detector program for the european xfel - stanford … program for the european xfel november 8, ......

44
Markus Kuster for the European XFEL Detector Collaboration Detector Program for the European XFEL November 8, 2012 Advanced Instrumentation Seminar SLAC

Upload: nguyentruc

Post on 28-May-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Markus Kusterfor the European XFEL Detector Collaboration

Detector Program for the

European XFEL

November 8, 2012Advanced Instrumentation Seminar

SLAC

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

2Overview

Introduction to the European XFEL Detector requirements for the European XFEL XFEL detector development program 2D Imaging detectors

Adaptive Gain Integrating Pixel Detector – AGIPDDEPFET Sensor with Signal compression – DSSCLarge Pixel Detector – LPD

1D detectors and small area 2D imaging detectors DAQ, data management and data processing Conclusions and outlook

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

3The European XFEL Limited Liability Company

Founding of the European XFEL GmbH

28.09.2009 Signature of convention

30.11.2009 Research institutes of different

countries joined as shareholders to support construction and opera-tion

Responsible for construction and operation of XFEL facility

Approx. 250 employees at opera-tion phase

Start of operationEnd of 2015

> 150 people live here

PETRA IIIFLASH

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

4The European XFEL

Peak Brilliance FEL Parameters Baseline photon energy

0.4 – 20 keV Pulse duration < 100 fs Pulse energy few mJ Superconducting LINAC

14 - 17.5 GeV 5 beamlines / 10 instruments

(start up version 3 beamlines with 6 instruments)

Extensions possible:

Additional instruments

Additional beamlines

Start of operation end of 2015

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

5Scientific Instruments at XFEL.EU

SA

SE

1S

AS

E 3

Lo

w E

Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters and Biomolecules (SPB)Structure determination of single particles: atoms, clusters, bio-molecules, viruses, and cellsMaterials Imaging & Dynamics (MID)Structure determination of nano-devices and dynamics at the nanoscale

Small Quantum Systems (SQS)Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena.

Spectroscopy and Coherent Scattering (SCS)Structure and dynamics of nano-systems and of non-reproducible biological objects

y

High Energy Density Matter (HED)Investigation of matter under extreme conditions using hard X-ray FEL radiation, e.g. probing dense plasmas.

Hig

h E

SA

SE

2

Femtosecond X-ray Experiments (FXE)Time-resolved investigations of the dynamics of solids, liquids and gases.

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

6XFEL Beam Line Layout

0.25 – 3 keV2.3 – 20 keV 2.3 – 20 keV

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

7The European XFEL

Injector BuildingHeadquarters Switchyard Hall

3400 m

Headquarters office, laboratories, experiment hallSwitchyard distribution of e- beam to photon beam lines

Injector e- source, injection into accelerator

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

8XFEL @ DESY Campus

XFEL Injector Building

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

9Injector Building – DESY October 2012

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

10Tunnels Completed – June 2012

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

11Experimental Hall – Schenefeld August 2012

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

12

99.3 ms

222 ns

3000 Pulses/666 μs

Bunch Train2700 Pulses 600 µs

XFEL Time Structure

High repetition rate of up to 27000 pulses/s

Ultra short pulses < 100 fs High peak intensities

(up to 1012 photons per bunch)

Approx. 1300 pulses per bunch for SASE2 and SASE1/3

Different pulse patterns can be realized

1 pulse per trainn pulses per train

(linear/log/random spacing)Unique feature of XFEL !

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

13XFEL High Repetition Rate Challenges

Optical Laser Match repetition rate Provide ~mJ excitation energy

Photon Diagnostics On-line & single-shot Match repetition rate

X-ray Optics Withstand repetition rate Exhibit high accuracy

Optics group H. Sinn

Diagnostics Group J. Grünert

Laser Group M. Lederer

Sample Delivery Match repetition rate Positioning

600 µs

99.4 ms

Detectors Match repetition rate Provide spatial resolu-

tion Withstand dose Data processing, man-

agement and storage Vetoing capabilities

Sample EnvironmentJ. Schulz

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

14

Carbon K-edge:

284 eV 20 keV

Nitrogen K-edge:

410 eV Oxygen K-edge:

543 eV

XFEL Photon Energy Ranges

200 eV 1 keV 10 keV

0.26 → ≈2 keV 2.3 → >15 keV

12.4

0.47 → ≈3 keV

0.73 → >3 keV 6.4 → >25 keV

4.1 → >20 keV

17.5 GeV

14.0 GeV

10.5 GeV

Radiation damage effects become

more important

Limitations of Si as sensor material

→ low QE

2.3 → >15 keV

Noise limitations

(single photon counting)

Design of the sensor entrance window

→ QE

Design of the experiment station

→ vacuum operation mandatory

SASE 3 SASE 1/2

Energy [keV]

SASE 3

0.45 → 2 keV 5 → 20 keV

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

15XFEL Time Structure – Read Out Concept

99.3 ms

222 ns

3000 Pulses/666 μs

High repetition rate of up to 27000 pulses/s

Single shot imaging → requires ultra fast read out and processing of the signal

Charge collection 60-80 nsCharge clearing 60-80 ns

→ Read-out 40-80 ns

On sensor electronics + storage capacity

(ideally 2700 images/train)

Data readout and on chip image storage in 220 ns

Data transfer and processing during bunch train gap of 99.3 ms

Charge CollectionAmplification Image Storage

Data TransferProcessingData Storage

Bunch Train2700 Pulses 600 µs

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

16Coherent Diffraction Experiments (SPB case)

M.P. Mancuso et al. New J. Phys. 12 (2010)

N.D. Loh and V. Elser et al. Phys. Rev. E 80 (2009)

A. Barty, priv. comm.

Non Rep. Single Part. Large dynamic range Large area Position resolution Radiation hardness Single photon counting at

high q (less important)

Nano-crystallography Large dynamic range Large area Radiation hardness Position resolution (peak) Single photon counting

(less important)

Repro. Single Particle Single photon counting

capability Low noise and external

background Reasonable dynamic range

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

17Radiation Damage

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

182D Imaging Detector Requirements

Angular Resolution7 mrad for FDE experiments (worst case at 10 cm distance)

4 μrad for XPCS

Pixel size: 700 μm to 16 μm

(XPCS at 4 m distance)

Angular Coverage/ Sensor Size

Diffraction experiments require a resolution of 0.1 nm

Scattering angles of 60° (120°)

(FXE, CDI, and SPB)

→ Multiple detector segments

XFEL Pulse StructureSingle shot imaging

(recording 100 fs, read out 200 ns)

Frame storage of complete bunch train (2700 pulses)

Dynamic RangeSingle photon counting

(high angle/single particle scattering)

Integration of up to 106 ph/pixel/pulse

High accuracy at low intensity

Low accuracy at high intensity

→ different optimization of different E ranges

Radiation HardnessIntegrated energy dose over 3 years operation

1 MGy - 1 GGy

Damage effects depend on energy range!

Sensitive Energy Range0.25 (SCS, SQS)–25 keV (MID, HED)

Ideally with the same system

Vacuum and ambient pressure operation

Optimized entrance window for low E

Main Scientific Applications

MID, SCS, FXE, SPB and SQS

Match the environmental conditions of the experiment stationsGraafsma JINST 4 (2009) pp. 12011

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

19XFEL 2D Imaging Detector Collaboration

AGIPD Adaptive Gain Integrating Pixel Detector Consortium (AGIPD)Project Leader:

H. Graafsma, DESY PSI/SLS Villingen Universität Bonn Universität Hamburg DESY DEPFET Sensor with Signal

Compression Consortium (DSSC)Project Leader:

M. Porro, Max-Planck Halbleiterlabor Max-Planck Halbleiterlabor München Universität Heidelberg Universität Siegen Politecnico di Milano Università di Bergamo DESY Hamburg

Large Pixel Detector Consortium (LPD)Project Leader:

M. French, RAL/STFC Rutherford Appleton Laboratory/STFC University of Glasgow

Radiation Damage StudiesProject Leader:

R. Klanner, Universität Hamburg

Charge Cloud StudiesProject Leader:

K. Gärtner, Weierstrass Institut Berlin

Project Finished

Project Finished

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

20Overview on XFEL 2D Imaging Detectors

Large Pixel Detector (LPD) Energy range 5 (1) - 20 keV (25 keV) Dynamic range 105@12 keV Single Photon Sens. Storage Cells ≈ 512 Pixel Size 500 x 500 µm2

DEPFET Sensor with Signal Compression (DSSC) Energy range 0.5 - 6 keV (25 keV) Dynamic range 6000 ph/pix/pulse@1 keV Single Photon Sens. Storage Cells ≈ 640

Pixel Size ≈ 236 x 236 µm2

AGIPD Adaptive Gain Integrating Pixel Detector (AGIPD) Energy range 3 - 13 keV Dynamic range 104@12 keV Single Photon Sens. Storage Cells ≈ 300

Pixel Size 200 x 200 µm2

Other Detectors 0D/1D detectors for high repetition rate

applications (e.g. veto, dispersive spectrometers)

Small areas, low rep. rate, low energy 2D imaging detectors

CCDs for low speed imaging

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

21DSSC 1 MPixel Detector Module

Key Detector Parameters Goal: Single photon sensitivity

5 σ @1 keV and 4.5 MHz Energy range

0.5 – 6 (25) keV Dynamic range > 6000 photons/pixel/pulse @1 keV Single photon sensitivity

5 σ @ 1 keV (5 MHz)5 σ @ 0.5 keV (≤ 2.5 MHz)

Number of storage cells 576 Smallest detector unit “ladder

128 x 512 pixels 4 ladders built on quadrant 4 quadrants = 1k x 1k detector

DEPFET Detector Module

LadderQuadrant

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

22DSSC 1 MPixel Detector Module

Key Detector Parameters Goal: Single photon sensitivity

5 σ @1 keV and 4.5 MHz Energy range

0.5 – 6 (25) keV Dynamic range > 6000 photons/pixel/pulse @1 keV Single photon sensitivity

5 σ @ 1 keV (5 MHz)5 σ @ 0.5 keV (≤ 2.5 MHz)

Number of storage cells 576 Smallest detector unit “ladder

128 x 512 pixels 4 ladders built on quadrant 4 quadrants = 1k x 1k detector

DEPFET Detector Module

LadderQuadrant

Development of the DEPFET Sensor with Signal Compression: a Large Format X-ray Imager with

Mega-Frame Readout Capability for the European XFEL

Presentation of M. Porro October 26, 2012

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

23AGIPD - Adaptive Gain Integrating Pixel Detector

Key Detector Parameters Energy range

3 – 13 keV Dynamic range/pixel/pulse

104 @12 keV Single photon sensitivity

5 σ @ 12 keV Number of storage cells 250 - 300 200 µm x 200 µm pixel size

Hybrid Technology

Front End ASIC Wide dynamic input range 3 fold switchable dynamic gain Analog and analog encoded pipe-

line

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

24AGIPD Pixel ASIC Design

ASIC Gain LinearityGain Switching

AD

C O

utpu

t Sig

nal [

AD

U]

Time [Clock Cycles]

Sensor Pixel ASIC Pixel Matrix

Wor

ks

Wor

ks

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

25LPD 1 MPixel Detector Module

Key Detector Parameters Energy range

5 (1) - 20 keV (25 keV) Optimized for 12 keV Dynamic range

104 photons/pixel/pulse (high gain)105 photons/pixel/pulse (standard)

Expected noise0.3 ph rms @ 12 keV (high gain)1.9 ph rms @ 12 keV (standard)

Number of storage cells 512 8 x 2 tiles build one Super Module 4 x 4 Super Modules = 1k x 1k detec-

tor Central beam aperture Vacuum operation not required

LPD Detector Module

Sensor TileSuper Module

Provided by the LPD Consortium

128 Chips 65,536 PixelsScale = 12.8 cm

8 Chips 4,096 PixelsScale = 6.4 cm

2048 Chips 1,048,576 PixelsScale = 51.2 cm

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

26LPD - Large Pixel Detector

Front End ASIC 3 fold multi-gain concept and

analog storage pipeline 512 channels per ASIC 16x 12 bit on chip ADC Design IBM 130 nm technology

LPD Pixel Cell

LPD ASIC and Sensor

Provided by the LPD consortium

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

27LPD Prototypes

8k Prototype Camera Fully independent standalone

air cooled system Firmware development Test bed for tile evaluation Test calibration methodology Analysis and control software

development

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

28LPD Prototypes

¼ Mpx Prototype Camera Fully representative in terms of

mechanical, electronic and thermal performance.

Develop calibration concepts Early integration into XFEL DAQ

and control system

Scale up to full 1 Mpix system till end of 2013.

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

29LPD Prototypes

¼ MPix Prototype Camera Fully representative in terms of

mechanical, electronic and thermal performance.

Develop calibration concepts Early integration into XFEL DAQ

and control system

Scale up to full 1 Mpix system till end of 2013.

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

30LPD Detector Geometry

Central path for direct beam

Independent quadrant modularity

Sliding geometry adapt-able to sample size

Repeating exposures to account for gaps between tiles

Feasibility demonstrated with mechanical mockup.

Similar concepts under study for DSSC and AGIPD.

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

31XFEL 2D Imaging Detectors StatusDSSC Detection chain tested: DEPFET – sensor – ASIC Non-linear gain concept demonstrated Radiation hardness OK for baseline energy (E < 6 keV),

care needed at higher energies/dosesAGIPD Several ASIC versions tested to optimize noise and radiation hardness

Memory droop expected at XFEL doses → recalibration OK

Test of radiation hard design → effects level off at > 10 MGy

Gain switching/linearity demonstrated Sensor design: irradiation tests and TCAD simulations Imaging capabilities have been demonstratedLPD First small prototypes tested at DORIS end of 2011 Expect new ASIC end of 2012: reduced noise and rad. tolerance No memory droop measured Beam line tests planned for end of 2012 with a ¼ MPix detector

AGIPD 0.4

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

32Schedule Detector Development

DSSC1 Mpx

DSSCQuadrantLPD

1 Mpx

AGIPD1 Mpx

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

33Option for Low Energy/Low Rep. Rate/Small Pix

LBNL Fast CCD Fully depleted CCD 2 MPix Pixel size 30 μm x 30 μm Max. frame rate 100 Hz (full frame) Energy range 0.5 < E < 6 keV Low noise approx. 30 e- at high gain 12 Bit ADC, 3 gain settings 200 μm Si sensor

pnCCD, HLL Munich 1 or 2 MPix device Pixel size 75 μm x 75 μm Max. frame rate up to 200 Hz Energy range 0.5 < E < 6 keV Low noise 2 e- at high gain 14 bit ADC, 10 MHz 450 μm Si sensor

Strüder et al. NIM A 614 (2010) 483

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

34Option for Low Energy/Low Rep. Rate/Small Pix

LBNL Fast CCD Fully depleted CCD 2 MPix Pixel size 30 μm x 30 μm Max. frame rate 100 Hz (full frame) Energy range 0.5 < E < 6 keV Low noise approx. 30 e- at high gain 12 Bit ADC, 3 gain settings 200 μm Si sensor

pnCCD, HLL Munich 1 or 2 MPix device Pixel size 75 μm x 75 μm Max. frame rate up to 200 Hz Energy range 0.5 < E < 6 keV Low noise 2 e- at high gain 14 bit ADC, 10 MHz 450 μm Si sensor

Strüder et al. NIM A 614 (2010) 483

Status First performance tests with prototype 2

MPix system OK Radiation tolerance tests at DORIS two

weeks ago → analysis ongoing

Status Small 65k prototype system in house

in preparation First operation and performance test

expected end of 2012

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

35

Carbon K-edge:

284 eV 20 keV

Nitrogen K-edge:

410 eV Oxygen K-edge:

543 eV

XFEL Photon Energy Ranges

200 eV 1 keV 10 keV

2.3 → >15 keV

12.4

0.47 → ≈3 keV

0.73 → >3 keV 6.4 → >25 keV

4.1 → >20 keV

17.5 GeV

14.0 GeV

10.5 GeV 2.3 → >15 keV

SASE 3 SASE 1/2

Energy [keV]

SASE 3

0.45 → 2 keV 5 → 20 keV

0.26 → ≈2 keVLPD

AGIPDDSSCFast CCD pnCCD

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

361D Detector Requirements/Options

Gotthard (option) 1280 strips 50 μm pitch Max. rate 1 MHz Energy range > 6 keV Dynamic range 104 12 keV photons 320 - 500 μm Si sensor Storage capacity approx. 340 “images”Open Issues Low energy, 4.5 MHz support

d

Spectroscopic Applications Beam diagnostics High resolution spectroscopy Time resolved spectroscopy

1D/2D Detector in Dispersive Plane Low and high energy solutions Low and high dynamic range Single pulse capability (4.5 MHz)

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

37Next Generation Imaging Detectors

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

38DAQ – Data Management – Data Analysis

Data Volume Data rate 2D imaging detectors

average ≈13 GB/s peak up to 30 GB/s

>10 PB/year storage capacity

Data Handling Data processing and reduction on site

(online/offline) Raw data transport not envisaged Efficient data reduction concepts

(vetoing, compression) Storage infrastructure with optimized access

(scalable, modular, expandable)

Data Analysis Centralized on-site data analysis framework Karabo

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

39DAQ Architecture (C. Youngman WP-76)

EuXFEL Readout Architecture Architecture Layers FEE (ASIC+ADC+Data link)

Data forwarding (all) and formatting (2D) FEI (data readout + control)

formatting, train building, pedestal correction, zero suppression, frame tagging

Train builderformatting, frame/train building, pedestal cor-rection, zero suppression, pixel counting + re-gion of interest finding & tagging …

PC layer = interface to data cache

monitoring for control purposes, tagged frame and train rejection, additional analysis and fur-ther rejection and/or compression, file size op-timization …

Data cache = temporary storage

processing

Data archive = disk & tape storage

analysis and processing

Courtesy Chris Youngman WP-76 EuXFEL

Typical throughput10 GB/s 50 MB/s 20 MB/s

Frame size2 MB few kB 2 MB

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

40XFEL.EU Karabo Framework

Network centric framework based on devices linked via message broker. Devices are representations for e.g. physical objects, control and analysis

tasks.

Well defined inter-faces and responsi-bilities

Fast P2P communi-cation and data transfer between devices

Clear definition of user roles and ac-cess rights

Device based con-figuration

Parallelization

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

41Data Analysis and Data Processing Concept

Connection scheme for a CCD analysis and calibration pipeline Each step configurable via parameters, visualization via GUI Intermediate data storage and re-usage during processing Interconnection between devices

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

42Summary and Conclusions

The imaging detectors under development for XFEL cover a large fraction of the required performance for day one.

All 2D detector projects are on track and progressing well. Test measurements with ASICs and prototype sensors are progress-

ing well. Radiation tolerance tests, simulation and optimization is on-going. Alternative 2D detector technologies for low energy and low repeti-

tion rate applications for day one identified. 1D detector requirements defined: options for day one exist; R&D

required to reach full performance requirements. Pre-study for 2nd generation detectors has been started.

We have an exiting and challenging years ahead of us!

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

43Thanks to all Colleagues!

European XFEL Detector GroupMelanie Eich, Kai-Erik Ballak, Baskaran Balakumaar, Patrick Gessler, Steffen Hauf, Andreas Koch, Markus Kuster, Jolanta Sztuk-Dambiez, Monica Turcato and WP76 DAQ/Control

AGIPD Adaptive Gain Integrating Pixel Detector Consortium (AGIPD)Project Leader:

H. Graafsma, DESYPSI/SLS VillingenUniversität BonnUniversität HamburgDESY

DEPFET Sensor with Signal Compression Consortium (DSSC)Project Leader:

M. Porro, Max-Planck HalbleiterlaborMax-Planck Halbleiterlabor MünchenUniversität HeidelbergUniversität SiegenPolitecnico di MilanoUniversità di BergamoDESY Hamburg

Large Pixel Detector Consortium (LPD)Project Leader:

M. French, RAL/STFCRutherford Appleton Laboratory/STFCUniversity of Glasgow

Fast CCD GroupPeter Denes, John Joseph, Dionisio Doering, Nord Andersen

EuXFEL WP-75 Detector Development

Instrumentation Seminar, SLACNovember 8, 2012 M. Kuster

44Thanks to all Colleagues!

European XFEL Detector GroupMelanie Eich, Kai-Erik Ballak, Baskaran Balakumaar, Patrick Gessler, Steffen Hauf, Andreas Koch, Markus Kuster, Jolanta Sztuk-Dambiez, Monica Turcato

AGIPD Adaptive Gain Integrating Pixel Detector Consortium (AGIPD)Project Leader:

H. Graafsma, DESYPSI/SLS VillingenUniversität BonnUniversität HamburgDESY

DEPFET Sensor with Signal Compression Consortium (DSSC)Project Leader:

M. Porro, Max-Planck HalbleiterlaborMax-Planck Halbleiterlabor MünchenUniversität HeidelbergUniversität SiegenPolitecnico di MilanoUniversità di BergamoDESY Hamburg

Large Pixel Detector Consortium (LPD)Project Leader:

M. French, RAL/STFCRutherford Appleton Laboratory/STFCUniversity of Glasgow

Fast CCD GroupPeter Denes, John Joseph, Dionisio Doering, Nord Andersen Thank you for your attention!