and damping

    Load damping

    Wire stiffness

    Crane top motion

    Load motion

    Compensator motion

    Heave_compensation.PRZ 3

  • Dynamic model (SDOF)

    y Ignore compensator massy Linear passive systemy No excitation on load

    M $$3 + c $ 3 + k( 3 3T ) = F3M (t) = 0

    Total Complex stiffness

    k = 1kw +1

    kc + i* c c1

    j kc + i*cc for kw >> kcHarmonic oscillation of top:

    3T = 3Ta cos (* t)

    Dynamic response of load (general solution) :

    33T2 =

    1 + **02 cc2kc M

    1 **02 2 + **0

    2 (cc + c) 2k c M

    Solution at resonnance: 33T * = *0

    2 = kcM + cc2(cc + c)2

    Solution at high frequencies :

    33T * >> * 02

    * 0*4 + cc* M

    2

    Heave_compensation.PRZ 4

  • Dynamic model (2DOF)

    y Include compensator massy Linear passive systemy No excitation on loadmc

    $$3P +cc $3P + kc3P + kw(3P 3) = F3t(t)M $$3 +c $3 + kw(3 3P ) = F3M(t) = 0

    Excitation on compensator mass:

    F3t(t) = tkc + $t cc

    On matrix form we may write:

    ,M $$ +C $ +k = F

    M = mc 00 M

    C = cc 00 c

    k = kc +kw kwkw kw

    F = tkc + $t cc F3M T

    Heave_compensation.PRZ 5

  • Time domain simulations (2DOF):Use "state space" representation:

    Solves for the derivative of the state vector by:

    where:

    Heave_compensation.PRZ 6

  • In general (N DOF) we may write:

    Forward Euler:

    Heave_compensation.PRZ 7

  • Example, two connected masses, one is given an initial displacement

    0 20 40 60 80 100 120-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2Motion of masses in 2 dof system (Euler)

    Time (s)

    Dis

    plac

    emen

    t (m

    )

    Mass nr. 1Mass nr. 2

    m1 = 10[kg]m2 = 20[kg]k1= 2 [N/m]k2= 2 [N/m]c1 = c2 =0

    Heave_compensation.PRZ 8

  • Pneumatic cylinders

    y Adiabatic compression:

    . pV = constant , l 1.4

    kc = dFdz = Adpdz

    kc = A ddzp0 V0V

    = Ap0V0

    Addz

    1z

    = Ap0V0

    A ()z(1)

    = p0V0

    V Az

    Small displacements: . . V lV0 = Az0 lAz

    kc l p0A 1z0 = F0 AV0

    I.e Stiffness increases with load level

    Heave_compensation.PRZ 9


Top Related