decoding and synthesizing transformerless pwm converters

159
Elegant Power Electronics Applied Research Laboratory (EPEARL) Decoding and Synthesizing Transformerless PWM Converters Tsai-Fu Wu Professor, National Tsing Hua University, Taiwan Elegant Power Electronics Applied Research Laboratory (EPEARL) Aug. 27, 2015

Upload: others

Post on 08-Jan-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL)

Decoding and Synthesizing Transformerless PWM Converters

Tsai-Fu Wu

Professor, National Tsing Hua University, Taiwan Elegant Power Electronics Applied Research Laboratory

(EPEARL)

Aug. 27, 2015

Page 2: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 1

Outline I. Introduction Six PWM Converters (DC-DC Conversion) Six-PWM-Converter Derived Converters (High Step-

up or Step-down) Single-Stage converters (PFC + Electronic Ballast) Buck Derived Isolated PWM Converters (DC-DC

Conversion with DC Transformer ) Z-Source Converters (Step-up Conversion &

Inversion) Soft-Switching PWM Converters (DC-DC

Conversion) Resonant Converters (DC-AC & DC-DC Conversion) Non-PWM Converters (DC-DC Conversion) Compound Concept

Page 3: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 2

III. Origin of Converters Source-Load Approach Proton-Meson Approach Resonance Approach

• Lossy Power Transfer (Non-PWM) • Lossless Power Transfer (PWM)

The Original Converter

II. Input-Output Transfer Curves (Codes) Step-down Step-up Step-up and -down Positive and Negative Step-up and -down

Page 4: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 3

IV. Graft Scheme Conventional Approaches Deriving Converters Grafted Switches and Grafted Diodes Illustration of Grafting Converters

V. Layer Scheme Buck Family Boost Family Universal Forms

Page 5: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 4

VI. Decoding and Synthesizing PWM Converters Some Fundamentals Fundamental PWM Converters Layered PWM Converters Grafted PWM Converters Summary and Discussion

VII. Other PWM Converters PWM Converters with DC Transformers Resonant Converters Single-Stage Interleaved Discussion Analogy of PWM Converters to DNA

Page 6: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 5

VIII. Conclusions

• Resonance is the main principle of high-efficiency power transfer.

• Converters were evolved and deduced from the original converter, buck converter.

• Hopefully, no more trial and error in synthesizing PMW Converters.

Page 7: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 6

I. Introduction Six PWM Converters

Fig. 1.

Page 8: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 7

(a) (c) (b)

Fig. 2.

Six-PWM-Converter Derived Converters

extra LC filter extra LC filter extra LC filter

Page 9: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 8

Fig. 3.

Switched Cap./Ind. Hybrid Converters

Page 10: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 9

Fig. 4.

Page 11: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 10

Page 12: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 11

Fig. 5. 2O

in

V DV D

=−

Page 13: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 12

Fig. 6. 11

O

in

V DV D

+=

Page 14: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 13

Fig. 7.

2(1 )O

in

V DV D

=−

Page 15: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 14

(a) (b)

(c)

Fig. 8.

Single-Stage Converters

Page 16: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 15

(a) IBM converter

(b) Improved Weinberg converter Fig. 9.

Buck Derived PWM Converters

Page 17: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 16

Vi

L2

S1 V0

LfD1

C1

C2 C0

L1

DD

VV

i −−

=1

120

Ii

L2

S1

Lf

D1

C1

C2

I0

V0

1210

−−

=D

DII

i(c) Current-fed Z-source

L2

L11

C1

Vi C2

C0

L12

(a) Voltage-fed Z-source D

DVV

i 2110

−−

=

Vi

V0L1

C2

C1

L2

(b) Quasi Z-source D

DVV

i 210

−=

Fig. 10.

Z-source Converters

Page 18: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 17

Active soft-switching SEPIC converter

Boost + flyback Fig. 11.

Soft Switching PWM Converters

Page 19: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 18

S1

S2

S3

S4

S1

S2

S3

S4

(a) Series-Parallel (b) LCC

Fig. 12.

Resonant Converters

Page 20: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 19

Non-PWM Converters

(a) Two Lift

(c) Re-Lift Circuit

VC1

S1

S2

S3

S4

VO

VC2

Fig. 13. (b) KY Converter (Non-PWM Converter)

Page 21: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 20 20

How to Synthesize PWM Converters?

Page 22: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 21

CO2

O = C = O

H2O

H

O

H

H

O

O

O O

H

HHH

H

H

H

Hydrogen bond

Compound Concept

Converter → Element What is the mechanism of binding converters to be a compound converter?

Page 23: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 22

Decoding

Page 24: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 23

A. Approach 1—Component-Interconnection Expression 1) Representing in an expression which can inter-connect all

components in a certain configuration. 2) Based on the above expression, sketch the final version of the

desired converter.

11

DD

×−

Page 25: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 24

2) Approach 2—Transfer-Gain Code Expression 1) Decode into two transfer gain codes: D and 1/(1-D)

and realize these two codes with two converters.

2) How to synthesize the two converters to become a single one?

11

DD

×−

Page 26: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 25

Two questions to ask:

1. How to select effective codes? 2. Is there existing an original converter?

25

Page 27: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 26

II. Input-Output Transfer Curves (Codes) Step-Down

Fig. 1.

Page 28: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 27

Step-Up

Fig. 2.

Page 29: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 28

Step-Up and Step-Down

Fig. 3.

Page 30: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 29

± Step-Up and Step-Down

Fig. 4.

Page 31: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 30

III. Origin of Converters Source-Load Approach

Vi Cf oR VoVi Cf oR Vo

S1

Vi Cf oR Vo

LfS1

Vi Cf oR Vo

LfS1

D1

Fig. 1.

Page 32: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 31

Awarded the 1949 Nobel Prize in Physics

Protons are dogs and Neutrons are rawhide knotted bones.

Hideki Yukawa

Meson is the carrier of the nuclear force that holds nuclei together.

Proton-Meson Approach

P+

n n

P+ P+

P+

P+

Page 33: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 32

• Buck Converter

Vi

Lf

S1

D1

Meson

Vo

PWM Switch

π+

π-Vi

Lf

Rawhide knotted bone(Neutron)

VoVi

(Proton)Vo

(Proton)

Fig. 2.

Page 34: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 33

C1 L1 L2

S1 S1

C2

(a) lossy (b) lossy

Fig. 3. Three types of configurations of power transfer between capacitor and inductor.

C1 L1

S1

(c) lossless

Resonance Approach

Page 35: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 34

C1

S1

D1

Io

L1Vi C1

S1

D1Vi C2

L1

Vo

(a) (b)

Fig. 4. A practical example applying the resonance concept.

The Original Converter

Page 36: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 35

IV. Graft Scheme Conventional Approaches to Deriving Converters

• P cell and N cell [20]

Page 37: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 36

Page 38: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 37

• Canonical Switching Cells [24], [29]

Fig. 3.

Page 39: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 38

Fig. 4.

Page 40: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 39

• Switched-Cap./Ind. Cells [48]

Fig. 5.

Page 41: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 40

Fig. 6. 2O

in

V DV D

=−

Page 42: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 41

• Synchronous Switches [3]

Fig. 7. Evolution of the buck-boost converter

(A)

(B)

(C)

(D)

(E)

Page 43: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 42

Fig. 8. Evolution of the Ćuk converter.

Page 44: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 43

Fig. 9. Fig. 10.

with Grafted Switches

Page 45: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 44

• T-type Grafted Switches

Fig. 11. Fig. 12.

Page 46: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 45

Fig. 13. Fig. 14.

(c)

(d)

(c)

(d)

• π-type Grafted Switches

Page 47: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 46

Table 1

Page 48: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 47

Table 2

Page 49: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 48

Table 3

Page 50: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 49

Table 4

Page 51: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 50

Table 5

Page 52: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 51

Table 6. Duality between T-type and II-type grafted switches

Page 53: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 52

Fig. 15.

Illustration of Buck-Boost Integration

Page 54: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 53

Fig. 15. (continued)

Page 55: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 54

Fig. 16.

Illustration of Boost-Buck (Ćuk) Integration

Page 56: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 55

Fig. 16. (continued)

Page 57: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 56

(a)

(b) Fig. 17.

Illustration of Buck-Boost-Buck (Zeta) Integration

Page 58: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 57

(c) (d)

(f) Fig. 17. (continued)

(e)

Page 59: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 58

Fig. 18.

Illustration of Boost-Buck-Boost (SEPIC) Integration

Page 60: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 59

Fig. 18. (continued)

Page 61: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 60

DD

DDVV

i

o =−

⋅−=1

)1(

C3

C2

C1

DVi

D1

S1

ViC

L1

(1-D)ViL2

S2 Y

V = DVo i

D2

L3

XV = DVo i

(A)

(B)

C3 Vo

C2

C1

DVi

D1

Vi

L1

L2

DB2 V = DVo i

D2

L3

DB1

S12

Fig. 19.

Illustrations

Page 62: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 61

(E)

C3 VoD1Vi L12D2

C2S12 C1

L3DViDVi

(F)

C3 VoD1Vi

L12

D2

C2

S12 C1

L3

(G)

C3 Vo

D12Vi

S12

L12

C12

L3

(H)

D12Vi

S12

L123

C123 Vo

Vi

S12

D1

C1

DVi

C3 VoL12D2

C2

L3DVi

(D) (C)

C3 VoC1

D1

Vi

L1 L2 D2

C2 L3

S12

Fig. 19. (continued)

Page 63: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 62

Fig. 20.

Page 64: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 63

Fig. 21.

Page 65: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 64

C1

Lamp

C2Vdc

C3

Load

M2

M1

Dither Boost + Half-Bridge(b)

M3

M4

C1

LoadC2

(a)

Fig. 22.

Another Applications with Graft Technique • Dither Boost + Half-Bridge Inverter (Isao Takahashi)

Page 66: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 65

C3

LoadC2

C1Vdc DB1 DB2

DB3 DB4

SM13

SM24

(c)

C1

LoadC2

SM13

SM24

(d)Fig. 22. (continued)

Page 67: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 66

Fig. 23.

3-in-1 Converter (Charger + Discharger + Ballast)

Page 68: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 67

Fig. 23. (continued)

Page 69: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 68

Fig. 23. (continued)

Page 70: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 69

D1

LoadCdc

D1

M1

Half-Bridge

D2

M2

M3

Vi

Ls

BoostFig. 24.

Boost + Half Bridge (Ćuk)

Page 71: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 70

Switches M1 and M3 are sharing a common node s-s and they can operated synchronously; thus, we have the following integrated converter:

D3

Load

Cdc

D1

DB1D2

M2Vdc

Ls

M13

DB2

Fig. 25.

Page 72: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 71

Since the voltage stresses imposed on M1 and M3 are the same and is Vdc, diodes DB1 and DB2 can be removed (i.e. shorted). The circuit shown in Fig. 25 can be simplified to the one shown as follows:

D3

Load

D1

D2

M13

Ls

Vdc

M2

Fig. 26.

Page 73: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 72

It is obvious that diodes D1 and D2 are in parallel. Thus, the circuit shown in Fig. 26 can be further simplified to Fig. 27.

D3

Load

M1D12

M13

Boost + Half-Bridge

Fig. 27.

Page 74: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 73

Boost + class E (Ćuk)

C1

D1

M1M2

L1

Boost

C2 R

L2 C3 L3

Class E(a)

L 1

DB1

M12

C1

DB2

L2

C2

C3 L3

R

D1

(b) Fig. 28.

Page 75: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 74

Since Vds(M2) > Vdc(M1) during turn-off, thus we have the following circuit:

DB1

D1

Boost + Class E

L2 L3C3

C2 R

M12

C1

L1

(c)

Fig. 28. (continued)

Page 76: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 75

Fig. 29. A scheme for combining duty cycle and frequency modulation to provide two regulated outputs with one switch.[3]

Buck//Buck-Boost

Page 77: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 76

(a) Common N-N (c) Common P-P

(b) (d)

Fig. 30.

with Grafted Diodes

Page 78: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 77

(a) Boost+Buck

(b)

(c)

(d)

(e) Ćuk (Boost-Buck) Since VX=VY, DB1 and DB2 can be shorted.

Illustration of Boost + Buck with Grafted Diodes

Fig. 31.

Page 79: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 78 Fig. 1.

V. Layer Scheme Derivation of Buck-Boost and Zeta Converters

Page 80: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 79

Fig. 1. (continued)

Page 81: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 80

Fig. 1. (continued)

2

1

1 FDFD

VV

p

p

i

o−

=

Let F1 = F2 ,

at dc,

.1 D

DVV

i

o−

=

Vo

Page 82: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 81

Derivation of Ćuk and Sepic Converters

Fig. 2.

Page 83: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 82

VoVi

=Cuk Converter' D1-D

Vi Vo

(d)

Fig. 2. (continued)

Page 84: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 83

By power conservation, Vi I i= Vo Io, Let G1 = G2 , we have at dc,

2'

1'

1 GD

GDII

p

p

i

o

−=

.11 '

'

DD

DD

II

i

o −=

−= .

1 DD

VV

i

o−

=

Fig. 2. (continued)

Page 85: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 84

Universal forms of buck-family and boost-family Converters

Fig. 3.

Page 86: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 85

Fig. 3 (continued).

Page 87: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 86

VI. Decoding and Synthesizing PWM Converters Some Fundamentals

(a) (b)

Page 88: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 87

A. B. C. D.

Page 89: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 88

IS L1 IS L1LS L'1

Fig. 5. A current source in parallel with an inductor is equivalent to a single inductor with a dc-offset current.

Fig. 4. A voltage source in series with a capacitor is equivalent to a single capacitor with a dc-offset voltage.

VS

C1

CS

C1

C'1

Page 90: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 89

Vi C1Vi

C1

Vi

Vi C'1

L1 L1 L1

(a) (b) (c) Fig. 6. Illustration of capacitor C1 with different dc-offset voltages in a

quasi-resonant buck converter.

Ii

L1 Ii L1

Ii

Ii

C1 C1X Y C1

L'1

(a) (b) (c) Fig. 7. Illustration of inductor L1 with different dc-offset currents in a quasi-

resonant boost converter.

Page 91: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 90

C1 VCVXZ VYZ

X Y

Z

C11

VC

VXZ VYZ

X Y

Z

VC

C12 a) VXY = 0 b) VXZ = VYZ = VC

Fig. 8. A capacitor is split into two capacitors with identical node voltages.

L1 il

X Y

Z

L11X Y

Z

L12

Z1 Z2

il1 il2

Z1 Z2

a) il1 + il2= il. b) In a valid converter topology, inductors

L11 and L12 must be operated with volt-second balance in the steady state. Thus, their average voltage over a switching cycle will be zero, and VXY = 0.

Fig. 9. An inductor is split into two inductors with identical total current and node voltages.

Page 92: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 91

Σ D

1

Vi VO

(b) D

DVV

i

O

−=

1

Vi VO

V'O

DVV

i

o −=1'

S1

C2

C1

DVV

i

O =(a) buck:

Fig. 10. Decoding and evolution of buck-boost and boost converters from the buck converter. D

DVV

i

O

−=

1 (d) buck-boost:

VO

DDD

VV

i

O

−=

−+=

11

11

'

Vi

C2

C1

V'O

DD

VV

i

O

−=

1

Vi VOVi+VO

Buck Converter

(c)

Vi V'OC12

DVV

i

O

−=

11'

(e)

Three Fundamental PWM Converter

Page 93: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 92

.

Page 94: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 93

• Inverse Buck, Boost and Buck-Boost

Vo

D

C. I-Buck-Boost

A. I-Buck

Vo Vo D1

B. I-Boost

Vo (1 )D−

1 DD−

Vo

Vo

Page 95: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 94

Deduction from Ćuk, SEPIC and Zeta to Buck-Boost Converter (with DC Voltage Offsetting)

VO

L1 L2

C2

C1

(a) Ćuk

(d)

Y XL1

C2

C1

Vi

L2

VO

L1

C2

C1

Vi

L2

VO

(b)

L1

C2

C1

X

YL2

Vi VO

(c)

Fig. 11. Deduction from Ćuk to buck-boost converter.

L1 C2C1

L2Vi VO

(e) buck-boost with an extra LC filter

Page 96: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 95

L1

L2 C2Vi

C1

VO

(a) SEPIC

L1 L2

C2

Vi

C1

LC filter

VO

(e) buck-boost with an extra LC filter

L1

L2 C2Vi

C1

VO

(b)

L1

L2

C2

Vi

C1

VO

(c)

L1 L2

C2

Vi

C1

VO

(c)

Fig. 12. Deduction from SEPIC to buck-boost converter

Page 97: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 96

L1 C2Vi

C1

C2

L2

VO

(a) Zeta

(e) buck-boost with an extra LC filter

L1 C2C1

L2Vi VO

L1 C2Vi

C1

C2

L2

VO

(b)

L1 C2Vi

C1

C2

L2

VO

(c)

L1 L2

C2

Vi

C1

VO

(d)

Fig. 13. Deduction from Zeta to buck-boost converter.

Page 98: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 97

Ćuk

L1C1

C2L2Vi

VO

(a) SEPIC

L1 C2Vi

C1

C2

L2

VO

(e) Zeta

L1

C1

L2ViC2 VO

(b)

L1

C1 L2Vi C2VO

(c)

L1

C1

C2

L2

ViVO

(d)

Fig. 14. Evolution of Zeta converter from SEPIC.

Page 99: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 98

L1

L2 C2Vi

C1

VO

(a) SEPIC

L1

L2

C2Vi

C1

VO

(c)

L1

L2

C2Vi

C1

VO

(b)

L1 L2

C2Vi

C1

VO

(d) Ćuk

Fig. 15. Evolution of Ćuk converter from SEPIC

Page 100: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 99

1) Using a long division to detach the unity gain from a given transfer gain.

Eg.

Processes of Decoding and Synthesizing

2) Conducting a cross multiplication of V’o/Vi = fr(D) to find a relationship among Vi, V’o and D:

'1( ) 1 1 1 ( )1 2 1 2

o or

i i

V VD Df D f DV D D V

−= = = + = + = +

− −(1)

'

( )1 2

or

i

V Df DV D

= =−

Or, ' '(1 ) ( )o i oV D V V D− = + (2)

That is,

(3) ' '( )

1o i oDV V V

D= +

Page 101: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 100

3) Using a transfer block diagram to illustrate equation (3) and adding up with the unity gain if it exists.

4) Synthesizing the transfer block diagram with the original converter and its derived.

Σ Σ D

1-D

1

Vi VOV'O

1

Σ Σ

D

Vi VOV'O

1

D

V''O1

1-D

c c

V'O

(a) (b) Fig. 10. Two transfer block diagrams to represent the transfer gain of Vo/Vi = (1-D)/(1-2D).

Page 102: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 101

Fig. 16. A buck converter is decoded with D/(1-D) and a negative unity feedback.

Σ D1-D

-1

Vi VO

DVV

i

O =

1. Synthesizing with Buck-Boost

(a) (b) Fig. 17. Derivation of the buck converter from the decoded form shown in Fig.

16 and the buck-boost converter.

ViVO ViVi-VO VO

Decoding and Synthesizing PWM Converters

Page 103: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 102

2. Synthesizing with Ćuk

Vi

L1 C1 L2

C2

YX

Vi-VOVO

(a)

L22

C2C1Vi

L'1

LC Filter

VO

(d) buck with an extra LC filter

Vi

L1 C1

L2 C2

X

Y

VO

(b)

Fig. 18. Derivation of buck converter from the decoded form shown in Fig. 16 and the Ćuk converter.

Vi

L21 L22

C2

L2→L21,L22

L1 C1

VO

(c)

Page 104: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 103

Fig. 19. A transfer block diagram to decode Vo/Vi = (1-D)/(1-2D)

Σ Σ D

1-D

1

Vi

Vi

VOV'0

DD

VV

i

O

211−−

=

1

• Decoding (1-D)/(1-2D)

Page 105: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 104

Vi

L1 C1

L2

Cf

C2V'OVi+V'O

(a)

Fig. 20. Synthesizing the transfer block diagram shown in Fig. 19 with the SEPIC converter.

• Synthesizing with SEPIC

Vi

L1 C1 L2

Cf C2 V'O

V0=Vi+V'O

C0

(b)

Vi

L1

C1

L2

C0

C2'

VO

(c)

Vi

L11

C1

L2

C0

C2'V0

L12

(f)

Vi

L1

C1

L2

C0

C2'

VO

(d)

Vi

L1

C1

L2

C0

C2'V0

(e)

Page 106: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 105

Vi

C1L2

Cf

C2

L1 V'O

(a)

• Synthesizing with Zeta

Vi

L1

L2 C2

C1

C0

V0=Vi+V'O

V'O

(b)

L2

VO

L1C1

Vi

C2 C0

(c)

Fig. 21. Synthesizing the transfer block diagram shown in Fig. 19 with the Zeta converter

L2

L1

C1Vi

C2 C0

VO

(d)

L2

L11

C1

Vi C2

C0

L12

VO

(f)

L2

L1

C1

Vi C2C0 VO

(e)

Page 107: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 106

L1 C1

C2L2Vi

VO

DDVVV iOO −−

=−=1

12'

iO VD

DV−

=1

'

(a) SEPIC

Fig. 22. Synthesizing the transfer gain VO/Vi = (2D-1)/(1-D) with a SEPIC converter

• Synthesizing with SEPIC

L2

Vi

L1 C1

C2

C0 VO

(b)

L2

Vi

L1 C1

C2

C0 VO

(c)

Vi

L2

S1

L12 D1

C1

C2 C0

L11

VO

(d)

Page 108: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 107

L1 C2Vi

C1

C2

L2

C0

V'O

DDVVV iOO −−

=−=1

12'VO

(a) Zeta

Fig. 23. Synthesizing the transfer gain VO/Vi = (2D-1)/(1-D) with a Zeta converter

• Synthesizing with Zeta

L2

Vi

L1

C1

C2

VO

(b)

L2

Vi

L1

C1

C2

VO

(c)

Vi

L12

L2

C1

C2 C0

L11

VO

(d)

Page 109: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 108

Fig. 24. A transfer gain block of D/(1-D) with a positive unity feedback yielding VO/Vi = D/(1-2D)

Σ D

1-D

1

Vi VO

DD

VV

i 210

−=

• Decoding D/(1-2D)

Page 110: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 109

Vi

S1 VO

L1 C1

L2C2

(a)

Vi

L1

L2

C2

C1VO

(b)

Fig. 25. Synthesizing VO/Vi = D/(1-2D) with a SEPIC converter

Vi

L1

C2

C1L2

VO+Vi

(d)

Vi

L1

C2

C1L2

VO

(c)

• Synthesizing with SEPIC

Page 111: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 110

Vi

S1 VO

C1

L2

C2

(a)

Fig. 26. Synthesizing VO/Vi = D/(1-2D) with a Zeta converter

Vi

L1

L2

C2

C1

VO

(b)

Vi

L1

C2

C1

L2

VO

(d)

Vi

L1

C2

C1

L2

VO

(c)

• Synthesizing with Zeta

Page 112: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 111

1. Synthesizing with Buck +I-Buck-Boost

(a)

Decoding D/(2-D)

Vo

SS1

D1

L1 D2

L2

SS2

C2C2

oVD

D−1

D

DD−1

1

D−1

DVi ViVo Vo

DD

VV

i

o

−=

2

D

Σ Σ

D

Page 113: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 112

(b) (c)

(d) (e) [48]

C2S

S

DC2S

D

S1

DS2

D1

D1

Vo

Vo

Co

Co

Co Vo

L1

L2

L2

D2

D2L1

DF1

DF2

I1 = I2 ➔ DF1 and DF2 can be saved (open)

D1

L1

L2

D2

S12

Page 114: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 113

2. Synthesizing with Buck-Boost + I-Buck

(a)

D DS S

D1

VoVoL1

L2

Σ DVi ViVo

Vo

D1

DD−1 D−1

1

1

Vo'Σ Σ

DD

VV

i

o

−=

2

C2

S1 S2

C1

Page 115: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 114

(b) (c) [48]

Vi

L1

L2

D1 D2

ZT

YX

D2

Y L2 XT

Z

Vo

L1 Vo

D1

DF1

DF2

C2

S12

C1

Page 116: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 115

Vi2D

1

Vo

no converter to realize2D

Vi D Vo

D1

2D

no converter to realize the negative feedback path of D1

Σ

ΣΣ

1

DD

VV

i

o

−=

2

Combine the two feedback paths into a single one.

Vi VoΣ D

DD−1

(a)

(c)

(b)

This block diagram can be synthesized by the converters shown in eg. 1.

Page 117: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 116

Decoding D/2(1-D)

12(1 ) 2 1

o

i

V D DV D D

= = ×− −

Vi DVo

D1

2D

ΣVi

Vo

Σ

DD−1

DD−1

A.

B. C.

11 D−

Page 118: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 117

D S

L1 VoCo

D S

Vi

L2

L3 S

S

D

D

L1 VoCo

Vi

L2

L3

I1 = I2 ➔ DF1 and DF2 can be saved

L1 VoCo

Vi

L2

L3

DF1

DF2

L1 VoCo

Vi

L2

D2

L3

D1D1

D2

S1 S2

S1

S2

S12

1. Synthesizing with Zeta + I-Buck-Boost

(a) (b)

(c) (d)

Page 119: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 118

(h) [48]

U T

L1 VoCo

Vi

L2

D2

L3

D1

X

Y

U T

L1

VoCo

Vi

L2

D2

L32

D1

X

Y

L31

Z

L1VoCo

Vi

L2

D2

Lꞌ 2

D1

L1Vi

L2

2(1 )O

i

V DV D

=−

Z Z

U T X

Y

Vo

Lꞌ 2

(e) (f)

(g)

Page 120: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 119

2. Synthesizing with SEPIC + I-Ćuk

(a)

SEPIC+I-Cuk

D

SL1 Vo

D S

Vi

L2 L3

I1D

S

I2

1 12X i O

DV V VD−

= =

Let LS = L1 = L2 = L3, and we have I1 = I2

VXS1S2

Page 121: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 120

(b)

(c) (d)

VoVi

L2LS

D S

C3C1

C2

Vo

Vi

L2LS

D S

C3C1

C2

CXL32

L31

VoVi

L2LS31 D1

D2

L1

T X Z

Y

CX

C3

Page 122: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 121

(i) [48]

(e)

(f)

(g)

(h)

D1

D2

L1

T X

Z Y

C1

C2

L2

D1

D2

L1

C1

C2

L2

L1

C1

C2

L2

L1 L2

C12

C

L

LL2

C

L2'

LC is just a filter of L2

L1 L2 Co

+

-

D1

D2

2(1 )O

i

V DV D

=−

Vo

Page 123: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 122

D

SVo

D S

Vi

S2

1 DD−

D

SVi

S

DS2

S1

ViVo

1 DD−

DD−1Σ

Vf

2(1 )O

i

V DV D

=−

S1

No common node between S1 and S2

3. Synthesizing with SEPIC + I-Buck-Boost

(a)

(b)

Page 124: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 123

VoVi

L2 L3

ViVo

1 DD−

DD−1Σ

S2

S1

No common node between S1 and S2

4. Synthesizing with Zeta + I-Ćuk

Page 125: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 124

Vi

+

+

+

11 i

D VD

+−

1 iD V

D−

+ −1L

2L

D

S

D

S

1S

2S 1iVD−

Vi

+

11 i

D VD

+−

+ −12L

T

XZ

Y

+−

1iVD−

2C

2D

1D

1C

11

O

i

V DV D

+=

11 1O i i

DV V VD D

= +− −

=Boost+Cuk(a)

(b)

Synthesizing with Ćuk + Boost

Decoding (1+D)/(1-D)

Page 126: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 125

Vi

XZ

TY

+ −

+−

1iVD−

1C

2C

2D

+

1 iD V

D−

Vi

+ −

+−

+

1iVD−

11 i

D VD

+−

1iVD−

(c)

(d) [48]

Page 127: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 126

Decoding D/(1-2D)

ViVo

Σ 1D

D−

1

VoVi

(1 2 )1 2

(1 ) ( )( )

1

1 1

(1 ) ( )1 1

11

1

oo

i

o i o

i oo

i o

o i

o

i

V D D V DVV D

V D V V DV V DV

DV D V D

D DD DV V

D DD

V DDV

D

= ⇒ − =−

⇒ − = +

+⇒ =

= +− −

⇒ − =− −

−⇒ =−

Page 128: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 127

(a) (b) [29]

Synthesizing with SEPIC + positive feedback

Vi Vi

T Y

Z Co

T Z X

VoCo

Y

X

Page 129: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 128

11-D

Vi VO11-D

20

)1(1DV

V

i −=

(a)

Fig. 27. Decoding and evolution of the boost-boost grafted PWM converter from two boost converters in cascade.

Vi

L1

C1

L2D1

C2S1 S2

D2

VO

D

S

D

S

(b) boost + boost

Vi

L1

C1

L2D1

C2

S12

DB1

D2

VO

DB2

VC1

D

S

(c)

Vi

L1

C1

L2D1

C2

S12

DB1

D2

VO

VC1

D

S

(d)

Vi

L1

C1

L2D1

C2

S12

DB1

D2

VOD

S

(e)

Synthesizing PWM Converters

Page 130: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 129

Fig. 28. Decoding and evolution of the buck-buck grafted PWM converter from two buck converters in cascade.

Vi

L1 L2

C2

S1 S2

D2VO

D S

C1D1

D S

(b) buck + buck

DVi VOD

Buck Buck 20 DVV

i

=(a)

Vi

L1

L2

C2

S12

D2VO

C1D1

D SDF1 DF2

(d)

Vi

L1

L2

C2

S12

D2VO

C1D1

D SDF1

(e)

Vi

L2

C2

S1 S2

D2VO

D S

C1D1

D S

L1

iL1

iL2

(c)

Page 131: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 130

Buck Converter with a Second Output Vo2

Vo1Vi

S1

D1 C1

L1

C2L2

Vo2

(b)

Vo1Vi

S1

D1 C1

L1

(a)

Vo1=DVi

Vi

S1

D1 C1

L1

C2 L2

Vo2=(1-D)Vi

(c)

Vo1Vi

S1

D1 C1

L1

C2 L2

Vo2

(e) Vo2/Vi=(1-D)/D

Vo1Vi

S1

D1 C1

L1

C2L2

Vo2

(f) Vo2/Vi=(1-D)/D

Vo1Vi

S1

D1 C1

L1

C2 L2

Vo2

Σ 1-D

1

Vi Vo2

2 1o

i

V DV D

−=

(d)

Page 132: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 131

Vi

(a)

VoD1

S1

DS

C1

L1 L2 D2

S2 C2

D

S

(b)

Vo

D1 C1

L2 D2

C2Vi

DF1 DF2

(c)

( ) ( ) ( )( )1 1

1 2 2 1 2 2

11 1

d dd d d d d d

× =+ − + −

Page 133: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 132

(a)

Vi

VoD2DB2

DB1

D1

(b)

Vi

Vo

S1

D2 C3

VC2C2D1

C1

DB2

(c)

Vi

VoS1 D2

D1

C1

DB2

L1

L2

(d)

1 211 1

O

i

V D DD DV D D

− = − × = × − −

Page 134: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 133

Vi

Vo

S1

VC2

C3C1Vi-VC2

L1 D1 C2

L2 L3

S2

D2

(Zeta)

(Boost)

(a)

Vi

Vo

DB1

C3C1

L1 D1 C2

L2 L3

D2

(b)

( ) ( )2

1 1 211 1 1

O

i

V D D V D D D

− = − × = − − −

Page 135: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 134

VII. Other PWM Converters PWM Converters with DC-transformer

Page 136: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 135

Page 137: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 136

S1

S2

S3

S4Resonant Network

(a) Two buck converters in DCM operation

(b) Positive half cycle (c) Negative half cycle

Resonant Converters

Page 138: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 137

Single-stage Interleaved with Grafted Switch and Diode [41],[42]

Vi1

DB1

D2

Vi2

Vdc

Z

D1

DB2

(c). Boost in DCM, and Vdc > Vi1 or Vdc > Vi2

Vi1

S13

DB1

S24

D2

Vi2

Vdc

Z

D1

DB2

DB3

DB4

(b)

Vi1 S1 S3

D1

S2

D2Vi2 S4

Vdc Z

(a)

Page 139: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 138

Vi1DB1

D2

Vi2

ZD1

DB2

S24

S13

(d)

Vi1

DB1

Vi2

Z

D1

DB2

S24

S13 D2

(f) D1 and D2 are the body diodes of switches S24 and S13, respectively.

Vi1DB1

D2

Vi2

ZD1

DB2

S24

S13

(e)

Page 140: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 139

Page 141: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 140

Page 142: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 141

Page 143: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 142

Page 144: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 143

Page 145: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 144

Vi VOC1

L1

voltage source

L1

Vi VOC1

current source

(a) (b)

Fig. 30. Illustration of non-one-to-one correspondence of the duality between voltage source and current source.

Discussion

Page 146: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 145

Topological Duality

Fig. 31. (a) buck converter, and (b) boost converter in topological configuration

?

Fig. 32. (a) buck converter, and (b) boost converter in circuit configuration

What kind of dual is this?

Page 147: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 146

Fig. 33. (a) a transmission line modeled with L-C network (b) a buck converter configured from resonance philosophy

Page 148: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 147

(b) Boost Converter

(a) Buck Converter

Fig. 34.

Page 149: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 148

The Nobel Prize Winners in 1962.

Francis Harry Compton Crick

James Dewey Watson

Maurice Hugh Frederick Wilkins

資料來源:維基百科

B. Analogy of PWM Converters to DNA

Page 150: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 149

A

TA

T CC

GC

A A

TG

C

C

G

AC

GAC G T

ATCG

A CG C

C T G

Fig. 65. (a) DNA in double helix structure (b) stretched DNA in two-port network like structure.

(a) (b)

Two-port network

Page 151: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 150

L, C, S, D A(adenine), T(thymine), G(guanine), C(cytosine)

L ↔ C S ↔ D

A ↔ T G ↔ C

AC G T

ATCG

A CG C

C T G

Page 152: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 151

A C G

T CG

GT

A

GT

CA

C

(a) (b)

Fig. 35. Replication of (a) DNA and (b) PWM buck converter.

Page 153: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 152

1. formed from codes L, C, S and D 2. transfer power

1. formed from codes A, T, G and C 2. transmit signal

Page 154: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL)

1. Jumping out the trapped area, we will find a lot of fun. 2. Crossing the gap between fields, our mind can soar in the sky freely. 3. Based on this kind of mind, we can gallop free in academic field and have unlimited innovation. 4. After realizing the natural rules, we recognize that all of them just deduce from a simple principle.

Page 155: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL)

Page 156: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 155

References 1. S. Ćuk, “General Topological Properties of Switching Structures,” Proceedings of the IEEE PESC, pp. 109-130, 1979. 2. R. W. Erickson, “Synthesis of Switched-Mode Converters,” Proceedings of the IEEE PESC, pp. 9-22, 1983. 3. R. P. Severns and G. E. Bloom, Modern DC-to-DC Switch Mode Power Converter Circuits, Van Nonstrand Reinhold Co., New

York, 1985. 4. R. Tymerski and V. Vorperian, “Generation, Classification and Analysis of Switched-Mode DC-to-DC Converters by the Use of

Converter Cells,” Proceedings of INTELEC, pp. 181-195, 1986. 5. K.-H. Liu and F. C. Lee, “Topological Constraints of Basic PWM Converters,” Proceedings of the IEEE PESC, pp. 164-172,

1988. 6. M. S. Makowski, “On Topological Assumptions on PWM Converters—A Re-Examination,” Proceedings of IEEE Power

Electronics Specialists Conference 1993, pp. 141–147. 7. D. Maksimovic and S. Ćuk, “General Properties and Synthesis of PWM DC-to-DC Converters,” Proceedings of the IEEE PESC,

pp. 515-525, 1989. 8. F. C. Lee, High-Frequency Resonant, Quasi-Resonant and Multi-Resonant Converters, Virginia Power Electronics Center, 1989. 9. A. K. S. Bhat and F. D. Tan, “A Unified Approach to Characterization of PWM and Quasi-PWM Switching Converters:

Topological Constraints, Classification, and Synthesis,” IEEE Trans. On Power Electronics, Vol. 6, No. 4, pp. 719-726, Oct., 1991.

10. S. D. Freeland, “Techniques for the Practical Applications of Duality to Power Circuits,” IEEE Trans. on Power Electronics, Vol. 7, No. 2, pp. 374-384, April 1992.

11. M. S. Makowski, “On Topological Assumptions on PWM Converters—A Re-Examination,” Proceedings of IEEE Power Electronics Specialists Conference 1993, pp. 141–147.

12. D. C. Hopkins and D. W. Root, Jr., “Synthesis of a New Class of Converters That Utilize Energy Recirculation,” Proceedings of the IEEE PESC, pp. 1167-1172, 1994.

13. T.-F.Wu and Y.-K. Chen, ”A Systematic and Unified Approach to Modeling PWM DC/DC Converters Using the Layer Scheme,” Proceedings of IEEE Power Electronics Specialists Conference 1996, pp. 575-580.

14. T.-F. Wu and T.-H. Yu, “Unified Approach to Developing Single-Stage Power Converters,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 1, pp. 221-223, Jan. 1998.

15. T.-F. Wu and Y.-K. Chen, “A Systematic and Unified Approach to Modeling PWM DC/DC Converter Based on the Graft Scheme,” IEEE Trans. on Industrial Electronics, Vol. 45, No. 1, pp.88-98, Feb.1998.

Page 157: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 156

16. T.-F. Wu and Y.-K. Chen, “Modeling PWM DC/DC Converter Out of Basic Converter Units,” IEEE Trans. on Power Electronics, Vol. 13, No. 5, pp. 870-881, Sept. 1998.

17. T.-F. Wu, Y.-K. Chen and S.-A. Liang, “A Structural Approach to Synthesizing, Analyzing and Modeling Quasi-Resonant Converters,” Power Electronics Specialists Conference 1999, pp. 1024-1029.

18. T.-F. Wu, Shih-An Liang and Yu-Kai Chen, “ A Structural Approach to Synthesizing Soft Switching PWM Converters,” IEEE Trans. On Power Electronics, Vol. 18, No. 1, pp. 38-43, January, 2003.

19. M. Ogata and T. Nishi, “Topological Criteria for Switched Mode Dc-Dc Converters,” Proceedings of ISCAS 2003, Vol. 3, pp. 184–187.

20. F. Z. Peng, L. M. Tolbert, and F. H. Khan, “Power Electronic Circuit Topology—The Basic Switching Cells,” Proceeding of IEEE Power Electronics Education Workshop 2005, pp. 52–57.

21. Y. Berkovich, A. Shenkman, A. Loinovici, and B. Axelrod, “Algebraic Representation of DC-DC Converters and Symbolic Method of Their Analysis,” Proceeding of IEEE Convention. Electrical and Electronics Engineers 2006, pp. 47–51.

22. F. H. Khan, L. M. Tolbert, and F. Z. Peng, “Deriving New Topologies of DC-DC Converters Featuring Basic Switching Cells,” Proceeding of IEEE COMPEL 2006, pp. 328–332.

23. Y. Berkovich, B. Axelrod, S. Tapuchi, and A. Ioinovici, “A family of four-quadrant, PWM DC-DC converters”, Proceedings of IEEE Power Electronics Specialists Conference 2007, pp. 1878–1883.

24. B. W. Williams, “Basic DC-to-DC converters,” IEEE Trans. on Power Electronics, Vol. 23, No. 1, pp. 387–401, Jan., 2008. 25. J. Anderson and F. Z. Peng, “Four Quasi-Z source Inverters”, Proceedings of IEEE Power Electronics Specialists Conference

2008, pp. 2743–2749. 26. J. Anderson and F. Z. Peng, “A Class of Quasi-Z source Inverters”, Proceedings of IEEE Industrial Application Meeting 2008,

pp. 1–7. 27. D. Cao and F. Z. Peng, “A family of Z source and quasi-Z source DC-DC converters”, Proceedings of IEEE Applied Power

Electronics Conference 2009, pp. 1097–1101. 28. L. M. Tolbert, F. Z. Peng, F. H. Khan, and S. Li, “Switching Cells and Their Implications for Power Electronic Circuits,”

Proceeding of IEEE IPEMC 2009, pp. 773–779. 29. B. W. Williams, “Generation and Analysis of Canonical Switching Cell DC-to-DC Converters,” IEEE Trans. on Industrial

Electronics, Vol. 61, pp. 329–346, 2014. 30. F. Z. Peng, “Z source Inverter”, IEEE Trans. On Industrial Application, vol. 39, No. 2, pp. 504–510, Mar./Apr. 2003.

Page 158: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 157

31. W. Qian, F. Z. Peng, and H. Cha, “Trans-Z source Inverters”, IEEE Trans. On Power Electronics, Vol. 26, No. 12, pp. 3453–3463, Dec. 2011.

32. F. Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, and Y. Huang, “Z source Inverter for Motor Drives”, IEEE Trans. On Power Electronics, Vol. 20, No. 4, pp. 857–863, Jul. 2005.

33. Y. Huang, M. Shen, F. Z. Peng, and J. Wang, “Z source Inverter for Residential Photovoltaic Systems”, IEEE Trans. On Power Electronics, Vol. 21, No. 6, pp. 1776–1782, Nov. 2006.

34. F. Z. Peng, M. Shen, and K. Holland, “Application of Z source Inverter for Traction Drive of Fuel Cell Battery Hybrid Electric Vehicles”, IEEE Trans. On Power Electronics, Vol. 22, No. 3, pp. 1054–1061, May 2007.

35. M. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, “Comparison of Traditional Inverters and Z source Inverter for Fuel Cell Vehicles”, IEEE Trans. On Power Electronics, Vol. 22, No. 4, pp. 1453–1463, Jul. 2007.

36. U. Supatti and F. Z. Peng, “Z source Inverter Based Wind Power Generation System”, Proceeding of IEEE International Conference Sustainable Energy Technologies, pp. 634–638, Nov. 2008.

37. J.-H. Park, H.-G. Kim, E.-C. Nho, T.-W. Chun, and J. Choi, “Grid Connected PV System Using a Quasi-Z source Inverter,” Proceedings of IEEE Applied Power Electronics Conference 2009, pp. 925–929.

38. Z. J. Zhou, X. Zhang, P. Xu, and W. X. Shen, “Single-phase Uninterruptible Power Supply Based on Z source Inverter,” IEEE Trans. on Industrial Electronics, Vol. 55, no. 8, pp. 2997–3004, Aug. 2008.

39. D. Vinnikov and I. Roasto, “Quasi-Z source Based Isolated DC/DC Converters for Distributed Power Generation,”, IEEE Trans. on Industrial Electronics, Vol. 58, pp. 192–201, 2011.

40. F. L. Luo, “Double-output Luo converters, an advanced voltage-lift,” IEE Proceedings on Electric Power Applicaions, Vol. 147, No. 6, pp. 469-485, 2000.

Page 159: Decoding and Synthesizing Transformerless PWM Converters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 158

41. Fengfeng Tao and Fred C. Lee, “An Interleaved Single-Stage Power-Factor-Correction Electronic Ballast”, IEEE Applied Power Electronics Conf., 2000, pp. 617–623.

42. Chun-An Cheng, Hung-Liang Cheng, Chien-Hsuan Chang, Fu-Li Yang and Tsung-Yuan Chung, “A Single-Stage LED Driver for Street-Lighting Applications with Interleaving PFC Feature”, IEEE 2nd International Symposium on Next-Generation Electronics (ISNE),2013.

43. B. R. Lin, C. H. Chao and L. A. Lin, “Implementation of an Interleaved Single-Stage High Power Factor Converter”, Industrial Electronics and Applications, 2011, pp. 1209-1214.

44. P. C. S. Ficagna * and J. R. Pinheiro, “A Single-Stage LED Driver for Street-Lighting Applications with Interleaving PFC Feature.”, IEEE 2008.

45. J. Y. Lee, L. S. Yang, T. J. Liang, and M. Y. Cheng, “Analysis and Implementation of Interleaved Single-Stage Single-Phase AC-DC Boost-Flyback Converter”, IEEE Power Electronics and Motion Control Conference, 2009, pp. 678-682.

46. C. S. Postiglione, A. L. Fuerback, D. C.Martins, A. J. Perin, C. B. Nascimento, “Single-Stage PFC AC-DC Converter Based on Serial- Interleaved Boost”, 10th IEEE/IAS International Conference on Industry Applications, 2012, pp 1-8.

47. C. H. Chang, C. A. Cheng, Masahito Jinno, and H. L. Cheng, “An Interleaved Single-Stage LLC Resonant Converter Used for Multi-Channel LED Driving”, IEEE Power Electronics Conference, 2014, pp.3333-3340.

48. B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc-dc PWM converters,” IEEE Trans. on Circuits and Systems-I, Vol. 55, No. 2, pp. 687-696, 2008.