18 heave compensation

9
Heave compensation Passive Active Combined passive / active Single versus two degrees of freedom system Modes of operation Constant tension (drill strings, risers, guidelines) Motion control (landing on bottom) Slack prevention (lift off) Snap load prevention (towing) Heave_compensation.PRZ 1

Upload: tt3340

Post on 05-Sep-2015

2 views

Category:

Documents


1 download

DESCRIPTION

18 Heave Compensation

TRANSCRIPT

  • Heave compensationPassiveActiveCombined passive / active

    Single versus two degrees of freedom system

    Modes of operationConstant tension(drill strings, risers, guidelines)Motion control (landing on bottom)Slack prevention (lift off)Snap load prevention (towing)

    Heave_compensation.PRZ 1

  • Passive compensator

    Combined passive / active compensator

    Heave_compensation.PRZ 2

  • Dynamic model

    Load

    Compensator mass

    Compensator stiffness and damping

    Load damping

    Wire stiffness

    Crane top motion

    Load motion

    Compensator motion

    Heave_compensation.PRZ 3

  • Dynamic model (SDOF)

    y Ignore compensator massy Linear passive systemy No excitation on load

    M $$3 + c $ 3 + k( 3 3T ) = F3M (t) = 0

    Total Complex stiffness

    k = 1kw +1

    kc + i* c c1

    j kc + i*cc for kw >> kcHarmonic oscillation of top:

    3T = 3Ta cos (* t)

    Dynamic response of load (general solution) :

    33T2 =

    1 + **02 cc2kc M

    1 **02 2 + **0

    2 (cc + c) 2k c M

    Solution at resonnance: 33T * = *0

    2 = kcM + cc2(cc + c)2

    Solution at high frequencies :

    33T * >> * 02

    * 0*4 + cc* M

    2

    Heave_compensation.PRZ 4

  • Dynamic model (2DOF)

    y Include compensator massy Linear passive systemy No excitation on loadmc

    $$3P +cc $3P + kc3P + kw(3P 3) = F3t(t)M $$3 +c $3 + kw(3 3P ) = F3M(t) = 0

    Excitation on compensator mass:

    F3t(t) = tkc + $t cc

    On matrix form we may write:

    ,M $$ +C $ +k = F

    M = mc 00 M

    C = cc 00 c

    k = kc +kw kwkw kw

    F = tkc + $t cc F3M T

    Heave_compensation.PRZ 5

  • Time domain simulations (2DOF):Use "state space" representation:

    Solves for the derivative of the state vector by:

    where:

    Heave_compensation.PRZ 6

  • In general (N DOF) we may write:

    Forward Euler:

    Heave_compensation.PRZ 7

  • Example, two connected masses, one is given an initial displacement

    0 20 40 60 80 100 120-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2Motion of masses in 2 dof system (Euler)

    Time (s)

    Dis

    plac

    emen

    t (m

    )

    Mass nr. 1Mass nr. 2

    m1 = 10[kg]m2 = 20[kg]k1= 2 [N/m]k2= 2 [N/m]c1 = c2 =0

    Heave_compensation.PRZ 8

  • Pneumatic cylinders

    y Adiabatic compression:

    . pV = constant , l 1.4

    kc = dFdz = Adpdz

    kc = A ddzp0 V0V

    = Ap0V0

    Addz

    1z

    = Ap0V0

    A ()z(1)

    = p0V0

    V Az

    Small displacements: . . V lV0 = Az0 lAz

    kc l p0A 1z0 = F0 AV0

    I.e Stiffness increases with load level

    Heave_compensation.PRZ 9