del alamo avs 2010 v4 · 2013. 4. 16. · inas hemts (v cc gate del = 0.5v) si nmosfets iedm08 10...

26
III V CMOS: III-V CMOS: A sub-10 nm Electronics Technology? J A del Alamo J. A. del Alamo Microsystems Technology Laboratories, MIT AVS 57 th International Symposium & Exhibition October 17-22, 2010 Sponsors: Intel, FCRP-MSD Acknowledgements: 1 Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau MTL, NSL, SEBL

Upload: others

Post on 25-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

III V CMOS:III-V CMOS: A sub-10 nm Electronics Technology?gy

J A del AlamoJ. A. del Alamo

Microsystems Technology Laboratories, MIT

AVS 57th International Symposium & ExhibitionOctober 17-22, 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

1

Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau

MTL, NSL, SEBL

Page 2: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Outline

• Why III-Vs for CMOS?

• Lessons from III-V HEMTs

• The challenges for III-V CMOS

• The prospects of 10 nm III-V CMOS

• Conclusions

2

Page 3: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

The Si CMOS Revolution: Smaller is Better!• Virtuous cycle of CMOS scaling exponential improvements in:– Transistor density (“Moore’s law”)– Performance – Power efficiencyPower efficiency

Intel microprocessors Intel microprocessors

3

Page 4: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Recent trend in CMOS scaling

• Si CMOS has entered era of “power-constrained scaling”:– CPU power density saturated at ~100 W/cm2

– CPU clock speed saturated at ~ 4 GHz

Pop, Nano Res 2010 http://www.chem.utoronto.ca/~nlipkowi/pictures/clockspeeds.gif

4

Page 5: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Consequences of Power Constrained Scalingo e Co st a ed Sca g

P ti + iPower = active power + passive power

PA~ f CVDD2N N ↑ VDD ↓

#1 goal!clock frequency

transistor capacitance

operating voltageoperating voltage

transistor count

Transistor scaling requires reduction in supply voltage5

Page 6: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

CMOS power supply scaling

Recently, VDD scaling very weakly:

Because Si performance degrades as VDD↓:weakly: degrades as VDD↓:

40 nm strained-Si MOSFET (Intel)

Dewey, IEDM 2009

6

Need scaling approach that allows VDD reduction while enhancing performance

Page 7: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

How III-Vs allow further VDD reduction?

• Goals of scaling: – Reduce transistor footprint – extract maximum ION

for given IOFF

77

Page 8: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

How III-Vs allow further VDD reduction?

• Goals of scaling: – Reduce transistor footprint – extract maximum ION

for given IOFF

• III-Vs:

88

– higher electron velocity than Si ION ↑ – very tight carrier confinement S ↓ sharp turn on

Page 9: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

III-V High Electron Mobility Transistors ob ty a s sto s• State-of-the-art: InAs-channel HEMT

- QW channel (tch = 10 nm) :- InAs core (t = 5 nm)- InAs core (tInAs = 5 nm)

- InGaAs cladding

- n Hall = 13,200 cm2/V-secn,Hall 13,200 cm /V sec

- InAlAs barrier (tins = 4 nm)

- Pt/Ti/Mo/Au Schottky gate

9999

Pt/Ti/Mo/Au Schottky gate- Lg=30 nm

Kim, IEDM 2008

Page 10: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

III-V HEMTs

0.8

• Lg=30 nm InAs-channel HEMT Kim, IEDM 2008

2.0

0.6

V 0 4 Vm]

VGS = 0.5 V1.5

0.4

VGS = 0.4 V

I D [m

A/

m

1.0

g m [m

S/m

]0 0 0 2 0 4 0 6 0 8

0.0

0.2

-0 2 0 0 0 2 0 40.0

0.5

VDS = 0.5 V

0.0 0.2 0.4 0.6 0.8VDS [V]

• Large current drive: ION=0.4 mA/µm at VDD=0.5 V

0.2 0.0 0.2 0.4

VGS - VT [V]

101010

• Enhancement-mode FET: VT = 0.08 V• High transconductance: gmpk= 1.8 mS/um at VDD=0.5 V

10

Page 11: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

III-V HEMTs

• Lg=30 nm InAs-channel HEMT

Kim, IEDM 2008

10-4

10-3

ID 40

50

dB] H21

10-6

10-5

IG

V = 0 5 VI G [A

/m

]

20

30

Ug,

MA

G [d

Ug

MAG

fT=601 GHzfmax=609 GHz

9

10-8

10-7 VDS = 0.5 V

I D, I

VDS = 0.05 V10

H21

, MAG

VDS = 0.5 V, VGS = 0.3 V

-0.50 -0.25 0.00 0.25 0.5010-9

VGS [V]109 1010 1011 1012

0

Frequency [GHz]

DS , GS

111111

• S = 73 mV/dec, Ion/Ioff=~104

• First transistor with both fT and fmax > 600 GHz11

Page 12: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Scaling of III-V HEMTs: Benchmarking with Si

180Si FETs (IEDM)T i l IEDM 07

180Si FETs (IEDM)T i l IEDM 07

180Si FETs (IEDM)*

180Si FETs (IEDM)*

e c a g t S10

iedm06

140

160

ng [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

140

160

ng [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

140

160

ng [m

V/de

c.] Pt sinking: IEDM 08

140

160

ng [m

V/de

c.] Pt sinking: IEDM 08

1iedm07

AY

[pse

c]

iedm06

80

100

120

thre

shol

dsw

in

80

100

120

thre

shol

dsw

in

80

100

120

thre

shol

dsw

in

80

100

120

thre

shol

dsw

in

iedm06

1

InAs HEMTs(VCC = 0.5V)

GA

TE D

ELA

Si NMOSFETsiedm08

10 10060

80

Subt

Gate Length [nm]10 100

60

80

Subt

Gate Length [nm]10 100

60

80

Subt

Gate Length [nm]10 100

60

80

Subt

Gate Length [nm]

iedm07iedm08100 101 102

0.1

Gate Length, Lg [nm]

Si NMOSFETs(VCC = 1.1~1.3V) VDD=0.5 V

• Superior short-channel effects as compared to Si MOSFETs

g

MOSFETs• Lower gate delay than Si MOSFETs at lower VDD

12

Page 13: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Scaling of III-V HEMTs: Benchmarking with Si

• FOM that integrates short-channel effects and drive current: ION @ IOFF=100 nA/µm, VDD=0.5 V

e c a g t S

(scaled to VDD=0.5 V)

III-V HEMTs: higher ION for same IOFF than Si13

Page 14: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Lessons from III-V HEMTs

1. Very high electron injection velocity at the virtual source

Evinj

Kim, IEDM 2009

EC

njL0 x

vinj ≡ electron injection

v inj

j

velocity at virtual source

(I G A ) i ith I A f ti i h l• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

14

Page 15: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Lessons from III-V HEMTs2. Quantum-well channel key to outstanding short-channel

effectsKim IPRM 2010Kim, IPRM 2010

D ti i t i h t h l ff t i thi• Dramatic improvement in short-channel effects in thin channel devices

15

Page 16: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Lessons from III-V HEMTs3. Quantum capacitance less of a bottleneck than

commonly believedInAs channel: t = 10 nmInAs channel: tch = 10 nm

40

Experiment (CG)

20

30

nce

[fF/

m2 ] Cins ( tins = 4 nm)

CQ1 (m||* = 0.026me )

10Cap

acita

n Ccent1

CG (m||* = 0.026me )

CG ( 0.07 ) CG ( 0.05 )

-0.4 -0.2 0 0.2 0.40

VG [V]

G ( || e )

Biaxial strain + non-parabolicity + strong quantization increase m||

* CG↑ Jin, IEDM 2009 16

Page 17: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Limit to III-V HEMT Scaling: Gate Leakage Current

10-3

tins

= 10 nmt = 7 nm

Gate ea age Cu e t

InAs HEMTL = 30 nm

10-5

10-4

]

tins = 7 nm t

ins = 4 nm ID

Lg = 30 nmtch = 10 nm

4

10-7

10-6

D, I G

[A/

m]

IG

tins=4 nm

tins=7 nm

10-9

10-8

VDS

= 0.5 V

I D tins 7 nm

tins=10 nm

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.5010-10

DS

VGS [V]

t ↓ I ↑

17

tins ↓ IG↑ Further scaling requires high-K gate dielectric

17

Page 18: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

The Challenges for III-V CMOS: III-V HEMT vs Si CMOSIII-V HEMT vs. Si CMOS

Intel’s 45 nm CMOSIII-V HEMT

• Schottky gate MOS gate Critical issues:• Footprint scaling [1000x too big!] • Need self-aligned contacts

18

• Need p-channel device• Need III-V on Si

Page 19: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

III-V’s on Si

• The challenge: – III-V heterostructures on large-area Si wafers– Thin buffer layer– Low defectivity

• Some notable work:Some notable work:

GXOI InAs MOSFET

Si

SiO2

InAsG

S D

Aspect Ratio Trapping InAs Nanoribbon MOSFETs

Si

Direct III-V MBE on Si Aspect Ratio Trapping (Amberwave)

Wu, APL 200819

InAs Nanoribbon MOSFETs on Insulator (UCB)

Ko, Nature 2010

Direct III V MBE on Si (Intel)

Hudait, IEDM 2007

Page 20: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

The gate stack• Challenge: metal/high-K oxide gate stack

– Fabricated through ex-situ processThin EOT (<1 nm)– Thin EOT (<1 nm)

– Low leakage (<10 A/cm2)– Low Dit (<1011 eV-1.cm-2 in top ~0.3 eV of bandgap)– Reliable

• Some notable work:

Al O by ALDAl O /GGO on InGaAs by TaSiO on InGaAs by ALDAl2O3 by ALD (Purdue)

Wu, EDL 2009

Al2O3 /GGO on InGaAs by MBE/ALD (Tsinghua)

Hong, MRS Bull 200920

TaSiOx on InGaAs by ALD (Intel)

Radosavljevic, IEDM 2009

Page 21: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

In0.7Ga0.3As Quantum-Well MOSFET (Intel)

• Direct MBE on Si substrate (1.5 µm buffer thickness)• InGaAs buried-channel MOSFET (under 2 nm InP etch stop)

S O / /• 4 nm TaSiOx gate dielectric by ALD, TiN/Pt/Au gate• Lg=75 nm

21Radosavljevic, IEDM 2009

Page 22: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

In0.7Ga0.3As Quantum-Well MOSFET

2009 Intel InGaAs MOSFET(scaled to

VDD=0.5 V)

22

Page 23: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Self-aligned device architecture

• The challenge: – MOSFET structures with scalability to 10 nm– Self-aligned gate design

• Some notable work:

G

In-situ Doped S/D for RSReduction

In0.53Ga0.47As

InP

In0.4Ga0.6Asx

y Channel Strain Engineeringfor Mobility

60 nm

Ion-implanted self-aligned Regrown ohmic contact Quantum-well FET with self-

Enhancement

p gInGaAs MOSFET (NUS)

Lin, IEDM 2008

gMOSFET (NUS)

Chin, EDL 2009

aligned W contacts (MIT)

Waldron, TED 201023

Page 24: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

P-channel MOSFETs

• The challenge: – Performance >1/3 that of n-MOSFETs– Capable of scaling to <10 nm gate length regime– Co-integration with III-V NMOSFET on Si

• Some notable work:

Al O /InGaSb QWGa O /AlGaAs/GaAs Al O by ALD on InGaAsAl2O3/InGaSb QW-MOSFET (Stanford)

Nainani, IEDM 2010 24

Ga2O3/AlGaAs/GaAsMOSFET (Motorola)

Passlack, EDL 2002

Al2O3 by ALD on InGaAs and Ge MOSFETs (IMEC)

Lin, IEDM 2009

Page 25: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

What can we expect from10 nm III V NMOS at 0 5 V?~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

Assume RS as in Si (~80 Ω.µm):

K i tThree greatest worries!

S

ID=1.5 mA/µm

Key requirements:• High-K/III-V interface, thin channel do not degrade vinj

• Obtaining R =80 Ω µm at required footprint

worries!

• Obtaining Rs=80 Ω.µm at required footprint• Acceptable short-channel effects

25

Page 26: del Alamo AVS 2010 v4 · 2013. 4. 16. · InAs HEMTs (V CC GATE DEL = 0.5V) Si NMOSFETs iedm08 10 100 60 Sub Gate Length [nm] iedm08 iedm07 ... (under 2 nm InP etch stop) •4 nm

Conclusions• III-Vs attractive for CMOS: key for low VDD operation

– Electron injection velocity in InAs > 2X that of Si at 1/2X VDD

Quantum well channel yields outstanding short channel effects– Quantum well channel yields outstanding short-channel effects– Quantum capacitance less of a limitation than previously believed

• Impressive recent progress on III-V CMOS – Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned

Fermi level and low defect densityFermi level and low defect density– Sub-100 nm InGaAs MOSFETs with ION > than Si at 0.5 V

demonstrated

• Lots of work ahead:– Demonstrate 10 nm III-V MOSFET that is better than Si

26

– P-channel MOSFET– Manufacturability, reliability