developing and using stio tables notes

Upload: thabang

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Developing and Using Stio Tables Notes

    1/27

    Stoichiometric Table Batch System

    • Stoichiometry set up of equations with A as basis

    dDcCbBaA   +↔+

     A N Ao -N Ao X N A = N Ao(1 – X)

    B NBo = N Ao  B -(b/a)N Ao X NB = N Ao[  B –(b/a)X]

    C NCo = N Ao  C +(c/a)N Ao X NC = N Ao[  C +(c/a)X]

    D NDo = N Ao  D +(d/a)N Ao X ND = N Ao[  D +(d/a)X]

    I NI = N Ao  I NI = N Ao  I

    specie initial change remaining

    NTo = N Ao  i NT = NTo +δN AoX

      i = Nio/N Ao

    δ = (d/a) + (c/a) – (b/a) - 1

    i

  • 8/18/2019 Developing and Using Stio Tables Notes

    2/27

    Stoichiometric Tables

    Express table in terms of concentrations – Concentration (batch):

     – Constant Volume Batch

    V

    NC   ii =

    0VV =

    ( )( )

     

      

     −Θ=

     

      

     −Θ==

    −=−

    ==

    Xa

    bCX

    a

    b

    V

    N

    V

    NC

    X1CV

    X1N

    V

    NC

    B0AB

    0

    0ABB

    0A

    0

    0AAA

     

      

     +Θ=

     

      

     +Θ==

     

      

     +Θ=

     

      

     +Θ==

    Xa

    dCX

    a

    d

    V

    N

    V

    NC

    Xa

    cCX

    a

    c

    V

    N

    V

    NC

    D0AD

    0

    0ADD

    C0AC

    0

    0ADC

  • 8/18/2019 Developing and Using Stio Tables Notes

    3/27

    Stoichiometric Tables

    Elementary rate law substitution:

    ( )( )

     

      

     −Θ=

     

      

     −Θ==

    −=−

    ==

    Xa

    bCX

    a

    b

    V

    N

    V

    NC

    X1CV

    X1N

    V

    NC

    B0AB

    0

    0ABB

    0A

    0

    0AAA

     

      

     +Θ=

     

      

     +Θ==

     

      

     +Θ=

     

      

     +Θ==

    Xa

    dCX

    a

    d

    V

    N

    V

    NC

    Xa

    cCX

    a

    c

    V

    N

    V

    NC

    D0AD

    0

    0ADD

    C0AC

    0

    0ADC

    dDcCbBaA   +↔+

     

     

     

     −=−

    C

    d

    D

    c

    Cb

    B

    a

    AAA K

    CCCCkr

  • 8/18/2019 Developing and Using Stio Tables Notes

    4/27

    Stoichiometric Table Flow System

    • Stoichiometry set up of equations with A as basis

    dDcCbBaA   +↔+

     A F Ao -F Ao X F A = F Ao(1 – X)

    B FBo = F Ao  B -(b/a)F Ao X FB = F Ao[  B –(b/a)X]

    C FCo = F Ao  C +(c/a)F Ao X FC = F Ao[  C +(c/a)X]

    D FDo = F Ao  D +(d/a)F Ao X FD = F Ao[  D +(d/a)X]

    I FI = F Ao  I FI = F Ao  I

    specie initial change remaining

    FTo = F Ao  i FT = FTo +δF AoX

      i = Fio/Fao= Cioνo/Cao νo= yio/yao

    δ = (d/a) + (c/a) – (b/a) - 1

    i

  • 8/18/2019 Developing and Using Stio Tables Notes

    5/27

    Stoichiometric Tables

    Express table in terms of concentrations – concentration (liquid flow):

     – constant volumetric flowrate

    ν=   iiF

    C

    ( )( )

     

      

     −Θ=

     

      

     −Θ

    ν=

    ν=

    −=ν

    −=

    ν=

    Xa

    bCX

    a

    bFFC

    X1CX1FF

    C

    B0AB

    0

    0ABB

    0A

    0

    0AAA

    0ν=ν

  • 8/18/2019 Developing and Using Stio Tables Notes

    6/27

    Stoichiometric Tables

    Express table in terms of concentrations

     – concentration for variable

    volumetric gas flow:

     – From compressibility factor EOS

     

      

      

      

      

      

     δ+ν=ν

    P

    P

    T

    TX

    F

    F1   0

    00T

    0A0

    ν=   iiF

    C

     

      

      

      

      

      

     ν=ν

    P

    P

    T

    T

    F

    F 0

    00T

    T0

      ( )    

      

      

      

     δ+ν=ν

    P

    P

    T

    TXy1   0

    0

    0A0

    ( )    

      

      

      

     ε+ν=ν

    P

    P

    T

    TX1   0

    0

    0

  • 8/18/2019 Developing and Using Stio Tables Notes

    7/27

    Stoichiometric Tables

    Express table in terms of concentrations

     – concentration for variable

    volumetric gas flow:

     – From compressibility factor EOS

     

      

      

      

      

      

     

    ε+

    −=

    0

    00AA

    P

    P

    T

    T

    X1

    X1CC

     

      

     

     

     

     

      

      

     

    ε+

    − 

      

     

    ν=

    0

    0

    0

    0AA

    P

    P

    T

    T

    X1

    X1FC( )  

     

      

      

      

     ε+ν=ν

    P

    P

    T

    TX1   0

    0

    0

    ν=   AAF

    C

    ν=   iiF

    C

  • 8/18/2019 Developing and Using Stio Tables Notes

    8/27

    Stoichiometric Tables

    Express table in terms of concentrations

     – concentration for variable

    volumetric gas flow:

     – From compressibility factor EOS

    [ ] 

      

      

      

      

      

     

    ε+

    −Θ=

    0

    0B0AB

    P

    P

    T

    T

    X1

    XabCC( )  

     

      

      

      

     ε+ν=ν

    P

    P

    T

    TX1   0

    0

    0

    ν=   AAF

    C

    ν=   iiF

    C

     

      

      

      

      

      

     

    ε+

    −=

    0

    00AA

    P

    P

    T

    T

    X1

    X1CC

  • 8/18/2019 Developing and Using Stio Tables Notes

    9/27

    Example

    Set up a stoichiometric table, assuming the feed

    is in stoichiometric proportions and comprised

    only of reactants. Use chlorine as the basis forcalculation.

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    10/27

    Example

    Component Symbol Initial Change Out

    Cl2

     A 1 -X 1-X

    CH4 B 0.5 -0.5X 0.5(1-X)

    CH2Cl2 C 0 +0.5X 0.5X

    HCl D 0 +X X

    Total T 1.5 1.5

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h24   + →  +  ν

  • 8/18/2019 Developing and Using Stio Tables Notes

    11/27

    Example

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

    Calculate ε.   δ=ε   Aoy

    0

    1212

    1a

    b

    a

    c

    a

    d

    =−−+=

    −−+=δ

    0=ε

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

  • 8/18/2019 Developing and Using Stio Tables Notes

    12/27

    Example

    Evaluate –r  A in terms of conversion of chlorine,

    the specific reaction rate, and the initial chlorine

    concentration.

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    13/27

    Example

    0.2 dm6/(s⋅

    mol2)→

    3rd Order (assume elementary)

    B2AA   CkCr   =− Need stoichiometry for C A & CB

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    14/27

    Example

    ( )( ) ( )( )58.1'X

    400'X5.07605.1

    PnPn 2211

    =⋅=

    =

    Therefore, CH2Cl2 does not condense in this system

    ( )AAoA   X1CC   −=

    ( )AAoB   X1C21C   −=

    System is gas phase unti l Pc = 400 mm Hg. Need to find

    conversion at which CH2Cl2 condenses

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    15/27

    Example

    Substitute stoichiometry into rate law

    ( )[ ]   ( )( )[ ]( )3A

    3Ao

    AAo

    2

    AAo

    B2AA

    X1C2

    kX12CX1Ck

    CkCr

    −=

    −−=

    =−

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    16/27

    Example

    What is the concentration of chlorine at X = 60% ?

    ( )AAoA   X1CC   −=

    ( )( )3

    AoAo

    dmmol027.0

    K2.298KmolatmL082.0atm1

    5.11

    RT

    PyC

    =

    ⋅⋅=

    =

    ( )3

    3

    A

    dmmol011.06.01dmmol027.0C

    ==−=

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    17/27

    Example

    What is the rate of reaction at X = 60%?

    ( )

    ( ) ( )

    sdmmol1026.1

    6.01dmmol027.02

    molsdm2.0

    X1C2

    kr

    37

    33326

    3A

    3AoA

    ⋅×=

    −⋅=

    −=−

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    18/27

    Example

    What is the activation energy if the frequency

    factor is 2 x 1012 dm6/s⋅mol2 ?

    RTEAek  −=

    ( )   ( )( )K2.298KmolJ314.8E261226 emolsdm102molsdm2.0   ⋅−⋅×=⋅molJ74212E =

     Arrhenius Equation

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    19/27

    Example

    What is the specific reaction rate at 100°C ?

    410

    2.298

    1

    2.373

    1

    R

    Eexp

    k

    k

    25

    100 =

     

     

     

     −−=

      Arrhenius

    Equation

    2625100   molsdm95.81410kk   ⋅=×=

    )g(HCl2)l,g(ClCH)g(Cl2)g(CH 22h

    24   + →  +  ν

    • The following elementary gas-phase reaction takes place in a constant-

    pressure isothermal vessel (1 atm, 25°C):

     – k = 0.2 dm6/(s⋅mol2) at 25°C (estimated)

     – CH2Cl2: Pvap = 400 mm Hg (53 kPa) at 25°C.

  • 8/18/2019 Developing and Using Stio Tables Notes

    20/27

    Example (with phase change)

    • The gas-phase reaction between chlorine and methane to

    form carbon tetrachloride and hydrochloric acid is to be

    carried out at 75°C and at 950 kPa in a continuous-flow

    reactor.

    • The vapor pressure of carbon tetrachloride at 75°C is 95 kPa.

    Volumetric flow rate is 0.4 dm3/s

     – Set up a stoichiometric table for this reaction with phase change. Calculate

    the conversion of methane at which condensation begins.

     – Plot the concentrations and molar flow rates of each species as well as the

    total molar flow rate as a function of conversion for a stoichiometric feed .

    HCl4CClCHCl4 442   +→+

  • 8/18/2019 Developing and Using Stio Tables Notes

    21/27

    Example (with phase change)

    HCl4CClCHCl4 442   +→+

    1.0950

    95

    P

    Py

    atm0.94kPa95P

    atm39.9kPa950P

    K348C75T

    V

    e,CCl

    CCl,V

    4

    4

    ===

    ====

    =°=

  • 8/18/2019 Developing and Using Stio Tables Notes

    22/27

    Example (with phase change)

    • Stoichiometry set up of equations with CH4 as basis

     A - CH4

    F Ao

    -F Ao

    X F A

    = F Ao

    (1 – X)

    B - Cl2 4 F Ao -4F Ao X FB = 4F Ao[1 –X]

    C - HCl4 0 +4F Ao X FC = 4F AoX

    D(g) - CCl4 (g) 0 +F Ao X FD = F AoX

    specie initial change

    remaining

    (PD

  • 8/18/2019 Developing and Using Stio Tables Notes

    23/27

    Example (with phase change)

    • When condensation begins,

    • Therefore, condensation begins at 50% conversion

    5.0X9.0

    X5FF5

    'FF

    c

    cAoAo

    TT

    =

    −=

    =

  • 8/18/2019 Developing and Using Stio Tables Notes

    24/27

    Example (with phase change)

    • Before Condensation

    • Total concentration is constant   δ=ε   Aoy   0=δ   0=ε

    0PT   =∆=∆

    ( )   oi

    o

    iii

    oAoAo

    ToAo

    o

    oToT

    F

    X1

    FFC

    s

    gmol02631.0

    s

    L4.0

    L

    gmol0658.0CF

    L

    gmol0658.0

    5

    329.0C

    5

    1C

    L

    gmol329.0

    RT

    PCC

    ν=

    ε+ν=

    ν=

    =×=ν=

    ===

    ===

  • 8/18/2019 Developing and Using Stio Tables Notes

    25/27

    Example (with phase change)

    • Expressing stoichiometric table column “remaining (PD

  • 8/18/2019 Developing and Using Stio Tables Notes

    26/27

    Example (with phase change)

    • After Condensation

    ( )( )

     

     

     

        −ν=

    −ν=

     

      

     ν=ν

    5.4

    X5

    9.0F5

    X5F

    F

    'F

    o

    Ao

    Aoo

    To

    To

     

      

        −ν

    =5.4

    X5FFC

    o

    iii

  • 8/18/2019 Developing and Using Stio Tables Notes

    27/27

    Example (with phase change)

    • Expressing stoichiometric table column “remaining (PD=PV) after

    condensation” in terms of 

     A - CH4

    B - Cl2

    C - HCl4

    D(g) - CCl4 (g)

    specie

    F Ao(1 – X)

    4F Ao[1 –X]

    4F AoX

    0.1 FT

    F Ao(5-X)/0.9

    Fi Ci

    C Ao(1 – X) (4.5)/(5-X)

    4C Ao(1 – X)(4.5)/(5-X)

    4C AoX(4.5)/(5-X)

    C Ao(5-X)(4.5)/(5-X) = 0.5C Ao

    C Ao(5-X)(4.5)/(5-X) = 0.5C Aototal

     

      

        −

    ν=

    5.4

    X5FC

    o

    ii