datashet

9
050-7625 Rev A 4-2006 APT150GN60JDQ4 TYPICAL PERFORMANCE CURVES MAXIMUM RATINGS All Ratings: T C = 25°C unless otherwise specified. STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions Collector-Emitter Breakdown Voltage (V GE = 0V, I C = 4mA) Gate Threshold Voltage (V CE = V GE , I C = 2400µA, T j = 25°C) Collector-Emitter On Voltage (V GE = 15V, I C = 150A, T j = 25°C) Collector-Emitter On Voltage (V GE = 15V, I C = 150A, T j = 125°C) Collector Cut-off Current (V CE = 600V, V GE = 0V, T j = 25°C) 2 Collector Cut-off Current (V CE = 600V, V GE = 0V, T j = 125°C) 2 Gate-Emitter Leakage Current (V GE = ±20V) Intergrated Gate Resistor Symbol V (BR)CES V GE(TH) V CE(ON) I CES I GES R G(int) Units Volts µA nA Symbol V CES V GE I C1 I C2 I CM SSOA P D T J ,T STG T L APT150GN60JDQ4 600 ±30 220 123 450 450A @ 600V 536 -55 to 175 300 UNIT Volts Amps Watts °C Parameter Collector-Emitter Voltage Gate-Emitter Voltage Continuous Collector Current @ T C = 25°C Continuous Collector Current @ T C = 110°C Pulsed Collector Current 1 Switching Safe Operating Area @ T J = 175°C Total Power Dissipation Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. APT Website - http://www.advancedpower.com CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low V CE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive V CE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses. 600V Field Stop • Trench Gate: Low V CE(on) • Easy Paralleling • Intergrated Gate Resistor: Low EMI, High Reliability Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MIN TYP MAX 600 5.0 5.8 6.5 1.05 1.45 1.85 1.65 50 TBD 600 2 ® 600V APT150GN60JDQ4 SOT-227 ISOTOP ® file # E145592 "UL Recognized" G E E C C E G

Upload: david-moody

Post on 19-Dec-2015

225 views

Category:

Documents


0 download

DESCRIPTION

Datahseet manual

TRANSCRIPT

Page 1: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TYPICAL PERFORMANCE CURVES

MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.

STATIC ELECTRICAL CHARACTERISTICSCharacteristic / Test Conditions

Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA)

Gate Threshold Voltage (VCE = VGE, IC = 2400µA, Tj = 25°C)

Collector-Emitter On Voltage (VGE = 15V, IC = 150A, Tj = 25°C)

Collector-Emitter On Voltage (VGE = 15V, IC = 150A, Tj = 125°C)

Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2

Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2

Gate-Emitter Leakage Current (VGE = ±20V)

Intergrated Gate Resistor

Symbol

V(BR)CES

VGE(TH)

VCE(ON)

ICES

IGES

RG(int)

Units

Volts

µA

nA

Ω

Symbol

VCES

VGE

IC1

IC2

ICM

SSOA

PD

TJ,TSTG

TL

APT150GN60JDQ4

600

±30

220

123

450

450A @ 600V

536

-55 to 175

300

UNIT

Volts

Amps

Watts

°C

Parameter

Collector-Emitter Voltage

Gate-Emitter Voltage

Continuous Collector Current @ TC = 25°C

Continuous Collector Current @ TC = 110°C

Pulsed Collector Current 1

Switching Safe Operating Area @ TJ = 175°C

Total Power Dissipation

Operating and Storage Junction Temperature Range

Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.

APT Website - http://www.advancedpower.com

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses.

• 600V Field Stop • Trench Gate: Low VCE(on) • Easy Paralleling • Intergrated Gate Resistor: Low EMI, High Reliability

Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS

MIN TYP MAX

600

5.0 5.8 6.5

1.05 1.45 1.85

1.65

50

TBD

600

2

®

600V APT150GN60JDQ4

SOT-2

27

ISOTOP® file # E145592"UL Recognized"

G

E E

C

C

E

G

Page 2: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4

1 Repetitive Rating: Pulse width limited by maximum junction temperature.

2 For Combi devices, Ices includes both IGBT and FRED leakages

3 See MIL-STD-750 Method 3471.

4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.

5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)

6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)

APT Reserves the right to change, without notice, the specifications and information contained herein.

DYNAMIC CHARACTERISTICS

Symbol

Cies

Coes

Cres

VGEP

Qg

Qge

Qgc

SSOA

td(on)

trtd(off)

tfEon1

Eon2

Eoff

td(on)

trtd(off)

tfEon1

Eon2

Eoff

Test Conditions

Capacitance

VGE = 0V, VCE = 25Vf = 1 MHz

Gate Charge

VGE = 15V

VCE = 300V

IC = 150A

TJ = 175°C, RG = 4.3Ω 7, VGE =

15V, L = 100µH,VCE = 600V

Inductive Switching (25°C)

VCC = 400V

VGE = 15V

IC = 150A

RG = 1.0Ω 7

TJ = +25°C

Inductive Switching (125°C)

VCC = 400V

VGE = 15V

IC = 150A

RG = 1.0Ω 7

TJ = +125°C

Characteristic

Input Capacitance

Output Capacitance

Reverse Transfer Capacitance

Gate-to-Emitter Plateau Voltage

Total Gate Charge 3

Gate-Emitter Charge

Gate-Collector ("Miller") Charge

Switching Safe Operating Area

Turn-on Delay Time

Current Rise Time

Turn-off Delay Time

Current Fall Time

Turn-on Switching Energy 4

Turn-on Switching Energy (Diode) 5

Turn-off Switching Energy 6

Turn-on Delay Time

Current Rise Time

Turn-off Delay Time

Current Fall Time

Turn-on Switching Energy 4 4

Turn-on Switching Energy (Diode) 55

Turn-off Switching Energy 66

MIN TYP MAX

9200

350

300

9.5

970

65

510

450

44

110

430

60

8810

8615

4295

44

110

480

95

8880 9735

5460

UNIT

pF

V

nC

A

ns

µJ

ns

µJ

THERMAL AND MECHANICAL CHARACTERISTICSUNIT

°C/W

Volts

oz

gm

Ib•in

N•m

MIN TYP MAX

0.28

.33

2500

1.03

29.2

10

1.1

Characteristic

Junction to Case (IGBT)

Junction to Case (DIODE)

RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)

Package Weight

Maximum Terminal & Mounting Torque

Symbol

RθJC

RθJC

VIsolation

WT

Torque

Page 3: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TYPICAL PERFORMANCE CURVES

V

GS

(TH

), TH

RE

SH

OLD

VO

LTA

GE

V

CE, C

OLL

EC

TOR

-TO

-EM

ITTE

R V

OLT

AG

E (V

) I C

, CO

LLE

CTO

R C

UR

RE

NT

(A)

I C, C

OLL

EC

TOR

CU

RR

EN

T (A

)

(NO

RM

ALI

ZED

)

I C

, DC

CO

LLE

CTO

R C

UR

RE

NT(

A)

VC

E, C

OLL

EC

TOR

-TO

-EM

ITTE

R V

OLT

AG

E (V

) V

GE, G

ATE

-TO

-EM

ITTE

R V

OLT

AG

E (V

) I C

, CO

LLE

CTO

R C

UR

RE

NT

(A)

250µs PULSE TEST<0.5 % DUTY

CYCLE

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 30

0 2 4 6 8 10 12 14 0 200 400 600 800 1000 1200

8 10 12 14 16 0 25 50 75 100 125 150 175

-50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175

400

350

300

250

200

150

100

50

0

16

14

12

10

8

6

4

2

0

3.0

2.5

2.0

1.5

1.0

0.5

0

300

250

200

150

100

50

0

VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)

VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC) FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge

VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature

TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature

12, 13 &15V

9V

8V

7V

11V

TJ = 125°CTJ = 25°CTJ = -55°C

VGE = 15V. 250µs PULSE TEST

<0.5 % DUTY CYCLE

TJ = 125°C

TJ = 25°C

TJ = -55°C

TJ = 175°C

VGE = 15V

10V

VCE = 300V

VCE = 120V

IC = 150ATJ = 25°C

VCE = 480V

TJ = 25°C. 250µs PULSE TEST

<0.5 % DUTY CYCLE

IC = 300A

IC = 150A

IC = 75A

IC = 300A

IC = 150A

IC = 75A

TJ = 175°C

Page 4: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4

VGE =15V,TJ=125°C

VGE =15V,TJ=25°C

VCE = 400VRG = 1.0ΩL = 100µH

SW

ITC

HIN

G E

NE

RG

Y L

OS

SE

S (µ

J)

EO

N2, T

UR

N O

N E

NE

RG

Y L

OS

S (µ

J)

t r, R

ISE

TIM

E (n

s)

t d(O

N), T

UR

N-O

N D

ELA

Y T

IME

(ns)

S

WIT

CH

ING

EN

ER

GY

LO

SS

ES

(µJ)

E

OFF

, TU

RN

OFF

EN

ER

GY

LO

SS

(µJ)

t f,

FALL

TIM

E (n

s)

t d (OFF

), TU

RN

-OFF

DE

LAY

TIM

E (n

s)

ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current

ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current

ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current

RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C) FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature

VCE = 400VTJ = 25°C, or 125°CRG = 1.0ΩL = 100µH

60

50

40

30

20

10

0

400

350

300

250

200

150

100

50

0

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

600

500

400

300

200

100

0

180

160

140

120

100

80

60

40

20

0

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

VGE = 15V

TJ = 125°C, VGE = 15V

TJ = 25°C, VGE = 15V

VCE = 400VVGE = +15VRG = 1.0Ω

30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310

30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310

30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310

0 5 10 15 20 0 25 50 75 100 125

RG = 1.0Ω, L = 100µH, VCE = 400V

RG = 1.0Ω, L = 100µH, VCE = 400V

TJ = 25 or 125°C,VGE = 15V

VCE = 400VVGE = +15VRG = 1.0Ω

TJ = 125°C

TJ = 25°C

VCE = 400VVGE = +15VRG = 1.0Ω

TJ = 125°C

TJ = 25°C

Eon2,300A

Eoff,300A

Eon2,150AEoff,150A

Eon2,75A

Eoff,75A

VCE = 400VVGE = +15VTJ = 125°C

Eon2,300A

Eoff,300A

Eon2,150A

Eoff,150AEon2,75A

Eoff,75A

Page 5: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TYPICAL PERFORMANCE CURVES

0.30

0.25

0.20

0.15

0.10

0.05

0

Z θ JC

, TH

ER

MA

L IM

PE

DA

NC

E (°

C/W

)

0.3

D = 0.9

0.7

SINGLE PULSE

RECTANGULAR PULSE DURATION (SECONDS)Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

10-5 10-4 10-3 10-2 10-1 1.0

20,000

10,000

500

100

50

10

500

400

300

200

100

0

C, C

AP

AC

ITA

NC

E (

PF)

I C, C

OLL

EC

TOR

CU

RR

EN

T (A

)

VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area

0 10 20 30 40 50 0 100 200 300 400 500 600 700

FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

30 50 70 90 110 130 150 170 190

F MA

X, O

PE

RA

TIN

G F

RE

QU

EN

CY

(kH

z)

IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current

TJ = 125°CTC = 75°CD = 50 %VCE = 400VRG = 1.0Ω

50

10

5

1

0.5

0.1

0.05

Fmax

= min (fmax, fmax2)

0.05 fmax1 = td(on) + tr + td(off) + tf

Pdiss - Pcond

Eon2 + Eofffmax2 =

Pdiss =TJ - TCRθJC

Peak TJ = PDM x ZθJC + TC Duty Factor D =

t1/t2

t2

t1

PD

M

Note:

Cres

Coes

Cies

0.0964

0.184

0.00770

0.300

Power(watts)

RC MODEL

Junctiontemp. (°C)

Case temperature. (°C)

Page 6: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4

Figure 22, Turn-on Switching Waveforms and Definitions

Figure 23, Turn-off Switching Waveforms and Definitions

TJ = 125°C

Collector Current

Collector Voltage

Gate Voltage

Switching Energy

5%

10%

td(on)

90%

10%

tr

5%

TJ = 125°C

Collector Voltage

Collector Current

Gate Voltage

Switching Energy

0

90%

td(off)

10%

tf

90%

APT100DQ60

IC

A

D.U.T.

VCE

Figure 21, Inductive Switching Test Circuit

VCC

Page 7: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TYPICAL PERFORMANCE CURVES

Z θJC

, TH

ER

MA

L IM

PE

DA

NC

E (°

C/W

)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0.5

SINGLE PULSE0.1

0.3

0.7

0.05 Peak TJ = PDM x ZθJC + TC Duty Factor D =

t1/t2

t2

t1

PD

M

Note:

D = 0.9

Characteristic / Test Conditions

Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5)

RMS Forward Current (Square wave, 50% duty)

Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)

Symbol

IF(AV)

IF(RMS)

IFSM

Symbol

VF

Characteristic / Test Conditions

IF = 150A

Forward Voltage IF = 300A

IF = 150A, TJ = 125°C

STATIC ELECTRICAL CHARACTERISTICS

UNIT

Amps

UNIT

Volts

MIN TYP MAX

1.83 2.33

1.47

APT100GN60LDQ4

100

146

1000

DYNAMIC CHARACTERISTICS

MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.

ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE

MIN TYP MAX

- 34

- 160

- 290

- 5 -

- 220

- 1530

- 13 -

- 100

- 2890

- 44

UNIT

ns

nC

Amps

ns

nC

Amps

ns

nC

Amps

Characteristic

Reverse Recovery Time

Reverse Recovery Time

Reverse Recovery Charge

Maximum Reverse Recovery Current

Reverse Recovery Time

Reverse Recovery Charge

Maximum Reverse Recovery Current

Reverse Recovery Time

Reverse Recovery Charge

Maximum Reverse Recovery Current

Symbol

trr

trr

Qrr

IRRM

trrQrr

IRRM

trr

Qrr

IRRM

Test Conditions

IF = 100A, diF/dt = -200A/µs

VR = 400V, TC = 25°C

IF = 100A, diF/dt = -200A/µs

VR = 400V, TC = 125°C

IF = 100A, diF/dt = -1000A/µs

VR = 400V, TC = 125°C

IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C

10-5 10-4 10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (seconds)

FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

SINGLE PULSE0.05

FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL

0.0673

0.188

0.0743

0.0182

0.361

5.17

Power(watts)

Junctiontemp (°C)

RC MODEL

Case temperature (°C)

Page 8: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TJ =125°C VR=400V

50A

100A

200A

Duty cycle = 0.5 TJ =175°C

0 25 50 75 100 125 150 25 50 75 100 125 150 175

1 10 100 200

180

160

140

120

100

80

60

40

20

0

Q

rr, R

EV

ER

SE

RE

CO

VE

RY

CH

AR

GE

I F, F

OR

WA

RD

CU

RR

EN

T

(nC

) (A

)

I R

RM

, RE

VE

RS

E R

EC

OV

ER

Y C

UR

RE

NT

t rr, R

EV

ER

SE

RE

CO

VE

RY

TIM

E

(A

) (n

s)

0 0.5 1.0 1.5 2.0 2.5 3.0 0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

TJ = -55°C

TJ = 25°C

TJ = 125°C

TJ = 175°C

TJ =125°C VR=400V

100A

50A

200A

300

250

200

150

100

50

0

4000

3500

3000

2500

2000

1500

1000

500

0

TJ =125°C VR=400V

200A

100A

50A

300

250

200

150

100

50

0

60

50

40

30

20

10

0

C

J, JU

NC

TIO

N C

AP

AC

ITA

NC

E

Kf, D

YN

AM

IC P

AR

AM

ETE

RS

(pF)

(N

orm

aliz

ed t

o 10

00A

/µs)

I F(A

V) (A

)

Qrr

trr

Qrr

IRRM

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1400

1200

1000

800

600

400

200

0

trr

VF, ANODE-TO-CATHODE VOLTAGE (V) -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 25. Forward Current vs. Forward Voltage Figure 26. Reverse Recovery Time vs. Current Rate of Change

-diF /dt, CURRENT RATE OF CHANGE (A/µs) -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change Figure 28. Reverse Recovery Current vs. Current Rate of Change

TJ, JUNCTION TEMPERATURE (°C) Case Temperature (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Figure 30. Maximum Average Forward Current vs. CaseTemperature

VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage

Page 9: Datashet

050-

7625

R

ev

A

4-2

006

APT150GN60JDQ4TYPICAL PERFORMANCE CURVES

4

3

1

2

5

5

Zero

1

2

3

4

diF/dt - Rate of Diode Current Change Through Zero Crossing.

IF - Forward Conduction Current

IRRM - Maximum Reverse Recovery Current.

trr - Reverse Recovery Time, measured from zero crossing where diode

Qrr - Area Under the Curve Defined by IRRM and trr.

current goes from positive to negative, to the point at which the straightline through IRRM and 0.25 IRRM passes through zero.

Figure 32. Diode Test Circuit

Figure 33, Diode Reverse Recovery Waveform and Definitions

0.25 IRRM

PEARSON 2878CURRENT

TRANSFORMER

diF/dt Adjust

30µH

D.U.T.

+18V

0V

Vr

trr/QrrWaveform

APT60M75L2LL

SOT-227 (ISOTOP®) Package Outline

31.5 (1.240)31.7 (1.248)

Dimensions in Millimeters and (Inches)

7.8 (.307)8.2 (.322)

30.1 (1.185)30.3 (1.193)

38.0 (1.496)38.2 (1.504)

14.9 (.587)15.1 (.594)

11.8 (.463)12.2 (.480)

8.9 (.350)9.6 (.378)

Hex Nut M4 (4 places)

0.75 (.030)0.85 (.033)

12.6 (.496)12.8 (.504)

25.2 (0.992)25.4 (1.000)

1.95 (.077)2.14 (.084)

* Emitter/Anode Collector/Cathode

Gate

*

r = 4.0 (.157) (2 places) 4.0 (.157)

4.2 (.165)(2 places)

W=4.1 (.161)W=4.3 (.169)H=4.8 (.187)H=4.9 (.193)(4 places)

3.3 (.129)3.6 (.143)

* Emitter/Anode

Emitter/Anode terminals areshorted internally. Currenthandling capability is equalfor either Emitter/Anode terminal.

ISOTOP® is a Registered Trademark of SGS Thomson.