dd2 ws11 12 toxicity - uni-tuebingen.de · 12. toxicity&predicon & overview& ... •...

76
BIOINF 4372 Drug Design 2 Oliver Kohlbacher Winter 2011/2012 12. Toxicity Predic@on

Upload: buidiep

Post on 20-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

BIOINF  4372  Drug  Design  2  

Oliver  Kohlbacher    

Winter  2011/2012    

12.  Toxicity  Predic@on  

Overview  

•  ADME  •  Bioavailability  •  Metaboliza1on,  Elimina1on  

•  Toxicity  •  Effect  and  side  effects  •  Mechanisms  of  toxicity  

•  Models  •  Animal  models  

•  In  vitro  models  

•  Theore1cal  models  and  predic1ons  

 2

Failure  in  Late  Development  

•  90%  of  all  drug  candidates  fail  between  discovery  and  introduc1on  to  the  market  

•  The  late  development  phases  are  the  most  expensive  phases  

•  In  a  study  from  1988,  Pren1s  et  

al.  found  that  in  more  than  60%  of  the  cases,  poor  

pharmacokine@c  (PK)  or  toxicological  proper@es  were  the  cause  

Prentis et al., Br. J. Clin. Pharmacol. 1988, 25, 387-396.

6%

22%

41%

31%

Reason for Failure

Market Toxicity PK Efficacy

3

Failure  in  Late  Development  

•  More  recent  studies  find  that  this  problem  has  changed  since  •  Currently  PK  and  bioavailability  play  a  minor  role  •  This  is  mostly  due  to  improved  tes1ng,  but  quite  likely  also  due  to  

improved  computa1onal  models  for  these  proper1es  •  The  problem  of  toxicity  has  goRen  worse  (rela1vely),  however,  and  

good  computa1onal  models  in  this  area  are  urgently  needed  Kola & Landis, Nat Rev Drug Discov. 2004;3(8):711-5.

4

Absorp@on  and  Elimina@on  

Central Compartment Biliary Renal

Gehirn

Blood-Brain Barrier

Enteral

Absorption

Elimination

Membranes of the GI Tract

5

Overview  of  the  Different  Areas  

Application

Dissolution

Absorption

Distribution

Place of Action (Receptors)

Pharmacological Effect

Clinical Effect Toxic Effect

Storage

Biotransformation

Excretion

After: Mut, p. 5

Pharmaceutical Phase

Pharmacokinetic Phase

Pharmacodynamic Phase

6

Bioavailability  

•  Drug  has  to  reach  the  place  of  ac1on  and  achieve  a  sufficient  concentra1on  there  for  the  dura1on  of  ac1on  

•  This  bioavailability  is  a  key  criterion  for  the  effec1veness  of  a  drug  

•  Also  summarized  as  ADME  (Absorp1on,  Distribu1on,  Metabolism,  Excre1on)  and  ADMET  (ADME-­‐Tox)  •  Pharmaceu1cal  basics:  see  Lecture  Drug  Design  1  

•  Absorp1on  and  Distribu1on  are  pharmacokine1c  proper1es  •  Metaboliza1on  is  much  harder  to  predict  •  It  is  not  only  relevant  for  the  predic1on  of  elimina1on,  but  also  for  toxicity  (toxic  metabolites!)  

7

First  Pass  Effect  

•  Absorbed  substances  have  to  pass  through  the  gastro-­‐intes1nal  wall  first,  then  through  the  liver  (portal  vein)  

•  First  pass  effect:  metaboliza1on  in  the  liver  before  the  compound  reaches  systemic  circula1on,  reduces  bioavailability  dras1cally  

Gastro-intestinal lumen

Gastro-intestinal wall

Liver Blood vessel

Biotransformation Elimination, Biotransformation

8

Biotransforma@on  

•  Oxida1on  •  Reduc1on  •  Hydrolysis  •  Decarboxyla1on  •  Methyla1on  •  Acetyla1on    

•  Conjuga1on  with  •  Ac1vated  glucuronic  acid  

•  Sulfuric  acid  •  Glycine  

•  ...  

•  Many enzymes catalyze the transformation of substrate families that also include numerous drugs

•  Particularly active in this regard are liver enzymes, which also happen to have a broad substrate specificity

•  Frequent biotransformations are:

9

Bioavailability  

•  Experimental  determina1on  of  ADME  parameters  is  

1me-­‐consuming  and  costly  

•  Computa1onal  methods  could  thus  have  a  large  impact  

•  Bioavailability  is  not  governed  by  a  single  property,  it  is  

the  sum  of  all  ADME  processes  

•  Modeling  it  is  thus  very  difficult  and  QSPR  models  s1ll  

have  limited  reliability  in  this  area  

10

Models  in  Use  System Models Pros Cons

In silico (Q)SAR, (Q)SPR

High throughput, cheap, easy to use

Require high-quality exp. data, not all biological processes modeled

In vitro Artificial membranes, cell-based assays (Caco2, MDCK)

Medium to high throughput, includes active and passive transport mechanisms

Many phenomena are strongly model-dependent, no active transport (membrane-based), analytically difficult

In situ Rat intestinal perfusion

Very close to in vivo, includes all key mechanisms except for systemic effects

Labour-intensive, differences between species In vivo Rat portal vein

studies As in situ but also includes presystemic metabolism

Pelkonen et al.; Eur J Clin Pharmacol 57:621-629, 2001

11

Experimental  Models  in vitro

in situ

in vivo

http://www.transonic.com http://www.uv.es/~mbermejo/projects.htm

http://www.millipore.com 12

QSPR  Model  

•  Turner  et  al.  published  a  purely  computa1onal  study  for  bioavailability  in  2003  

•  169  with  literature  data  on  bioavailability  •  10  compounds  randomly  selected  as  a  test  set  •  Training  on  the  remaining  159  •  Model  based  on  eight  different  descriptors  •  Selected  from  94  descriptors  by  stepwise  mul1ple  linear  regression  

•  Predic1on:  R  =  0.72  

Turner et al.; Anal Chim Acta 485;89-102, 2003

13

QSPR  Model  

•  Descriptors  used:  •  Electron  affinity  (H-­‐bonds)  •  Number  of  aroma1c  rings  •  Energy  of  the  highest  occupied  molecular  orbital  (HOMO  energy)  

•  Par11on  coefficient  octanol/water  (log  P)  •  Molar  volume  •  Ra1o  of  hydrophilic/lipophilic  groups  •  Solubility  in  water  •  Contribu1on  of  H-­‐bonds  to  solubility  

Turner et al., Anal Chim Acta (2003), 485, 89-102

14

Predic@on  of  Bioavailability  

Turner et al., Anal Chim Acta (2003), 485, 89-102

15

Toxicity  and  Side  Effects  

•  Are  there  drugs  without  side  effects?  •  W.  Kuschinski:    “If  it  is  claimed  that  a  substance  has  no  side  effects,  then  it  is  to  be  assumed  that  it  has  no  desired  effect  either.“  

•  Required:  Es1mate  of  toxicity  

16

Toxicity  and  Side  Effects  

•  Paracelsus:  „The  dose  makes  the  poison“  

•  No  clear  dis1nc1on  between  ‘medicine’  and  ‘poison’    

•  Usually,  there  is  not  a  single  ‘cause’  for  a  toxic  effect  •  Many  mechanisms  are  involved  

•  Toxic  effect  onen  also  occurs  through  metaboliza1on  of  

the  substance  

17

Dose-­‐Response  Rela@onships  

•  „The  dose  makes  the  poison“  •  Typically,  an  increase  in  dose  increases  

the  effect  •  Above  a  certain  dose,  addi1onal  toxic  

effects  may  be  observed  •  Strength/dura1on  of  effect  depends  on  

many  factors,  e.g.,  genotype,  age,  body  mass,  …  

•  Difficult  to  quan1fy  strength  of  the  response  

)  Dose-­‐response  rela1onships  

           measured  for  collec@ves    •  ED50:  median  effec@ve  dose    •  LD50:  median  lethal  dose  

Katzung, Basic and Clinical Pharmacology, p. 30

18

Therapeu@c  Index  •  Therapeu@c  index  or  therapeu1c  ra1o  is  the  ra1o  between  the  

concentra1on  causing  a  toxic  effect  and  the  concentra1on  causing  a  therapeu1c  effect  

•  It  is  a  measure  of  a  drug‘s  safety  

Mut, S. 81

ED50 LD50

19

Human  Toxicity  

•  Defini1on  of  acute  LD50  in  human  not  helpful  –  it  is  generally  not  experimentally  accessible  

•  A  lethal  dose  has  to  be  avoided  at  all  costs  •  For  a  safe  drug,  we  need  to  achieve  less  than  1  death  per  million,  i.e.  LD0,000001  

•  Apart  form  acute  toxicity,  long-­‐term  effects  are  of  great  importance  •  Mutagenicity  

•  Carcinogenicity  

•  ...  

20

Poison/Drug  •  Poisons  obviously  have  a  biological  ac1vity  •  We  can  thus  apply  the  same  principles  as  for  pharmaceu1cal  

ac1vity  

•  Toxicokine1cs  

•  Toxicodynamics  

•  In  principle,  all  of  the  methods  described  to  model  biological  ac1vity  are  applicable  as  well  

•  Problem:    

•  Toxicity  is  onen  not  a  single,  well  defined  process  (in  contrast  to  binding,  ac1va1on,  ...)  

•  What  is  the  mechanism?  Where  to  start?  

21

Types  of  Toxicity  

•  Acute  toxicity  •  Exposi1on  to  a  single  dose  or  mul1ple  doses  in  a  short  space  of  1me  

•  Symptoms  occur  immediately  or  briefly  aner  exposi1on    

•  Chronic  toxicity  •  Prolonged  exposi1on  to  low-­‐level  doses  •  Slow  accumula1on  of  the  poison  to  toxic  concentra1ons  

•  Onen  due  to  lack  of  excre1on/elimina1on  

22

Classifica@on  of  Poisons  

•  Target  organ  (liver,  kidneys,  ...)  

•  Applica@on  (pes1cide,  solvent,  food  supplement,  ...)  

•  Source  (animal  or  plant  poisons,  

synthe1c,  ...)  

•  Effect  (cancer,  mutagenesis,  liver  damage,  

kidney  failure,  ...)  23

Exposi@on  to  Poisons  

•  Environmental  exposi1on  is  a  common  source  

•  Exposi1on  to  toxic  substances  is  controlled  by  legisla1on  •  Short-­‐term  exposure  limit  (STEL)  [in  Germany:  MAK  (maximale  Arbeitsplatzkonzentra1on)]  

•  However:      Carcinogenic  substances  are  never  harmless!    

 Even  smallest  amounts  can  cause  gene1c  altera1ons.  

24

Molecular  Toxicology  

•  Studies  the  interac1on  of  a  poison  with  a  biological  object  

•  Consider  the  effect  on  a  molecular  level  

•  Becoming  increasingly  important  as  the  mechanisms  of  

toxic  ac1on  of  compounds  are  becoming  known  

•  Obviously  of  the  utmost  importance  in  the  drug  design  

process  

25

What  Causes  Toxicity?  

Many  different  mechanisms  involved:  •  Biotransforma@on  (metaboliza1on)  •  Interac@ons  between  several  substances  which  are  not  toxic  by  themselves  (at  the  individual  doses)  

•  Inhibi1on/inac1va1on/denatura1on  of  proteins  (enzymes,  receptors,  ...)  

•  Satura@on  of  metabolism  •  Ac1va1on/blocking  of  receptors  •  ...  

26

Paracetamol  

•  Very  common  analgesic  and  an1pyre1c  (Acetaminophen)  

•  Normal  dose:  500-­‐1000  mg  

•  Usually  well  tolerated  •  But:  high  doses  can  be  toxic!  •  Doses  of  10  g/day  or  more  lead  to  severe  liver  

cell  necrosis  (onen  lethal)  

•  The  effect  is  caused  by  a  toxic  metabolite  of  paracetamol,  N-­‐acetyl-­‐p-­‐benzoquinoneimine  

à  The  dose  makes  the  poison  

OH

NH

O

CH3

Paracetamol (Acetaminophen)

27

Paracetamol  •  Damage  to  liver  cells  is  caused  by  highly  reac1ve  metabolites  

•  Formed  by  cytochromes,  their  reac1on  with  proteins  in  the  liver  causes  the  toxic  effect  

•  Low  doses:  metabolites  are  captured  and  detoxified  by  glutathione  by  forming  harmless  conjugates  

•  Toxic  dose:    •  Glutathione  storage  exhausted  •  Metabolites  cannot  be  detoxified  

O

N

O

CH3

OH

NH

O

CH3

-2H

Glutathione

28

Paracetamol  

•  S1mula1on  of  chytochrome  p450  lowers  the  glutathione  level  

•  Some  therapeu1cally  ac1ve  compounds  ac1vate  p450  (strongly)  

•  Consequence:  even  very  low  (normally  non-­‐toxic)  doses  of  paracetamol  become  toxic  

•  Toxic  doses  well  below  6  g  •  Problema1c  for  pa1ents  with  pre-­‐exis1ng  damage  to  the  liver  (alcohol  abuse!)    )    Interac@on  with  other  substances  can      cause  toxicity!  

29

Grapefruit  

•  Grapefruits  contain  high  levels  of  inhibitors  of  cytochrome  P450  (CYP3A4)  •  Elimina1on  of  many  drugs  (terfenadine,  methadone,  diazepame,  …)  is  thus  dras1cally  

reduced  •  Plasma  levels  can  increase  dras1cally  as  a  consequence  if  drugs  are  taken  with  grapefruit  

juice   http://www.news-medical.net/images/grapefruit.jpg http://www.pharmacyplusplus.com/details.php?product_id=138&product_type_id=1 30

Drug  Interac@ons  

•  Example:  administra1on  of  phenytoin  (an  an1epilep1c)  and  

salicylic  acid  at  the  same  1me  results  in  abnormally  high  

plasma  levels  

•  Problem:  both  drugs  are  eliminated  through  the  same  

enzyme  

•  Consequence:  satura1on  of  the  enzyme  reduces  

elimina1on  rates  

•  This  can  lead  to  toxic  effects,  as  the  effec1ve  plasma  

concentra1on  is  much  higher  than  an1cipated  

 Drug  interac@on  by  satura@on  of  an  enzyme!  

31

Benzene/Toluene  

•  Benzene  has  a  high  acute  toxicity  and  is  also  carcinogenic  –  in  contrast  to  structurally  very  similar  toluene  

•  Structures  differ  only  by  a  single  methyl  group  

•  Benzene  is  easily  absorbed,  also  across  the  skin  •  It  is  also  easily  excreted  again,  mostly  through  the  

lung  

•  About  half  of  the  absorbed  amount  is  typically  metabolized  

•  Toxic  effect  is  most  likely  due  to  this  biotransforma1on  

C H 3

Benzene

Toluene

32

Benzene  

Acute  toxicity  

•  More  than  0.5  ml/kg  causes  

•  Intoxica1on  •  Headaches,  dizziness  

•  Higher  doses:  •  Convulsions  •  Unconsciousness  •  Cardiac  arrhythmia  

•  Eventually  death  by  central  respiratory  paralysis  

33

Benzene  

Chronic  toxicity  or  massive  single  doses:  •  Hemotoxicity    

•  Inhibi1on  of  erythropoiesis,  leukopoiesis  and  thrombopoiesis  

•  No  therapy  known  

•  Carcinogenicity  •  Leukemia  

•  Causes  irreversible  chromosomal  aberra1ons  in  lymphocytes  and  bone  marrow  cells  

•  Benzene  is  one  of  the  most  important  environmental  poisons  

34

Metaboliza@on  of  Benzene  

•  Ini1al  step:  enzyma1c  epoxida1on  

•  Epoxides  are  highly  reac1ve  •  Can  react  with  hydrogen  atoms  of  biological  

macromolecules  

•  Carcinogenic  and  mutagenic  effects  is  (probably)  caused  by  reac1ons  with  nucleic  acids  

•  Toluene  is  metabolized  differently  (star1ng  with  

the  methyl  group)  and  is  thus  much  less  toxic   O

H

H

Mono- oxygenase

35

Carcinogens  

•  In  animal  models,  symmetric      dialkylnitrosamines  cause  

•  Liver  tumors  aner  chronic  exposure    to  low  doses  

•  Kidney  tumors  aner  exposure  to  a      single  high  dose  

•  Small  amounts  of  nitrosamines  are  very  common  (in  par1cular  in  alcoholic  beverages,  certain  meat  products)  

•  Also  formed  endogenously  (produc1on  of  nitrite  from  saliva  and  gastric  juice)  

NNCH3

CH3

O

Dimethylnitrosamine

36

Carcinogens  •  Polycyclic  aroma1c  hydrocarbons      (PAHs)  are  onen  carcinogenic  

•  Effect  is  again  caused  by      metabolites  

•  Some  of  these  metabolites  show    acute  gene  toxicity    

•  They  have  also  been  shown  to      react  with  DNA  in  vivo  

•  Bay  region  is  important  for      metabolic  ac1va1on  

Benzo(a)pyren

1,2-5,6 Dibenzanthrazen

37

Metaboliza@on  

O

H

H

OH

OH

OH

H OH

OH

OH

NH

NH

N

N

N

R

O

Metabolization of benzo(a)pyrene to a diol epoxide, which then reacts with the exocyclic amino group of guanine

38

Tes@ng  Prevents  Disasters  

•  No  or  insufficient  tes1ng  of  novel  pharmaceu1cal  compounds  led  to  several  major  disasters  •  Brain  damage  and  death  in  small  children  due  to  sulfonamides  (late  1930s)  

•  More  than  100  deaths  through  diethylene  glycol  used  as  a  solvent  for  sulfanilamide  (this  incident  led  to  the  founda1on  of  the  Food  and  Drug  Administra1on  [FDA]  in  the  USA)  

•  Severe  birth  defects  aner  the  use  of  thalidomide  during  pregnancy  in  about  10,000  children  worldwide  

•  High  standards  for  drug  safety  have  dras1cally  reduced  these  incidents  

•  Nevertheless,  drugs  are  taken  off  the  market  again  because  long-­‐term  (side)  effects  have  not  been  recognized  early  on  

39

Models:  Animal  Models  

•  How  to  test  for  human  toxicity  early  on?  

•  Difficult:  there  is  rather  liRle  toxicological  data  available  for  

humans  (systema1c  toxicological  tes1ng  with  human  

subjects  is  not  considered  acceptable!)  

•  The  vast  majority  of  reliable  data  thus  stems  from  animal  

experiments  

•  As  we  have  seen  before,  these  data  are  onen  hard  to  transfer  to  humans  

•  But:  beRer  than  nothing!  

40

Animal  Models  

•  Animal  experiments  are...  •  Expensive  •  Time-­‐consuming  

•  Raise  ethical  issues  •  Required  by  law  

•  Reduc1on  of  animal  use  by  •  In  vitro  models  

•  Computa1onal  models  

http://abclabs.com

41

Animal  Use  

•  Strong  growth  of  animal  use  between  1945  and  1968  

•  Stagna1on  un1l  the  middle  of  the  70s,  then  steady  decrease  (1978-­‐1988  decrease  by  60%  in  West  Germany)  

•  Reduc1on  quite  remarkable:  more  substances  tested  than  ever!  

•  Key  reason:  in  vitro  tests  (Ames  test)  

•  Theore1cal  models  s1ll  play  a  very  minor  role  

42

Animal  Use  1991-­‐1995  (D)  Species 1991 1992 1993 1994

Mouse 1,223,741 1,064,883 973,106 868,312

Rat 611,530 558,516 508,769 459,781

... ... ... ... ...

Total 2,402,710 2,082,588 1,924,221 1,758,500

Quelle: Bundesministerium für Verbraucherschutz, Information Nr. 44 v. 30. Oktober 1995 http://www.bmelv.de/cae/servlet/contentblob/765788/publicationFile/43424/2008-TierversuchszahlenGesamt.pdf

•  About half of them are related to medical research

•  Most of them are rodents (mice, rats)

•  Over the last decade the number of animals used in animal experiments has been increasing steadily (2008: 2.6 mio. in Germany)

•  Number for mice are always increasing, most other species going down

•  About 171,000 are currently being used per year for toxicological studies

43

Comparison  between  Species  •  Different  species  may  react  very  differently  to  the  same  drug  

•  Example:  lysergic  acid  diethylamide  (LSD)  

•  Experiment:  administer  a  hallucinogenic,  but  subtoxic,  dose  to  a  male  Asia1c  elephant  

•  Es1mate:  dose  of  0.3  g    

 (about  0.06  mg/kg)  

•  Result:  Death.  

 )  Toxic  dose  for  an  

   elephant  about  1000  

   lower  than  for  a  mouse!  

West LJ, Pierce CM, Thomas WD. Lysergic Acid Diethylamide: Its Effects on a Male Asiatic Elephant. Science. 1962 Dec 7;138(3545):1100-1103. 44

Transferability  of  the  Data  

Toxicity  of  LSD  

Species LD50 [mg/kg]

Mouse 50-60

Rat 16.5

Rabbit 0.3

Elephant << 0.06

Human >> 0.003

45

Transferability  of  Data  

•  Example:  2,3,7,8-­‐tetrachlorodibenzo-­‐p-­‐dioxin  (TCDD,  “Seveso  poison”)  

•  Even  in  the  closely  related  species  hamster  and  guinea  pig  toxicity  differs  by  three  orders  of  magnitude  

•  Extrapola1on  is  thus  very,      very  dangerous!  

•  Even  data  from  close      rela1ves  can  be  misleading:    apes  are  rather  insensi1ve    to  TCDD  

46

Models:  in  vitro  Tests  

•  Example:  Ames  test  iden1fies    cpds  with  mutagenic  (and      carcinogenic)  poten@al  

•  Carefully  engineered  strain  of  Salmonella  typhimurium  

•  Lacks  the  ability  to  synthesize  His  •  Incubated  together  with  the  compound  and  a  few  other  things  (e.g.,  liver  extract  to  check  for  mutagenicity  of  possible  metabolites)  

•  Mutagenic  agent  can  cause  backmuta1ons  that  can  grow  into  larger  colonies  

•  Colony  count  is  a  measure  for  mutagenic  poten1al  Ames, B., F. Lee, and W. Durston; Proc. Natl. Acad. Sci. USA 70:782-786, 1973

47

Problems  Predic@ng  Toxicity  

•  Wide  range  of  biochemical  processes  involved  

•  Very  similar  structures  have  very  different  toxicological  proper1es  (structure-­‐toxicity  landscape  is  very  rough)  

•  Different  mechanisms  can  result  in  the  same  toxicological  outcome  

•  Very  different  structure-­‐ac1vity  rela1onships  between  different  classes  of  compounds  

•  Onen  caused  by  metabolites,  so  not  a  property  directly  related  to  a  compound‘s  structure!  

48

Theore@cal  Models  

Which  approaches  are  there?  

•  Knowledge-­‐based  (“expert  systems”)  

•  Store  expert  knowledge  as  individual  rules  

•  Applying  these  rules  to  a  given  structure  results  in  a  classifica1on  

•  Sta@s@cal  models  ((Q)SAR)  

•  Automated  sta1s1cal  analysis  of  large-­‐scale  data  sets  using  sta1s1cal  methods  

•  No  experts  required,  but  strongly  dependent  on  data  quality,  inclusion  of  all  relevant  processes  

49

Top-­‐down/Bocom-­‐up  

Richard, Toxicol Lett 102-103:611-616, 1998 50

What  is  being  modeled?  •  There  is  not  an  single  toxicity  model,  but  numerous  different  toxicological  proper1es  are  being  modeled  independently:  •  Liver  toxicity  •  Kidney  toxicity  •  Carcinogenicity  •  Mutagenicity  

•  Reproduc1ve  toxicity  •  Acute  LD50  (rat)  

•  Transdermal  absorp1on  

•  ...  51

Approaches  

Sta@s@cal  Approaches  •  CASE/Mul@CASE  

Klopman;  J.  Am.  Chem.  Soc  106:7315-­‐7321,  1984  

Klopman;  QSAR  11:176-­‐184,  1992  

•  TOPKAT  

Enslein  et  al.;  Mutat.  Res.  305:47-­‐61,  1992  

Expert  Systems  

•  DEREK  

Sanderson,  Earnshaw;  Human  Exp.  Toxicol.  10:261-­‐273,  1991  

•  ONCOLOGIC  

Woo  et  al.;  Toxicol.  LeR.  79:219-­‐228,  1995  

52

Predic@on  Models  

Richard, Toxicol Lett 102-103:611-616, 1998

53

Example:  DEREK  

•  DEREK  is  a  knowledge-­‐based  system  (Deduc1ve  Es1ma1on  of  Risk  from  Exis1ng  Knowledge)  

•  Based  on  a  program  for  organic  synthesis  planning  (LHASA)  

•  Rather  old  (1980/1985)  

•  Developed  for  VAX  

•  600  modules  in  Fortran,  C  and  Macro  

•  Rule-­‐descrip1on  language  CHMTRN  

•  Extends  LHASAs  rule  language  for  elements  required  in  toxicology  (àDERTRN)  

•  Ini1ally  about  50  different  rules  

 „...based  on  a  combina<on  of  over  30  years  experience  of  toxicological  work...“  

54

DEREK  •  Simple  rules  of  the  structure  IF structural  chemical  property THEN specific  outcome  possible    

•  Results  are  purely  qualita1ve  (!)  •  In  addi1on,  it  contains  the  FDA‘s  rule  set  for  carcinogenicity  

•  Mainly  used  to  select  compounds  in  a  campaign,  remove  those  with  obvious  problems  

•  Also  used  as  an  indicator  where  addi1onal  experiments  are  required  

55

DEREK  Rules  

Four  sec1ons  

1.  Descrip1ons  

2.  Usage  informa1on  

3.  Structural  paRern  

triggering  the  rule  

4.  DERTRN  query  to  refine  the  structural  paRern  

further    

56

DEREK:  Pros/Cons  

+  Development  of  rules  is  overseen  by  the  users  and  transparent  to  them  –  there  is  always  an  explana1on  for  a  rule  

+  New  rules  can  be  integrated  rather  simply  +  Simple  user  interface  -­‐  Rule  syntax  rather  limited,  no  3D  defini1ons  -­‐  Rules  are  rather  coarse  and  capture  only  a  few  key  metabolic  mechanisms  

-­‐  Inclusion  of  toxicological  databases  and  the  knowledge  therein  might  improve  predic1ons  

57

Example:  (Mul@)CASE  

•  CASE  -­‐  Computer  Automated  Structure  Evalua1on  

•  Has  been  extended  into  Mul1-­‐CASE  

•  Relies  on  sta1s1cal  analysis  of  a  training  data  set  combining  compound  structure  and  their  biological  ac1vity  

•  Training  data  set  must  contain  a  broad  range  of  different  structures  and  toxicological  endpoints  

58

CASE:  Training  Data  

•  Training  data  set:  relates  structures  to  biological/toxicological  ac1vity  

•  Ac1vity  is  given  in  ‘CASE  units’  10-­‐19:  inac1ve  20-­‐29:  weak  ac1vity  30-­‐99:  ac1ve  

•  Structures  are  given  as  SMILES,  KLN,  or  as  a  MOL  file  

•  Analysis  is  based  on  heavy  atoms  alone  

59

CASE:  Training  Data  •  Training  data  set  has  to  be  examined  thoroughly  to  ensure  

even  coverage  of  chemspace  

•  Check  for  overrepresented  structures  

•  Iden1fy  important  missing  structures/mechanisms  

•  As  many  data  points  as  possible  should  be  included  

•  Data  of  very  similar  cpds.  with  iden1cal  mechanisms  can  be  pooled  

•  Problem:  each  change  in  the  data  set  leads  to  a  different  predic1ve  model  

60

CASE:  Model  Construc@on  

•  Decompose  all  structures  into  fragments  of  size  2  –  10  

•  Classify  fragments  as    

•  Biophores/toxicophores  (sta1s1cally  ac1ve)  

•  Biophobes  (sta1s1cally  inac1ve)  

•  Compute  physicochemical  descriptors  and  2D  descriptors  

for  a  QSAR  analysis  

61

CASE:  Classifica@on  

•  Many  fragments  are  not  by  themselves  determining  factors  for  toxicological  ac1vity  

•  Assump1on:  binomial  distribu1on  of  all  fragments  within  a  class  

•  Sta1s1cally  significant  devia1on  from  this  distribu1on  à  fragment  is  relevant  for  ac1vity  

62

CASE:  Predic@on  

•  Two  steps:  •  Ac1vity  predic1on  •  Es1ma1on  of  toxicity  

•  Input  structure  is  decomposed  into  fragments  •  Comparison  of  fragments  to  biophores/biophobes  •  Predic1on  of  ac1vity  likelihood  based  on  these  matches  

63

CASE:  Predic@on  

•  Toxicity  es1ma1on  uses  QSAR  •  Model  based  on  mul1variate  analysis  •  Forward  selec1on  of  descriptors  •  Ini1al  descriptors  

•  Biophores  •  Biophobes  •  Predicted  log  P  

•  Descriptors  are  added  un1l  the  model  does  not  improve  •  All  standard  caveats  discussed  earlier  in  the  lectures  on  QSAR  modeling  apply!  

64

Mul@-­‐CASE  

•  Aims  at  reducing  problems  caused  by  highly  correlated  descriptors  

•  Solu1on:  several  stepwise  CASE  predic1ons  •  Predict  strongest  biophore  •  Remove  molecules  containing  this  biophore  from  the  training  data  

•  Repeat  un1l  the  training  data  set  is  empty  or  no  significant  improvement  can  be  reached  

65

Mul@-­‐CASE  

•  Dis1nguishes  between  ac@vity  and  modula@on  of  ac@vity  •  Split  training  data  set  into  different  classes,  based  on  presence  or  absence  of  a  biophore  

•  Conduct  a  QSAR  analysis  in  each  of  the  classes  to  determine  whether  related  biophores  lead  to  an  increase/decrease  in  ac1vity  

•  Uses  a  larger  number  of  descriptors  than  CASE  •  Predic1on:  

•  Search  for  biophores  in  the  input  structure  •  For  each  biophore  iden1fied,  search  for  modula1ng  biophores  

66

Mul@-­‐CASE:  Pros/Cons  

+  Predic1ve  models  do  not  require  prior  (expert)  

knowledge  

+  Quan1ta1ve  predic1on  

-­‐  Predic1on  accuracy  cri1cally  dependent  on  the  quality  

(and  manual  cura1on)  of  the  training  data  set  

-­‐  Output  onen  ambiguous  à  expert  needed!  

67

Mul@-­‐CASE  vs.  DEREK  

Prediction accuracy [%]

DEREK 59

Multi-CASE 49

COMPACT 54

TOPKAT 57

Greene; ADDR 54:417-431, 2002

Prediction of carcinogenicity of 44 compounds

68

Mul@-­‐CASE  vs.  DEREK  

DEREK 4.01 Multi-CASE 3.45

Sensitivity 45% 30%

Specificity 62% 84%

Concordance 60% 79%

Greene; ADDR 54:417-431, 2002

Prediction of Ames test results for 974 cpds.

69

State  of  the  Art  –  1990  

•  In  1990  Tennant  et  al.  asked  several  experts  in  toxicology  to  predict  carcinogenicity  for  44  compounds  

•  Computa1onal  methods  were  applied  in  parallel  

•  Aner  experimental  tes1ng,  the  following  results  were  

obtained  in  1993:  

•  Best  result:  expert  (80%  correct)  

•  Theore1cal  approaches:  45-­‐65%  correct  

•  Results  hardly  beRer  than  random!  

•  Not  good  enough  to  replace  animal  models!  

 Tennant et al.; Mutagenesis 5:3-14, 1990

Ashley, Tennant; Mutagenesis 9:7-15, 1994 70

State  of  the  Art  –  2003  

•  Predic@ve  Toxicology  Challenge:  Compe11on  to  assess  the  quality  of  modern  in  silico  methods  

•  Machine  learning  

•  Limited  to  the  predic1on  of  carcinogenicity  

•  Fourteen  teams  contributed  predic1ons  

•  111  models  

•  Result:  five(!)  models  performed  beRer  than  random  

Tuivonen et al.; Bioinformatics 19(10):1183-1193, 2003

71

State  of  the  Art  –  2009  

•  Valerio  et  al.  (FDA)  examined  two  popular  state-­‐of-­‐the-­‐art  sonware  packages  

•  LMA  (Leadscope  Model  Applier)  

 QSAR/data  mining  approach  based  on  structural  features  

•  MC4PC  (a  Mul@Case  descendant)    

 Rule-­‐based  and  QSAR  approach  

•  An  external  dataset  of  43  phytochemicals  with  known  rodent  carcinogenicity  was  used  to  validate  the  predic1ons    

Valerio et al., Mol. Nutr. Food Res., 54:1-9 (2010) Yang et al., Toxicol. Mech. Methods, 18:277-295 (2008)

Matthews et al., Toxicol. Mech. Methods, 18:189-206 (2008) 72

State  of  the  Art  –  2009  

•  Results:  comparable  for  both  programs  

•  High  specificity,  low  sensi1vity  

•  S1ll  not  very  convincing  

•  Combina1on  of  both  codes  into  a  consensus  leads  to  even  worse  predic1ons  

Valerio et al., Mol. Nutr. Food Res., 54:1-9 (2010)

MC4PC LMA

Specificity 94% 59%

Sensitivity 47% 50%

False positives 6% 41%

False negatives 53% 50%

73

Are  predic@ons  possible?  •  At  the  moment  predic1ons  are  not  sufficiently  reliable    

•  Even  modern  sta1s1cal  learning  methods  fail  to  capture  the  full  complexity  of  toxicology  

•  Without  human  experts  and  experimental  tes1ng,  no  reliable  statement  on  a  compound’s  toxicity  is  possible  

•  More  complex  in  vitro  model  are  quickly  gaining  acceptance  (1ssues,  ar1ficial  organs)  and  replacing  many  animal  models;  they  

are  also  producing  an  increasing  amount  of  new  (training)  data  

•  Nevertheless:    •  Good  tool  for  the  expert  to  guide  toxicological  studies  

•  Can  yield  important  hints  for  an  early  selec1on  of  candidates  

74

Summary  •  Bioavailability  is  an  essen1al  property  for  a  drug  •  In  silico  predic1ons  are  possible,  although  difficult  using  QSAR  

approaches  •  All  drugs  have  toxic  side  effects  •  Important  is  the  therapeu1c  index  •  Predic1on  is  very  difficult  due  to  the  complexity  of  

toxicological  mechanisms  •  In  vitro  and  in  silico  approaches  s1ll  cannot  replace  animal  

models  •  In  silico  toxicity  predic1ons:  knowledge/rule-­‐based  and  

sta1s1cal  approaches  are  currently  in  use  •  Predic1ons  are  s1ll  not  reliable  enough,  although  they  are  

being  used  to  guide  decisions  

75

References  Books  •  [BKK]  Böhm,  Klebe,  Kubinyi:  Wirkstoffdesign,  Spektrum  2002  •  Mutschler:  Drug  ac1ons.  Basic  Principles  and  Therapeu1c  Aspects,  Medpharm  

Scien1fic  Publishers;  Auflage:  6Rev  Ed  (1994)  •  Klaassen:  CasareR  and  Doull's  Toxicology:  The  Basic  Science  of  Poisons,  

Mcgraw-­‐Hill  Professional;  7th  revised  ed.  (2008)  

Papers  •  Valerio  LG  Jr,  Arvidson  KB,  Busta  E,  Minnier  BL,  Kruhlak  NL,  Benz  RD.  Tes1ng  

computa1onal  toxicology  models  with  phytochemicals.  Mol  Nutr  Food  Res.  2009  (Epub  ahead  of  print),  PMID:  20024931  

 

76