downhole temperature prediction i for drilling …/67531/metadc892577/m2/1/high_res_d/886103.pdfing...

20
DOWNHOLE TEMPERATURE PREDICTION w - FOR DRILLING GEOTHERMAL WELLS R. F. Mitchell. Enertech Engineering and Research Co. United States ABSTRACT Unusually high temperatures are encountered during drilling of a geo- thermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid .inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. . The results of several thermal simulations are presented, with discus- sion of their impact on drilling fluids, cements, casing design, and drilling practices. 14-1

Upload: others

Post on 06-Feb-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

I

. .

I

DOWNHOLE TEMPERATURE PREDICTION w

- FOR DRILLING GEOTHERMAL WELLS

R. F. Mitchell. Enertech Engineering and Research Co.

United States

ABSTRACT

Unusual ly h i g h tempera tures are encountered du r ing d r i l l i n g of a geo- thermal w e l l . These tempera tures affect eve ry aspect of d r i l l i n g , f r o m d r i l l i n g f l u i d properties t o cement formula t ions . C l e a r l y , good estimates of downhole t empera tu res d u r i n g d r i l l i n g would be h e l p f u l i n p repa r ing geothermal w e l l complet ion d e s i g n s , w e l l d r i l l i n g plans, d r i l l i n g f l u i d requi rements , and cement fo rmula t ions .

The thermal s i m u l a t i o n s i n t h i s report were conducted us ing GEOTEMP, a computer code developed under Sandia Na t iona l Labora to r i e s c o n t r a c t and a v a i l a b l e through Sandia . Inpu t v a r i a b l e s such as d r i l l i n g f l u i d . i n l e t temperatures and c i r c u l a t i o n rates, rates of p e n e t r a t i o n , and shu t - in i n t e r v a l s were ob ta ined from t h e Imperial Val ley E a s t Mesa F i e l d and t h e Los A l a m o s H o t Dry Rock Project.

.

T h e r e s u l t s of s e v e r a l thermal s i m u l a t i o n s are p resen ted , w i t h d i scus - s i o n of t h e i r impact on d r i l l i n g f l u i d s , cements, c a s i n g des ign , and d r i l l i n g practices.

14-1

Page 2: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

1. Introduction

Drilling geothermal wells can be more difficult than drill- ing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems such as lost circulation [ll). High wellbore temperatures strongly effect the performance of drilling fluids, cements, well casing and tubing, and the elas- tomers and seals in packers.

is a complex task. Many variables influence temperatures, which are continuously changing with time. vices have been developed, but these provide only isolated data. points for a transie'nt quantity and, furthermore, cannot provide sufficient information to establish the relative importance of variables influencing temperatures. Therefore, a means of com- puting downhole temperatures is needed to determine important design criteria, such as maximum temperature and time for ex- posure to high temperatures. Experience has demonstrated that a computer model is needed to account for complexities of heat transfer in a well.

Determination of downhole wellbore and earth temperatures

Temperature recording de-

Because of this need, Sandia Laboratories has funded the development of a wellbore thermal simulator called GEOTEMP by Enertech Engineering and Research Co. project to enhance the capabilities of GEOTEMP is being con- ducted. The simulations presented in this paper were conducted with this advanced form of GEOTEMP. This advanced GEOTEMP code will be available from Sandia in Spring of 1981.

Currently a second

Two drilling simulations were conducted, the first based on the GT-2 well drilled in the L o s Alamos Hot Dry Rock Project and the second based on geothermal well #56-30 drilled by Republic Geothermal in the Imperial Valley East Mesa Field. The drilling fluids, circulation rates, drilling rates, and shut-in periods that were used in the actual wells were modeled by the thermal simulator. The thermal predictions from these studies

1. , .

3.

4.

are used to discuss:

Wellbore temperatures during drilling as a function of depth,

Bit temperatures over the drilling history,

Cement temperatures from setting to the end of drilling, and

Casing temperatures at selected depths over the drilling history.

14-2

Page 5: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

f ..

-a.

2. The GEOTEMP Simulator

lor has not previously

erial heat capacities.

ction are the bases for transient energy transfer in- the soil. A key feature in thermal simulator is the direct coupling of soil and well erature calculations.

Particular emphasis has been placed on highly transient short time intervals, complex flow histories such as occur in drilling, and flexibility to allow sequential Combinations of all flowing possibilities. With the code described in this .

paper, the complete life of a well can be modeled with one computer run for drilling and circulation during completion, through production and circulation during workover, additional production or injection through the life of a well, and even shut-in after a well is dead.

The original GEOTEMP was developed with only a single primary flowing fluid. development allows several different wellbore fluids to be defined, and allows the user to specify the injection, pro- duction or circulation of any fluid at any time in the life of the well. Further, more than one fluid may be in the well- bore at any time, and the displacement of one fluid by another is automatically computed. The simulation of a cementing opera- tion is one application of this capability.

1 GEOTEMP was developed to model liquid well- bore systems. The modified GEOTEMP now has the capability ,of simulating air and nitrogen drilling. The simulation can switch between air drilling and mud illing at any time desired.

The modified GEOTEMP currently under

The GEOTEMP thermal simulator has been.thoroughly tested against analytic solutions to several heat transfer problems and been show be very accurate. Field data was acquired from geother nd petroleum wells for flowing and shut-in conditions to relate with GEOTEMP. The performance of the thermal simu in modeling this field datawas excellent f2].

W 14-3

Page 6: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

3. Geothermal Well Simulations

The GEOTEMP simulator was designed to allow the thermal simulation of the complex drilling and.completion process of

history of the Los Alamos GT-2 well. Twenty two separate. time periods, six different drilling fluids, varied flow rates, and continuously changing depths characterize the drilling of this well. Table 2 summarizes the drilling history of Republic Geothermal well 856-30. Though not as complex as the L o s Alamos well, a thermal simulation of this well would still require four different wellbore fluids, four different flow rates, and vary- ing depth.

and Republic wells, respectively, The Los Alamos well is com- pleted with three different size casings and a drill pipe is specified. The Republic well is completed with four different casings and a drill pipe size is specified here also.

a typical geothermal well, Table 1 summarizes the drilling J

Tables 3 and 4 give the well completions of the Los Alamos.

The input for the GEOTEMP thermal simulator is sufficiently flexible to completely specify the drilling histories and well completions of Tables 1-4. The remainder of this discussion will focus on particular results from these two thermal simula- tions . A. Wellbore Temperatures

Figures 1-4 show the variation of wellbore temperatures with depth in the Los Alamos well at two selected time periods. Figure 1 shows the temperatures at the end of drilling on day 77, Figure 2 shows the temperatures at the end of the shut-in period of day 77. This drilling/shut-in pattern is repeated for the Los Alamos well in Figure 3 and 4 and for the Republic well in Figures 5 and 6. In Figures 1-6 the lines with circles give the tubing temperatures, the lines with squares give the annulus temperatures, and the unmarked lines gives the undisturbed geo- thermal temperature.

The key to the understanding of Figures 1-6 is the concept of the wellbore as a cross-flow heat exchanger, In Figures 1, 3 and 5 the annulus temperature exceeds the tubing temperature. Thus, the tubing fluid is heated as it flows down the drill pipe and its temperature increases continuously. The temperature of the annulus fluid is more difficult to predict because, while the annulus fluid is being cooled by the tubing fluid, it may be either heated or cooled by the surrounding soil, depending on depth. fluid and the heating effect of the formation determines if the annulus fluid heats up or cools off, Of course, above the depth where the annulus temperature exceeds the geothermal temperature, the annulus temperature always decreases. Figure 1 shows the formation to be dominant in the annulus heat transfer. Note that the annulus temperature continues to increase until it crosses the geothermal line. influence, and the annulus temperature starts to decrease before

The balance between the cooling effect of the tubing

In Figure 3 , the tubing fluid has more 6,

14-4

I

Page 7: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

._ -. the geothermal line i ossed. Figure 5 shows a dominant . effect by the tubing s the annulus fluid cools continuously.

Mass flow rate i the governing factor in the differences among Figures 1,3, and 5. Figure 1 represents an air drilling simulation with -a relatively low mass flow rate. The formation temperature governs the annulus heat transfer and there is a relatively rge temperature difference between the annulus and tubing mperatures. igure'5 results from the high mass flow rate of a conventio mud drilling. The annulus and tub- ing temperatures are nearly the same and the formation tempera- ture has less relative effect on the fluid heat transfer. Figure 3 represents an intermediate case.

Figures 2,4, and 6 show the effect of shut-in on the well- bore temperatures. In each case, the temperatures move toward the undisturbed gecthermal temperatures. In Figure 2, the tub- ing temperature has lagged 15O-2Oo behind the annulus tempera- ture, and this indicates the reduced ability of air to transfer heat compared to liquid systems. In Figures 4 and 6, the tubing and annulus temperatures in the liquid wellbore fluids are with- in a couple of degrees of each other. in all cases have not reached the geothermal temperature, it will be shown in Figures 9 and 10 that the wellbore temperatures have reached the temperature of the formation immediately in contact with the well. in period is long enough for the wellbore fluid to reach equil- ibrium with the formation, but not long enough for the forma- tion to return to its undisturbed temperature.

While the temperatures

The conclusion is that a typical shut-

B. Bit Temperatures

Figures 7 ar,d 8 give the temperatures at the drill Sit over the drilling history of t hc Los Alamos and Republic wells re- spectively. tures, marked with circles, and the geothermal temperatures, marked with a solid line. temperatures for the bit, and Figures 7 and 8 show that the bit temperatur stays between them over the drilling history. The Los Alamos ell is the most interesting 'because of the variety of drilling fluids and circulation rates used.

Alsc indicated on the figures are the inlet tempera-

These two curves represent extreme

One notable result is that f fective as conventional drilling fluids.

m and air drilling are not Air and foam

drilling are indicated on Figure 7 , and in each case the bit temperature shows a significant increase over drilling with liquid systems. A temperature increase late in the drilling . history indicates a reduction in daily circulation time from 18'to three hours. An increase to five houirs of circulation per day-reduced the bit temperature b 400 to 500.

tion, clearly shows the effect of time on the bottom hole tem- Figure 8,.though not as ramatic as the Los Alamos simula-

14-5

Page 8: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

perature in the Republic well. At the eighth day and the twenty fourth, the daily hours of circulation were reduced because of logging operations, and in each case the bottom hole temperature increased, compared to bottom hole temperatures during drilling,

C. Cementing Temperatures

cementing operations, Figure 9 shows the radial temperature dis- tribution at the end of cementing (square symbols) and at the end of "waiting on cement" time for the Los Alamos well. The solid line represents the initial undisturbed geothermal tempera- ture, In each case, the cement is initially at a temperature 70° to 80° below the formation temperature. This formation temperature has been cooled by drilling operations by 20° in the Los Alamos well and loo in the Republic well, At the end of the waiting period, the cement temperature has risen to the formation tem- perature, but it is still cooler than the initial undisturbed temperature.

The possible application of GEOTEMP would be to help de- sign a cementing program where high formation temperatures make cement selection difficult and expensive, The simulations shown in Figures 9 and 10 indicate that the formation tempera- ture governs the cement temperature but also that previous drilling operations have reduced the formation temperature. GEOTEMP could be used to design'a circulation program to cool the formation sufficiently to help the cement operation-

b j

Figures 9 and 10 show a possible application of GEOTEMP to

Figure 10 shows a similar plot for the Republic well.

D. Casing Temperatures

The final four figures relate temperature predictions to casing design. Figures 11 and 12 show the temperature of the 13-3/8" surface casing used in the Los Alamos well at two different depths over the drilling history of the well. Figures 13 and 14 show the same results for the Republic well. In each figure, square symbols indicate maximum tempera- tures, circles indicate minimum temperatures, and the solid line shows the undisturbed temperature as reference.

The temperature variation of about 60QF indicated at the casing seat of the Los A l m s well (Figure 11) corresponds to thermal stress changes of about 10,000 psi. changes at 400 ft range about 20°F, corresponding to 3,500 psi stress changes. These stress changes are large enough that they need to be considered in teh well completion design [3]. Figures 13 and 14 indicate a temperature range of about 30°F at the surface casing seat the temperatures are uniformly below the disturbed temperature and at 400 ft the temperatures are above the geothermal temperature. Thus, at shut-in, the casing at 1400 ft will experience compressive thermal stress and the casing at 400 ft will feel tensile thermal stresses.

The temperature

14-6

Page 9: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

A useful application of GEOTEMP would be to simulate casing temperatures through drilling and the production life of a geothermal well. could be used to design the well completion. In difficult design cases, safety factors could be relaxed somewhat, be- cause of the better t h e w 1 stress estimates.

The resulting estimates of thermal stresses 6.i

4 , Conclusion

The planning of'a geothermal well can be aided by good estimates of wellbore and formation temperatures during drilling. Wellbore and bit temperatures are needed to help select drilling fluids, selection of cost effective cement formations and help design the cementing operations. and production are needed to estimate thermal stresses for well completion design.

to provide this inforamtion. The actual well completion can be completely designated and all drilling parameters, such as drill- ing fluids, inlet temperature, flow rate, penetration rate, and hours of drilling per day, can be specified and changed at any time in the drilling history. Full information about wellbore and formation temperatures is provided at user selected times.

temperatures, 2. bit temperatures, 3 . cementing temperatures, and 4 . casing temperatures have been demonstrated. The drill- ing simulations were based on two actual geothermal well drill- ing histories, the Los Alamos GT-2 well and the Republic Geothermal #56-30 well.

Knowledge of temperatures during cementing help the

Casing temperatures during drilling

The GEOTEMP wellbore thermal simulator has been designed

Four applications of the GEOTEMP simulator, 1. wellbore

REFERENCES

'Malcolm A. Goodman, "Lost Circulation Experience in Geothermal Wells", presented at the International Conference on Geothermal Drilling and Completion Technology, Albuquerque, New Mexico, January 21-23, 1981.

2Gary R. Wooley , "Computing Downhole Temperatures in Circulation, Injection, and Production Wells", Journal of Petroleum Technology, Septeriber 1980,

Well Completion, Prentice-Hall, Englewood Cliffs, N . J . , 1960. 3Carl Gatlin, Petroleum Engineering, Drillinq - And

14-7

Page 10: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

Time (Days)

0 11.0 25.0 27.0 48.0 50 0 65.0 78.0 87.0 91.0 101.0 105.0 114.0 148.0 194 . 0 199.0 236.0 258.0 263.0 268.0 276.0 292 . 0 295.0

*Fluid 1 2 3 4

TABLE 1 LOS ALAMOS GT-2 WELL

DRILLING HISTORY

Depth (Ft)

0 1595 1595 1595

. 2514 2514 3556 3556 3727 3727 3727 3963 4556 6356 6356 6700 6700 8577 8577 9436 9549 9549 9610

Circ. Rate

125 gal/min 125 gal/min 125 gal/min 300 SCF/min 125 gal/min 1245 SCF/min 1270 SCF/min 125 gal/min 1275 SCF/min 125 gal/min 1290 SCF/min 125 gal/min 125 gal/min 125 gal/rnin 125 gal/min 125 gal/min 125 gal/min 125 gal/min 125 gal/min 125 gal/min 125 gal/min 125 galfmin 125 gal/min

Hrs. Circ Per Day

8.0 8.0 3.0 8.0 3.0

11.0 . 6.0 5.0 3.0 3.0 14.0 15.0 11.0 0.0 13.0 5.0 15.0 1.0 18.0 3.0 5.0 5.0 5.0

5 Density Plastic Visc. Yield Poin (Lb/Gal) (Centipoise ) (Lb/lOO Ft )

8.3 1.0 9.3 10.0 8.6 5.0 15.1 30.0

0.0 3.0 2.0

50.0

Fluid*

2 1 4

Foam 4

Air Air 1

Air 1

Air 1 3 1 1 1 1 1 1 1 1 1 1

Page 11: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

TABLE 2 REPUBLIC 56-30 WELL I -

W DRILLING HISTORY

Time (Days) Depth ( F t . 1 C i r c . R a t e

-0 0 480 gal/min 1 1513 480 gal/min 2 1513 500 gal/min

1 0 ' ' I 5330 360 gal/min 1 7 5 330 360 g a l b i n 24 7520 400 gal/rnin

H r s . C i r c . P e r Day Fluid*

17.0 1 5.0 1

20.0 2 2.0 3

17.0 4 2.0 4

Density Plastic V i s c . * Fluid (r;b/Gai) ( C e n t i p o i s e ) . .

1 8.8 4.0 4.0 2 9.0 7 .0 4.0

17 .0 5.0

3 8.9 22.0 4 8.9 9.0

TABLE 3 LOS ALAMOS GT-2 WELL COMPLETION

- Use Size Weight/Ft. Se t t i ng Depth C o n d u c t o r P i p e 20 94.0 80 . Surface C a s i n g 13-3/8" 48.0 1600. Production Casing 1 0 - 3 / 4 I' 45.5 2535. D r i l l Pipe 5-1/2" 21.9 N.A.

TABLE 4 REPUBLIC 56-30 WELL COMPLETION

- U s e S i z e Weight/Ft. S e t t i n g Depth

Conductor P i p e 20" 94.0 90. Surface C a s i n g 13-3/8" 54 .5 1503. P r o t e c t i v e Casing 8 - 5 / 8 I' 32.0 5320. P r o d u c t i o n C a s i n g 6-5/8" 28.0 7520. D r i l l P i p e 3- 1 / 2 'I 9.5 N.A.

3 Y i e l d P o i n (Lb/100 F t 1

14-9

Page 12: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

P rp 'I P 0

LOS ALAMOS GT-2 WELL WELLBORE TEMPERATURES

TIME= 77.2 DAYS 0 TUBING

ANNULUS mar

LOS ALAMOS GT-2 WELL WELLBORE TEMPERATURES

TIME= 78.0 DAYS Q TUBING

FIGURE 1 FIGURE 2 . I

C'

Page 13: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

c LOS ALAMOS GT-2 WELL

WELLBORE TEMPERATURES TIME= 86,2 DAYS 0 TUBING

ANNULUS .Bo 98. W 1a.w 1m.m 218.89 2SD.80 2fB

m P c

I I

FIGURE 3

c LOS ALAMOS GT-2 WELL

WELLBORE TEMPERATURES TIME= 87.0 DAYS

Q TUBING r n f ANNULUS

5b. W

ia FIGURE 4 t

Page 14: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

P IP I c.' h)

REPUBLIC 56-30 WELL WELLBORE TEMPERATURES

TIME= 7 . 8 DAYS 0 TUBING

FIGURE 5

REPUBLIC 56-30 WELL4 WELLBORE TEMPERATURES

TIME+ 8 . 0 DAYS 0 TUBING 0 A.NNULL1S lUWF

. , FIGURE 6

Page 15: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

W

a

% f

LOS qLAMOS GT-2 WELL B I T TEMPERATURE

DEPTH4600.0 FT 0 INLET 0 B I T

I I I I 1 I 1 B 10.00 80. 00 128.88 168.00 288.88 248.m 289.88

mys

FIGURE 7

14-13

Page 16: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

REPUBLIC 56-30 WELL B I T TEMPERATURE

DEPTH=7608.0 FT a IWLET * BIT

I I I I I i 4.88 8.88 12.m 16.88 20.08 24. 88

DRY 5

FIGURE 8

14-14

Page 17: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

LOS ALAMOS CT-2 WELL

I RADIAL,TEMPERATURES DEPTH=l600.0 FT

31 0 CEMENTNC 0 WAIT-0-C

8 c I I I I I e. w 2: 00 4.88 6.88 8.88 10.00 12. I

mm!! n . '

F I G U R E 9 . I P I

REPUBLIC 56-38 WELL RADIAL TEMPERATURES

DEPTH=l400.0 FT CEMEEITNG

Q WAIT-0-C

I I I I I 1

m .w 1.60 2.40 1.28 4.m mt: n

F I G U R E 10

Page 18: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

LOS A L A M O S G T - 2 WELL CASING TEMPERATURE

DEPTH=16@0.@ FT MAX TEMP

0 M I N TEMP

b 8 /

1 I i i i I

DRYS 0.68 40. m 80. m 128.88 i m e e 200.09 248.

e

FIGURE 11

LOS A L A M O S GT-2 WELL CASING TEMPERATURE

c

DEPTH40B. 8 FT MAX TEMP

0 MIN TEMP

FIGURE 12

Page 19: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

c REPUBLIC 56-38 WELL CASING TEMPERATURE

I DEPTH=1480.0 FT 0 MAX TEMP Q MIN TEMP

8 I I I I I I

my s 5 - 1

0. 00 4.88 8.88 12.88 16.00 20.88 24. 5

FIGURE 13 I

REPUBLIC 56-30 WELL 1

CASING TEMPERATURE DEPTH4B0.8 FT

MRX TEMP Q M.IN TEMP

I I I 1 I 1 B0 4.88 8. W 12.w 16.00 28.88 24.68

m S

FIGURE 14

Page 20: DOWNHOLE TEMPERATURE PREDICTION I FOR DRILLING …/67531/metadc892577/m2/1/high_res_d/886103.pdfing oil wells because of the unusually high temperatures encount- ered (as well as-other.problems

i

I