dcm: advanced topics

53
DCM: Advanced topics Rosalyn Moran Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London With thanks to the FIL Methods Group for slides and images SPM Course 2011 University of Zurich, 16-18 February 2011 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 N euralpopulation activity 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 fM R Isignalchange (% ) x 1 x 2 x 3 x 1 x 2 x 3 Cu x D x B u A dt dx n j j j m i i i 1 ) ( 1 ) ( u 1 u 2

Upload: kyoko

Post on 30-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

DCM: Advanced topics. Rosalyn Moran Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London With thanks to the FIL Methods Group for slides and images. SPM Course 2011 University of Zurich, 16-18 February 2011. Dynamic Causal Modeling (DCM). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DCM: Advanced topics

DCM: Advanced topics

Rosalyn Moran

Wellcome Trust Centre for NeuroimagingInstitute of NeurologyUniversity College London

With thanks to the FIL Methods Groupfor slides and images

SPM Course 2011University of Zurich, 16-18 February 2011

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neural population activity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neural population activity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

x1 x2

x3

x1 x2

x3

CuxDxBuAdt

dx n

j

jj

m

i

ii

1

)(

1

)(

u1

u2

Page 2: DCM: Advanced topics

),,( uxFdt

dx

Neural state equation:

Electromagneticforward model:

neural activityEEGMEGLFP

Dynamic Causal Modeling (DCM)

simple neuronal modelcomplicated forward model

complicated neuronal modelsimple forward model

fMRIfMRI EEG/MEGEEG/MEG

inputs

Hemodynamicforward model:neural activityBOLD

Page 3: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 4: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 5: DCM: Advanced topics

Model comparison and selection

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

For which model m does p(y|m) become maximal?

Which model represents thebest balance between model fit and model complexity?

Pitt & Miyung (2002) TICS

Page 6: DCM: Advanced topics

pmypAIC ),|(log

Logarithm is a monotonic function

Maximizing log model evidence= Maximizing model evidence

)(),|(log

)()( )|(log

mcomplexitymyp

mcomplexitymaccuracymyp

In SPM2 & SPM5, interface offers 2 approximations:

Np

mypBIC log2

),|(log

Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Penny et al. 2004, NeuroImage

Approximations to the model evidence in DCM

No. of parameters

No. ofdata points

AIC favours more complex models,BIC favours simpler models.

Page 7: DCM: Advanced topics

The negative free energy approximation

• The negative free energy F is a lower bound on the log model evidence:

mypqKLmypF ,|,)|(log

Page 8: DCM: Advanced topics

The complexity term in F

• In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. Under gaussian assumptions:

• The complexity term of F is higher– the more independent the prior parameters ( effective DFs)

– the more dependent the posterior parameters

– the more the posterior mean deviates from the prior mean

• NB: SPM8 only uses F for model selection !

y

Tyy CCC

mpqKL

|1

|| 2

1ln

2

1ln

2

1

)|(),(

Penny et al. submitted

Page 9: DCM: Advanced topics

Bayes factors

)|(

)|(

2

112 myp

mypB

positive value, [0;[

For a given dataset, to compare two models, we compare their evidences.

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

150 99% Very strongKass & Raftery classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.

or their log evidences

2112 )ln( FFB

Page 10: DCM: Advanced topics

V1 V5stim

PPCM2

attention

V1 V5stim

PPCM1

attention

V1 V5stim

PPCM3attention

V1 V5stim

PPCM4attention

BF 2966F = 7.995

M2 better than M1

BF 12F = 2.450

M3 better than M2

BF 23F = 3.144

M4 better than M3

M1 M2 M3 M4

BMS in SPM8: an example

Page 11: DCM: Advanced topics

Fixed effects BMS at group level

Group Bayes factor (GBF) for 1...K subjects:

Average Bayes factor (ABF):

Problems:- blind with regard to group heterogeneity- sensitive to outliers

kn

nijij BFGBF

...1

)(

kn

nj

kn

niij FFGBF

..1

)(

..1

)( lnlnlnor

k

kn

nijij BFABF

...1

)(

Page 12: DCM: Advanced topics

)|(~ 111 mypy)|(~ 111 mypy

)|(~ 222 mypy)|(~ 111 mypy

)|(~ pmpm kk

);(~ rDirr

)|(~ pmpm kk )|(~ pmpm kk ),1;(~1 rmMultm

Random effects BMS for group studies

Dirichlet parameters= “occurrences” of models in the population

Dirichlet distribution of model probabilities

Multinomial distribution of model labels

Measured data y

Model inversion by Variational Bayes (VB)

Model inversion by Variational Bayes (VB)

Stephan et al. 2009, NeuroImage

estimate the parameters of the posterior ( | , )p r y

Page 13: DCM: Advanced topics

)|(~ 111 mypy)|(~ 111 mypy

)|(~ 222 mypy)|(~ 111 mypy

)|(~ pmpm kk

);(~ rDirr

)|(~ pmpm kk )|(~ pmpm kk),1;(~1 rmMultm

Random effects BMS for group studies

Stephan et al. 2009, NeuroImage

)( 1 Kkqkr

k...1

1,2 1( 0.5 | , )p r y

“the occurences”

“the expected likelihood”

“the exceedance probability”

Page 14: DCM: Advanced topics

Is the red letter left or right from the midline of the word?

group analysis (random effects),n=16, p<0.05 corrected

analysis with SPM2

group analysis (random effects),n=16, p<0.05 corrected

analysis with SPM2

Task-driven lateralisation

letter decisions > spatial decisions

time

•••

Does the word contain the letter A or not?

spatial decisions > letter decisions

Stephan et al. 2003, Science

Page 15: DCM: Advanced topics

Theories on inter-hemispheric integration during lateralised

tasks

Information transfer(for left-lateralised task)

LVF RVF

T

T+

Predictions:modulation by task conditional on visual fieldasymmetric connection strengths

|LVF

|RVF

Page 16: DCM: Advanced topics

MOGleft

LGleft

LGright

RVFstim.

LVFstim.

FGright

FGleft

LD|LVF

MOGright

Ventral stream & letter decisions

LD>SD, p<0.05 cluster-level corrected(p<0.001 voxel-level cut-off)

Left MOG-38,-90,-4

Left FG-44,-52,-18

Right MOG-38,-94,0

p<0.01 uncorrected

Left LG-12,-70,-6

Left LG-14,-68,-2

LD>SD masked incl. with RVF>LVFp<0.05 cluster-level corrected(p<0.001 voxel-level cut-off)

LD>SD masked incl. with LVF>RVFp<0.05 cluster-level corrected

(p<0.001 voxel-level cut-off)

Right FG38,-52,-20

Stephan et al. 2007, J. Neurosci.

Page 17: DCM: Advanced topics

MOGleft

LGleft

LGright

RVFstim.

LVFstim.

FGright

FGleft

LD|LVF

MOGright

Ventral stream & letter decisions

LD>SD, p<0.05 cluster-level corrected(p<0.001 voxel-level cut-off)

Left MOG-38,-90,-4

Left FG-44,-52,-18

Right MOG-38,-94,0

p<0.01 uncorrected

Left LG-12,-70,-6

Left LG-14,-68,-2

LD>SD masked incl. with RVF>LVFp<0.05 cluster-level corrected(p<0.001 voxel-level cut-off)

LD>SD masked incl. with LVF>RVFp<0.05 cluster-level corrected

(p<0.001 voxel-level cut-off)

Right FG38,-52,-20

Stephan et al. 2007, J. Neurosci.

Page 18: DCM: Advanced topics

-35 -30 -25 -20 -15 -10 -5 0 5

Su

bje

cts

Log model evidence differences

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD|RVF

LD|LVF

LD LD

MOGMOG

LG LG

RVFstim.

LVFstim.

FGFG

LD

LD

LD|RVF LD|LVF

MOG

m2 m1

m1m2

Stephan et al. 2009, NeuroImage

Winner! Fixed Effects

Page 19: DCM: Advanced topics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r1

p(r 1

|y)

p(r1>0.5 | y) = 0.997

m1m2

1

1

11.8

84.3%r

2

2

2.2

15.7%r

%7.9921 rrp

Page 20: DCM: Advanced topics

Simulation study: sampling subjects from a heterogenous population

• Population where 70% of all subjects' data are generated by model m1 and 30% by model m2

• Random sampling of subjects from this population and generating synthetic data with observation noise

• Fitting both m1 and m2 to all data sets and performing BMS

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD|RVF

LD|LVF

LD LD

MOG

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD

LD

LD|RVF LD|LVF

MOG

m1

m2

Stephan et al. 2009, NeuroImage

Page 21: DCM: Advanced topics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

16

18

m1 m2

m1 m2 m1 m2

<r>

true values:1=220.7=15.42=220.3=6.6

mean estimates:1=15.4, 2=6.6

true values:r1 = 0.7, r2=0.3

mean estimates:r1 = 0.7, r2=0.3

true values:1 = 1, 2=0

mean estimates:1 = 0.89, 2=0.11

Page 22: DCM: Advanced topics

Families of Models

Partition

k

k

fmm

fmk

rs

mpyfp )()(

Page 23: DCM: Advanced topics

Families of Models

*

*

BMA: weight posterior parameter densities with model probabilities

e.g. Modulatory connections

Penny et al., 2010

Page 24: DCM: Advanced topics

inference on model structure or inference on model parameters?

inference on individual models or model space partition?

comparison of model families using

FFX or RFX BMS

comparison of model families using

FFX or RFX BMS

optimal model structure assumed to be identical across subjects?

FFX BMSFFX BMS RFX BMSRFX BMS

yes no

inference on parameters of an optimal model or parameters of all models?

BMABMA

definition of model spacedefinition of model space

FFX analysis of parameter estimates

(e.g. BPA)

FFX analysis of parameter estimates

(e.g. BPA)

RFX analysis of parameter estimates(e.g. t-test, ANOVA)

RFX analysis of parameter estimates(e.g. t-test, ANOVA)

optimal model structure assumed to be identical across subjects?

FFX BMS

yes no

RFX BMS

Stephan et al. 2010, NeuroImage

Page 25: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 26: DCM: Advanced topics

intrinsic connectivity

direct inputs

modulation ofconnectivity

Neural state equation CuxBuAx jj )( )(

u

xC

x

x

uB

x

xA

j

j

)(

hemodynamicmodelλ

x

y

integration

BOLDyyy

activityx1(t)

activityx2(t) activity

x3(t)

neuronalstates

t

drivinginput u1(t)

modulatoryinput u2(t)

t

Stephan & Friston (2007),Handbook of Brain Connectivity

Page 27: DCM: Advanced topics

bilinear DCM

CuxDxBuAdt

dx m

i

n

j

jj

ii

1 1

)()(CuxBuA

dt

dx m

i

ii

1

)(

Bilinear state equation:

driving input

modulation

non-linear DCM

driving input

modulation

...)0,(),(2

0

uxux

fu

u

fx

x

fxfuxf

dt

dx

Two-dimensional Taylor series (around x0=0, u0=0):

Nonlinear state equation:

...2

)0,(),(2

2

22

0

x

x

fux

ux

fu

u

fx

x

fxfuxf

dt

dx

Page 28: DCM: Advanced topics

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neural population activity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

x1 x2

x3

CuxDxBuAdt

dx n

j

jj

m

i

ii

1

)(

1

)(

Nonlinear dynamic causal model (DCM):

Stephan et al. 2008, NeuroImage

u1

u2

Page 29: DCM: Advanced topics

Nonlinear DCM: Attention to motion

V1 IFG

V5

SPC

Motion

Photic

Attention

.82(100%)

.42(100%)

.37(90%)

.69 (100%).47

(100%)

.65 (100%)

.52 (98%)

.56(99%)

Stimuli + Task

250 radially moving dots (4.7 °/s)

Conditions:F – fixation onlyA – motion + attention (“detect changes”)N – motion without attentionS – stationary dots

Previous bilinear DCM

Friston et al. (2003)

Friston et al. (2003):attention modulates backward connections IFG→SPC and SPC→V5.

Q: Is a nonlinear mechanism (gain control) a better explanation of the data?

Büchel & Friston (1997)

Page 30: DCM: Advanced topics

modulation of back-ward or forward connection?

additional drivingeffect of attentionon PPC?

bilinear or nonlinearmodulation offorward connection?

V1 V5stim

PPCM2

attention

V1 V5stim

PPCM1

attention

V1 V5stim

PPCM3attention

V1 V5stim

PPCM4attention

BF = 2966

M2 better than M1

M3 better than M2

BF = 12

M4 better than M3

BF = 23

Stephan et al. 2008, NeuroImage

Page 31: DCM: Advanced topics

V1 V5stim

PPC

attention

motion

-2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%1.99)|0( 1,5 yDp PPCVV

1.25

0.13

0.46

0.39

0.26

0.50

0.26

0.10MAP = 1.25

Stephan et al. 2008, NeuroImage

Page 32: DCM: Advanced topics

V1

V5PPC

observedfitted

motion &attention

motion &no attention

static dots

Page 33: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 34: DCM: Advanced topics

Stochastic DCMs

Daunizeau et al, 2009

Friston et al, 2008Inversion: Generalised filtering (under the Laplace assumption)

activityx1(t)

activityx2(t) activity

x3(t)

neuronalstates

t

drivinginput u1(t)

modulatoryinput u2(t)

t

Stochastic innovations: variance hyperparameter

Page 35: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 36: DCM: Advanced topics

Learning of dynamic audio-visual associations

CS Response

Time (ms)

0 200 400 600 800 2000 ± 650

or

Target StimulusConditioning Stimulus

or

TS

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

p(f

ace)

trial

CS1

CS2

den Ouden et al. 2010, J. Neurosci .

Page 37: DCM: Advanced topics

Bayesian learning model

observed events

probabilistic association

volatility

k

vt-1 vt

rt rt+1

ut ut+1

)exp(,~,|1 ttttt vrDirvrrp

)exp(,~,|1 kvNkvvp ttt

1kp

1: 1 1 1 1 1 1 1: 1 1 1

1: 1

1:

1: 1

prediction: , , , , , ,

, ,update: , ,

, ,

t t t t t t t t t t t t t

t t t t t

t t t

t t t t t t t

p r v K u p r r v p v v K p r v K u dr dv

p r v K u p u rp r v K u

p r v K u p u r dr dv dK

Changes over trials: Model Based RegressorBehrens et al. 2007, Nat. Neurosci.

Page 38: DCM: Advanced topics

Comparison with competing learning models

400 440 480 520 560 6000

0.2

0.4

0.6

0.8

1

Trial

p(F

)

TrueBayes VolHMM fixedHMM learnRW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Categoricalmodel

Bayesianlearner

HMM (fixed) HMM (learn) Rescorla-Wagner

Exc

eed

ance

pro

b.BMS:

hierarchical Bayesian learner performs best

Alternative learning models:

Rescorla-Wagner

HMM (2 variants)

True probabilities

den Ouden et al. 2010, J. Neurosci .

Page 39: DCM: Advanced topics

Putamen Premotor cortex

Stimulus-independent prediction error

p < 0.05 (SVC)

p < 0.05 (cluster-level whole- brain corrected)

p(F) p(H)-2

-1.5

-1

-0.5

0

BO

LD

re

sp.

(a.u

.)

p(F) p(H)-2

-1.5

-1

-0.5

0

BO

LD

re

sp.

(a.u

.)

den Ouden et al. 2010, J. Neurosci .

Page 40: DCM: Advanced topics

Prediction error (PE) activity in the putamen

PE during reinforcement learning

PE during incidental sensory learning

O'Doherty et al. 2004, Science

den Ouden et al. 2009, Cerebral Cortex

According to the free energy principle (and other learning theories):

synaptic plasticity during learning = PE dependent changes in connectivity

Page 41: DCM: Advanced topics

Prediction error in PMd: cause or effect?

Model 1 Model 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-4

-3

-2

-1

0

1

2

3

4

5

log

mo

del

evi

den

ce

subject

Model 1 minus Model 2

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

r1p(

r 1|y

)

p(r1>0.5 | y) = 0.991

den Ouden et al. 2010, J. Neurosci .

Page 42: DCM: Advanced topics

PPA FFA

PMd

p(F)p(H)

PUT

d = 0.010 0.003

p = 0.010

Prediction error gates visuo-motor connections

d = 0.011 0.004

p = 0.017

• Modulation of visuo-motor connections by striatal PE activity

• Influence of visual areas on premotor cortex:– stronger for

surprising stimuli

– weaker for expected stimuli

den Ouden et al. 2010, J. Neurosci .

Page 43: DCM: Advanced topics

Overview

• Bayesian model selection (BMS)

• Nonlinear DCM for fMRI

• Stochastic DCM

• Embedding computational models in DCMs

• Integrating tractography and DCM

Page 44: DCM: Advanced topics

Diffusion-tensor imaging

Parker & Alexander, 2005, Phil. Trans. B

Page 45: DCM: Advanced topics

Probabilistic tractography: Kaden et al. 2007, NeuroImage

• computes local fibre orientation density by deconvolution of the diffusion-weighted signal

• estimates the spatial probability distribution of connectivity from given seed regions

• anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region

• If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003)

Page 46: DCM: Advanced topics

R2R1

R2R1

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

low probability of anatomical connection small prior variance of effective connectivity parameter

high probability of anatomical connection large prior variance of effective connectivity parameter

Integration of tractography and DCM

Stephan, Tittgemeyer et al. 2009, NeuroImage

Page 47: DCM: Advanced topics

LG(x1)

LG(x2)

RVFstim.

LVFstim.

FG(x4)

FG(x3)

LD|LVF

LD LD

BVFstim.

LD|RVF DCM structure

LGleft

LGright

FGright

FGleft

* 313

13

5.37 10

15.7%

* 334

34

2.23 10

6.5%

* 224

24

1.50 10

43.6%

* 212

12

1.17 10

34.2%

anatomical connectivity

probabilistictractography

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6.5%

0.0384v

15.7%

0.1070v

34.2%

0.5268v

43.6%

0.7746v

connection-specific priors for coupling parameters

Stephan, Tittgemeyer et al. 2009, NeuroImage

Page 48: DCM: Advanced topics

0 0.5 10

0.5

1m1: a=-32,b=-32

0 0.5 10

0.5

1m2: a=-16,b=-32

0 0.5 10

0.5

1m3: a=-16,b=-28

0 0.5 10

0.5

1m4: a=-12,b=-32

0 0.5 10

0.5

1m5: a=-12,b=-28

0 0.5 10

0.5

1m6: a=-12,b=-24

0 0.5 10

0.5

1m7: a=-12,b=-20

0 0.5 10

0.5

1m8: a=-8,b=-32

0 0.5 10

0.5

1m9: a=-8,b=-28

0 0.5 10

0.5

1m10: a=-8,b=-24

0 0.5 10

0.5

1m11: a=-8,b=-20

0 0.5 10

0.5

1m12: a=-8,b=-16

0 0.5 10

0.5

1m13: a=-8,b=-12

0 0.5 10

0.5

1m14: a=-4,b=-32

0 0.5 10

0.5

1m15: a=-4,b=-28

0 0.5 10

0.5

1m16: a=-4,b=-24

0 0.5 10

0.5

1m17: a=-4,b=-20

0 0.5 10

0.5

1m18: a=-4,b=-16

0 0.5 10

0.5

1m19: a=-4,b=-12

0 0.5 10

0.5

1m20: a=-4,b=-8

0 0.5 10

0.5

1m21: a=-4,b=-4

0 0.5 10

0.5

1m22: a=-4,b=0

0 0.5 10

0.5

1m23: a=-4,b=4

0 0.5 10

0.5

1m24: a=0,b=-32

0 0.5 10

0.5

1m25: a=0,b=-28

0 0.5 10

0.5

1m26: a=0,b=-24

0 0.5 10

0.5

1m27: a=0,b=-20

0 0.5 10

0.5

1m28: a=0,b=-16

0 0.5 10

0.5

1m29: a=0,b=-12

0 0.5 10

0.5

1m30: a=0,b=-8

0 0.5 10

0.5

1m31: a=0,b=-4

0 0.5 10

0.5

1m32: a=0,b=0

0 0.5 10

0.5

1m33: a=0,b=4

0 0.5 10

0.5

1m34: a=0,b=8

0 0.5 10

0.5

1m35: a=0,b=12

0 0.5 10

0.5

1m36: a=0,b=16

0 0.5 10

0.5

1m37: a=0,b=20

0 0.5 10

0.5

1m38: a=0,b=24

0 0.5 10

0.5

1m39: a=0,b=28

0 0.5 10

0.5

1m40: a=0,b=32

0 0.5 10

0.5

1m41: a=4,b=-32

0 0.5 10

0.5

1m42: a=4,b=0

0 0.5 10

0.5

1m43: a=4,b=4

0 0.5 10

0.5

1m44: a=4,b=8

0 0.5 10

0.5

1m45: a=4,b=12

0 0.5 10

0.5

1m46: a=4,b=16

0 0.5 10

0.5

1m47: a=4,b=20

0 0.5 10

0.5

1m48: a=4,b=24

0 0.5 10

0.5

1m49: a=4,b=28

0 0.5 10

0.5

1m50: a=4,b=32

0 0.5 10

0.5

1m51: a=8,b=12

0 0.5 10

0.5

1m52: a=8,b=16

0 0.5 10

0.5

1m53: a=8,b=20

0 0.5 10

0.5

1m54: a=8,b=24

0 0.5 10

0.5

1m55: a=8,b=28

0 0.5 10

0.5

1m56: a=8,b=32

0 0.5 10

0.5

1m57: a=12,b=20

0 0.5 10

0.5

1m58: a=12,b=24

0 0.5 10

0.5

1m59: a=12,b=28

0 0.5 10

0.5

1m60: a=12,b=32

0 0.5 10

0.5

1m61: a=16,b=28

0 0.5 10

0.5

1m62: a=16,b=32

0 0.5 10

0.5

1m63 & m64

0

01 exp( )ijij

0

01 exp( )ijij

Connection-specific prior variance as a function of anatomical connection probability

• 64 different mappings by systematic search across hyper-parameters and

• yields anatomically informed (intuitive and counterintuitive) and uninformed priors

Page 49: DCM: Advanced topics

0 10 20 30 40 50 600

200

400

600

model

log

gro

up

Bay

es f

acto

r

0 10 20 30 40 50 60

680

685

690

695

700

model

log

gro

up

Bay

es f

acto

r

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

model

po

st.

mo

del

pro

b.

Page 50: DCM: Advanced topics

0 0.5 10

0.5

1m1: a=-32,b=-32

0 0.5 10

0.5

1m2: a=-16,b=-32

0 0.5 10

0.5

1m3: a=-16,b=-28

0 0.5 10

0.5

1m4: a=-12,b=-32

0 0.5 10

0.5

1m5: a=-12,b=-28

0 0.5 10

0.5

1m6: a=-12,b=-24

0 0.5 10

0.5

1m7: a=-12,b=-20

0 0.5 10

0.5

1m8: a=-8,b=-32

0 0.5 10

0.5

1m9: a=-8,b=-28

0 0.5 10

0.5

1m10: a=-8,b=-24

0 0.5 10

0.5

1m11: a=-8,b=-20

0 0.5 10

0.5

1m12: a=-8,b=-16

0 0.5 10

0.5

1m13: a=-8,b=-12

0 0.5 10

0.5

1m14: a=-4,b=-32

0 0.5 10

0.5

1m15: a=-4,b=-28

0 0.5 10

0.5

1m16: a=-4,b=-24

0 0.5 10

0.5

1m17: a=-4,b=-20

0 0.5 10

0.5

1m18: a=-4,b=-16

0 0.5 10

0.5

1m19: a=-4,b=-12

0 0.5 10

0.5

1m20: a=-4,b=-8

0 0.5 10

0.5

1m21: a=-4,b=-4

0 0.5 10

0.5

1m22: a=-4,b=0

0 0.5 10

0.5

1m23: a=-4,b=4

0 0.5 10

0.5

1m24: a=0,b=-32

0 0.5 10

0.5

1m25: a=0,b=-28

0 0.5 10

0.5

1m26: a=0,b=-24

0 0.5 10

0.5

1m27: a=0,b=-20

0 0.5 10

0.5

1m28: a=0,b=-16

0 0.5 10

0.5

1m29: a=0,b=-12

0 0.5 10

0.5

1m30: a=0,b=-8

0 0.5 10

0.5

1m31: a=0,b=-4

0 0.5 10

0.5

1m32: a=0,b=0

0 0.5 10

0.5

1m33: a=0,b=4

0 0.5 10

0.5

1m34: a=0,b=8

0 0.5 10

0.5

1m35: a=0,b=12

0 0.5 10

0.5

1m36: a=0,b=16

0 0.5 10

0.5

1m37: a=0,b=20

0 0.5 10

0.5

1m38: a=0,b=24

0 0.5 10

0.5

1m39: a=0,b=28

0 0.5 10

0.5

1m40: a=0,b=32

0 0.5 10

0.5

1m41: a=4,b=-32

0 0.5 10

0.5

1m42: a=4,b=0

0 0.5 10

0.5

1m43: a=4,b=4

0 0.5 10

0.5

1m44: a=4,b=8

0 0.5 10

0.5

1m45: a=4,b=12

0 0.5 10

0.5

1m46: a=4,b=16

0 0.5 10

0.5

1m47: a=4,b=20

0 0.5 10

0.5

1m48: a=4,b=24

0 0.5 10

0.5

1m49: a=4,b=28

0 0.5 10

0.5

1m50: a=4,b=32

0 0.5 10

0.5

1m51: a=8,b=12

0 0.5 10

0.5

1m52: a=8,b=16

0 0.5 10

0.5

1m53: a=8,b=20

0 0.5 10

0.5

1m54: a=8,b=24

0 0.5 10

0.5

1m55: a=8,b=28

0 0.5 10

0.5

1m56: a=8,b=32

0 0.5 10

0.5

1m57: a=12,b=20

0 0.5 10

0.5

1m58: a=12,b=24

0 0.5 10

0.5

1m59: a=12,b=28

0 0.5 10

0.5

1m60: a=12,b=32

0 0.5 10

0.5

1m61: a=16,b=28

0 0.5 10

0.5

1m62: a=16,b=32

0 0.5 10

0.5

1m63 & m64

Stephan, Tittgemeyer et al. 2009, NeuroImage

Page 51: DCM: Advanced topics

Methods papers on DCM for fMRI and BMS – part 1

• Daunizeau J., Friston K. J., Kiebel S. J. ; Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models, Physica D (2009) 238: 2089-2118.

• Chumbley JR, Friston KJ, Fearn T, Kiebel SJ (2007) A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38:478-487.

• Daunizeau J, David, O, Stephan KE (2010) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage, in press.

• Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273-1302.• Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010)

Multi-Subject Analyses with Dynamic Causal Modeling. NeuroImage 49: 3065-3074.• Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative

model of slice timing in fMRI. NeuroImage 34:1487-1496.• Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state

model. NeuroImage 39:269-278.• Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models.

NeuroImage 22:1157-1172.• Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a

comparison of structural equation and dynamic causal models. NeuroImage 23 Suppl 1:S264-274.

• Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology, in press.

Page 52: DCM: Advanced topics

Methods papers on DCM for fMRI and BMS – part 2

• Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629-635.

• Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.

• Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129-144.

• Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. Neuroimage 38:387-401.

• Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649-662.

• Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. NeuroImage 46:1004-1017.

• Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009) Tractography-based priors for dynamic causal models. NeuroImage 47: 1628-1638.

• Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109.

Page 53: DCM: Advanced topics

Thank you