design of all-pole microwave filters - intranet...

40
Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department

Upload: doandan

Post on 23-Feb-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Design of all-pole microwave filters

Giuseppe MacchiarellaPolytechnic of Milan, Italy

Electronic and Information Department

Page 2: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

In-line filters with all-equal resonators

K23Kn,n+1

Leq, f0

K12K01

R0 R0

From the general design equations:

Leq, f0 Leq, f0 Leq, f0

, 1 , 1 0q q q q eqK k L 001 , 1 1

eqn n

E

LK K R

Q

with:

, 10 1

1q q

q q

Bkf g g

1

0E

gQB f

Page 3: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

/2 waveguide resonators coupled with inductive reactances

Leq, f0

Kq,q+1

Zc=1

0/2

Zc=1 Zc=1jxq,q+1

q,q+1

20

002

geq CL Z

q,q+1

, 1, 1 2

, 1

1, 1 , 1

1

tan 2

q q cq q

q q

C

q q q q

K Zx

KZ

x

….

L1 L2 Ln

x01 x12 x23 xn-1,n xn,n+1

1, , 1

0

12

q q q qq

g

L

Page 4: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Inductive reactances in rectangular waveguide

Iris with finite thickness

Aperture W Zc=1 Zc=1jxs

Equivalent circuit (reference sections: symmetry axis)

11 12 11 12, 1 tan

2 2

e oj je o

os o e

S S e S S e

x

S11, S12: scattering parameters (computed numerically with EM simulators)

a

b

Page 5: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Evaluation of iris equivalent parameters

• With the previous formulas, the curves of x and vs. W are drawn (see the graph above).

• For the required value X the aperture W is first obtained through the blue curve. The corresponding electrical length is derived from the red curve

10 12.5 15 17.5 20 22.5 25W (mm)

0

0.1

0.2

0.3

0.4

x

0.5

0.875

1.25

1.625

2

delta

(de

g)

Reactance x

ElectricalLength

X

W

Page 6: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

The separation of the iris are obtained from the lengths Lq corrected with the irises parameters q,q+1:

1, , 10

1q q q q q q

g

L L

Filter dimensioning

….

L’1 L’2 L’n

W01 W12 W23 Wn-1,n Wn,n+1

Top view

a

The apertures Wi,i+1 are evaluated as explained in the previous slide from the Ki,i+1.

Page 7: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Example of design

Specifications:f0=4 GHz, B=40 MHzReturn Loss in passband ≥26 dBAs1 ≥ 45 dB for f>4.05 GHzAs2 ≥ 60 dB for f>3.9 GHzChebycheff characteristic

Being fs1 and fs2 not geometrically symmetric, the requested order n of the filter is obtained by selecting the larger between the following ones:

1

11

6 5.5420log 6

s

s

A RLn

2

22

6 4.5820log 6

s

s

A RLn

n=6

Page 8: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Step 1: Evaluation of equivalent circuit param.

Prototype normalized coefficients:gq={0.7919, 1.3649, 1.7002, 1.5379, 1.5089, 0.7163}

Selected waveguide: a=50mm, b=25mm

Waveguide parameters:Cutoff frequency: fc=v/2a=3 GHz

0

0

2

02

00

113.3 , 2.2861

gg

c

mmf f

Coupling reactances and resonator lengths:xq,q+1={0.223, 0.0346, 0.0236, 0.022, 0.0236,0.0346,0.223}Lq ={52.25, 55.61, 55.83, 55.83, 55.61, 52.25}

Page 9: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Filter response (ideal inductive reactance)

3.95 3.96 3.97 3.98 3.99 4 4.01 4.02 4.03 4.04 4.05Frequency (GHz)

-60

-50

-40

-30

-20

-10

0

Ideal ChebycheffIdeal waveguide

The reactances are assumed to vary with frequency as g/g0

Page 10: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Step 2: Irises dimensioning

Wq,q+1={21.27, 10.86, 9.426, 9.219, 9.426, 10.86, 21.27} mmq,q+1 ={1.609, 0.807, 0.683, 0.665, 0.683, 0.807, 1.609}°

Corrected lengths of resonators:L’q={51.49, 55.14, 55.41, 55.41, 55.14, 51.49} mm

Example of fabricated device (4 resonators sample)

Page 11: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Computed filter response (Mode Matching)

3.95 3.96 3.97 3.98 3.99 4 4.01 4.02 4.03 4.04 4.05Frequency (GHz)

-60

-50

-40

-30

-20

-10

0

Iris (MM)

Ideal reactances

Page 12: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Broad frequency range response

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.5Frequency (GHz)

-250

-200

-150

-100

-50

0

Waveguide filter

Ideal Chebycheff

Page 13: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Effect of filter bandwidth on accuracy

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2Frequency (GHz)

Normalized Bandwidth: 2.5%

-60

-50

-40

-30

-20

-10

0

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4Frequency (GHz)

Normalized Bandwidth: 5%

-60

-50

-40

-30

-20

-10

0

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5Frequency (GHz)

Normalized Bandwidth: 10%

-60

-50

-40

-30

-20

-10

0

3.95 3.96 3.97 3.98 3.99 4 4.01 4.02 4.03 4.04 4.05Frequency (GHz)

Normalized Bandwidth: 1%

-60

-50

-40

-30

-20

-10

0

Page 14: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

In-line filters with assigned inverters

G0 G0Ceq,1, f0

J1

Ceq,2, f0 Ceq,3, f0 Ceq,n, f0

Each resonator is loaded with two conductances with value J1.The loaded Q of q-th resonator is obtained from the general design equations:

0 ,

1 0

12 2

eq q qq

C gQ

J B f

J0J1 J0

0 0 1J G J

Page 15: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Inverters with 0/4 line sections

….YC0 YC1 YC1 YC0

0/4 0/4 0/4 0/4

Ceq,1, f0 Ceq,2, f0 Ceq,3, f0 Ceq,n, f0

G0 G0

1 1

0 0 1

0 , 1 10

1) Assign

2) Compute

3) Compute 2

c

c c

qeq q c q c

Y J

Y G Yg

C Y Q YB f

Page 16: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Resonators with shorted transmission lines

Ycs,q

0/4

Ceq,q, f0

, 10

4 qcs q c

gY Y

B f

0 , ,4eq q cs qC Y

NOTE: The choice of Yc1 affects the computed values of Ycs,q. These latter must be physically realizable with the chosen fabrication technology of the filter

Page 17: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Example: filter in microstrip technology

Let assume the following specifications:f0=1 GHz, B/f0=0.1, RL=15 dB, n=5

Assuming the Chebycheff characteristic:g={1.2327 1.3592 2.0599 1.3592 1.2327}

Now suppose that the range of realizable characteristic impedance is 20-150 Ohm. Then we assume Yc1=1/150=0.0067. Using the previous formula:

Ycs,q={0.1046 0.1154 0.1748 0.1154 0.1046}

1/Ycs,q={9.5570 8.6676 5.7192 8.6676 9.5570}

The computed impedances are not realizable with microstrip technology!

Page 18: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Possible solution to allow the feasibility

Increase the imposed return loss (not too much effective) Use two stubs in parallel with twice Ycs,q

Choice a different implementation of resonators (for obtaining smaller Ycs,q for the same equivalent capacitance). For instance, using open-circuited, /2 stubs the characteristic impedances are doubled.Another choice is the use of capacity-loaded resonators:

short Ycs

L<0/4

Cs

0 24CS

eqY

C

, 10

42

qcs q c

gY Y

B f

Page 19: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Implementation with double /2 resonators

Substrate: Duroid (r=2.16, H=1.2 mm, t=50)

1/Ycs,q={38.23, 34.67, 22.88, 34.67, 38.23}

0 0 1 00.0115 (1 86.6)c c cY G Y Y Yc1=1/150=0.0067

Layout:

Discontinuities!

Page 20: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Computed response

0.8 0.9 1 1.1 1.2Frequency (GHz)

-60

-50

-40

-30

-20

-10

0Ideal Chebycheff

0.8 0.9 1 1.1 1.2Frequency (GHz)

-60

-50

-40

-30

-20

-10

0Ideal TransmissionLines

0.8 0.9 1 1.1 1.2Frequency (GHz)

-60

-50

-40

-30

-20

-10

0MicrostripLines

0.8 0.9 1 1.1 1.2Frequency (GHz)

-60

-50

-40

-30

-20

-10

0

Microstrip(DiscontinuitiesCompensated)

Page 21: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Attenuation produced by losses

An estimate of the overall attenuation at center frequency f0 can be obtained with the following formula:

1

1, 0

210 log 1 q

dBq n

QA

Q

Where Qq is expressed as function of the prototype parameters gq:

0

12

qq

gQ

B f

Note: Narrow band filters require high Q0resonators to reduce passband attenuation

Page 22: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Coupled-line filters

Physical structure: Z0

Ze,01 Zo,01

0/4

Ze,12 Zo,12

0/4

Z0

Ze,23 Zo,23

0/4

di,i+1

Basic Block:

,( , 1) ,( , 1) ,( , 1)

,( , 1) ,( , 1) ,( , 1)( , 1) ,( , 1)

0

12

, sin 2

m i i e i i o i i

i i e i i o i ii i i i

Z Z Z

Z Z ZK Z

L

Ze,i,i+1 Zo,i,i+1

0/4

di,i+1

Open

Open

wi,i+1

wi,i+1

Ki,i+1

Zm,(i,i+1)Zm,(i,i+1)

0/40/4

Page 23: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Typical dependance of Zm and Z on d/w

0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9d/w

0

10

20

30

40

50

60

70

80

90

100

Zm

Zdelta

For d/w >1 Zm is practically independent on d for assigned wand practically coincides with the characteristic impedance of the isolated line with the same w.

Page 24: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Equivalent circuit (inner blocks)

Ki-1,i

Zm,(i-1,i)

Ki,i+1

Zm,(i,i+1)Zm,(i,i+1)Zm,(i-1,i)

Leq, f0 0 , ,( 1, ) ,( , 1)

4 2eq i m i i m i i cL Z Z Z

Design Equations:

, 1 ,( , 1)

, 1 , 1,( , 1)0 , 0 , 1

2 2q q i iq q i i

m i ieq q eq q

K Zk m

ZL L

i-th resonator

, 1 , 12i i i im k

Page 25: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

First (last) block

2

0101 ,(0,1)

0 0

cot2m

K fX ZR f

K0,1

Zm,(0,1)Zm,(0,1)

0/40/4

R0 K0,1

Zm,(0,1)

R0

jX01

R0>>X01

X1

2

011 01 ,(0,1) ,(1,2)

0 0 0

cot 2 cot2 2m m c

Kf fX X Z Z Zf R f

0 ,1 0 1,20 ,1 0,1 1,2

0 0

22, ,

1 14 4

eq Eceq

c c c

E E

L R Q kZL m mZ Z Z

R Q R Q

Zm,(1,2) Zm,(1,2)

0 ,120,1 0

eqE

LQ

K R

Page 26: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Dimensioning of the filter

1. The dimension w of the lines is first assigned 2. The values of mi,i+1 are computed with the previous

formulas3. Using a graph of m vs. d (like the one shown below) the

distances di,i+1 are evaluated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1d (mm)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

m

Page 27: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Example of microstrip filter design

Specifications:f0=1 GHz, B=200 MHz, RL=26 dB, n=7g={0.807, 1.397, 1.758, 1.634, 1.758, 1.397, 0.807}

Assigned substrate parameters:r=10, H=1.2mm, t=10

Assigned width of lines (for Zc≈85 Ohm): w=0.25 mm Computed mi,i+1:

m={0.415, 0.258, 0.201, 0.186 , 0.186, 0.201, 0.258, 0.415}

Computed distances di,i+1 (with the previous graph):d={0.272, 0.649, 0.861, 0.93, 0.93, 0.861, 0.649, 0.272}

Evaluation of length of blocks (about 0/4 for a not coupled line): L=30.44mm

Page 28: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Computed filter response (circuit model)

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3Frequency (GHz)

-80

-70

-60

-50

-40

-30

-20

-10

0

ChebycheffIdeal

Microstrip(including discontinuities)

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3Frequency (GHz)

-80

-70

-60

-50

-40

-30

-20

-10

0

Microstripoptimized

Page 29: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Filters with an array of coupled-lines

Interdigital:

Comb:

Page 30: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Basic block: array of coupled lines

1 2 3 n….

1 2 3 n

n+1 n+2 n+3 2n

1 2 3 n

n+1 n+2 n+3 2n

AdmittanceMatrix (2nx2n)

The admittance matrix Y (2nx2n) can be evaluated from the static capacitance matrix p.u.l C (dimension n x n):

, ,tan( ) sin( )v v

j L j L

Y Y C CY Y YY Y

….

….

L

is the phase velocity

Page 31: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Matrix Y of Interdigital Array

1 3

n+2 2n

AdmittanceAdmittanceMatrix (2nx2n)Matrix (2nx2n)

……..

……..1 3

n+2 2n

AdmittanceAdmittanceMatrix (2nx2n)Matrix (2nx2n)

……..

……..2 n1 3

AdmittanceMatrix YI (nxn)

….

Let assume that Ci,j=0 for j>i+1 (no coupling between non-adjacent lines). Elements of matrix YI are then given by:

,

, 1

tan( )

( , ) 1sin( )

0 1

i i

i iI

v Ci j

j Lv C

y i j j ij L

j i

Matrix YI is tri-diagonal

Page 32: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Condition on the Y matrix for representing a filter

Y2,3 Y3,4 Yn-1,nY1,2Y1,1 Y2,2Y3,3 Y4,4 Yn,n

2 n1 3 4

Equivalent parameters (Yi,j=jBi,j):

0

, 0, 0 0

0

, 1, 1 , 1 0 , 1

0

,0 , 0 ,

0 tan( ) 2 4

sin( )

12 4

i ii i

i ii i i i i i

i ieq i i i

v CB L L

Lv C

J B CL

BC C

Page 33: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Coupling with external loads

J0,1R0 B1,1

1

20,1

1,1 1,10

JY jB

G

0

0 0

1,10

,0 ,120,1 0 1,1 1,1

12 4Re Re

i ieq

E

BCC

QJ G Y Y

Page 34: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Equations for interdigital filters design

0

1,1, 1 , 1

, 11,10 , , , 1, 1

4 4, Re

i i i ii i E

eq i eq j i i i i

CJ Ck Q

YC C C C

Typically the coupled lines are assumed of equal width (assigned a priori). The unknowns are then represented by the distances di,i+1 between the lines and by the dimensional parameter (de) of the external coupling structure. The solution is obtained by solving the system of non-linear equations in the variables di,i+1 and de :

, 1 , 1 1,24 ( ) 0, , 0

4i i i i E ek F d Q U d d

Page 35: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Matrix Y of Comb Array

2 n1 3

AdmittanceMatrix YC (nxn)

….1 2 3 n

AdmittanceMatrix (2nx2n)

….

….

,,

, 1

tan( )

( , ) 1tan( )

0 1

i is i

i iC

v Cj C i j

Lv C

y i j j ij L

j i

With no coupling between non-adjacent lines:

To get yc(i,i+1)≠0:

2L

Page 36: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Equations for comb filters design (l=/4)

0

0

, 1 , 1 , 1 0 , ,

1,1, 1

, 11,1, 1, 1

2, 4

24 4,

2 Re

i i i i i i eq i i i

i ii i E

i i i i

J B C C C

CCk Q

YC C

As in the case of interdigital filters, assigning all the lines with the same width, the solution is obtained by solving the system of non-linear equations in the variables di,i+1and de :

, 1 , 1 1,24 2( ) 0, , 0

2 4i i i i E ek F d Q U d d

The tuning capacitances are obtained by the resonance condition: ,

0 , ,tan( 4)i i

s i i i

v CC v C

Page 37: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Approximated evaluation of Capacitance Matrix

Two coupled lines:Single line:

C0/2 C0/2C0/2

Ca/2

C0/2

Ca/2

C

0

0

2

22

aeven

aodd

C CC

C CC C

, even even odd oddY C Y C

02

2

a even

odd even

C C CC C

C

Page 38: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Array of coupled lines: evaluation of C

,(2,3) 2

aC ,(2,3) 2

aC ,(3,4) 2

aC ,(3,4) 2

aC,(1,2) 2

aC ,(1,2) 2

aC

,(1,2) C ,(2,3) C ,(3,4) C

C0/2C0/2

,( 1, ) ,( , 1)

, 1, , 1

,( 1, ) ,( 1, ) ,( , 1) ,( , 1)0

2

2 2

a i i a i ii i i i i i

even i i odd i i even i i odd i i

C CC C C

C C C CC

,(1,2) 0 ,(1,2) ,(1,2)

1,1 1,22 2a odd evenC C C C

C C

,( , 1) ,( , 1), 1 ,( , 1) 2

even i i odd i ii i i i

C CC C

, 0i iC C

If the lines are not too close:

Page 39: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Design equations

The design equations for comb and interdigital filters become:

0

,( , 1) ,( , 1) 0, 1

0 1,1

1 , 2 Re

even i i odd i ii i E

Y Y Yk Q M

M Y Y

with:2 (Comb) (Interdigital)

4 4M M

,( , 1) ,( , 1) ,( , 1) ,( , 1)

2 2even i i odd i i even i i odd i iC C Y Y

Being:

Page 40: Design of all-pole microwave filters - Intranet DEIBhome.deib.polimi.it/macchiar/microondeI/lucidi/Filtri3.pdf · Design of all-pole microwave filters Giuseppe Macchiarella Polytechnic

Example: Comb Filters in slab-line

L

One-side short circuited array of coupled rods

Tuning capacitances

….1 2 3 n

si,i+1

d

h….1 2 3 n

si,i+1

d

h

Array of coupled rods(coupled slab-lines)

C=Capacitance matrix p.u.l

Inline comb filter configuration