dark matter, - ucl hep group

50
Dark Matter, Low-Background Physics RHUL Jocelyn Monroe Nov. 6, 2012

Upload: others

Post on 11-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Dark Matter,Low-Background Physics

RHUL Jocelyn Monroe Nov. 6, 2012

1. Evidence (Astrophysical Detection)

2. Candidates, Properties

3. Direct Detection (Particle Physics)

1st Observation: 1930s

Fritz Zwicky

Virial Theorem: kinetic energy ∝ potential energy implies 400x more mass than visible!

(Kitt Peak)

Confirmation: 1980s Vera Rubin

Rotation velocity v(r) of spiral galaxies

implies 100x more mass than visible!

(M. Kamionkowski, astro-ph/9809214)

WMAP Cosmic Microwave Background

WMAP

CMB Acoustic Spectrum

Baryons compress photon-baryon plasma at recombination, photons exert pressure, competition gives rise to pressure wave

BBND

. H. Perkins, Particle A

strophysics (2004)

BBN lines =predicted light elementabundancesvs. baryon density

boxes = observed abundances(1, 2 sigma)

vertical band = CMB measureof baryondensity(PDG)

Bullet Cluster

(NASA/Chandra/Magellan/Hubble)

The Standard Model of Cosmology

Dark Matter is ~23% of the universe.

E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18

HEP

AP/

AA

AC

DM

SAG

Sub

pane

l (20

07)

strong

e.m.

weak

neut

rino?

gravity

elec

tron

t-qu

arkmasses

Dark Matter Candidates

interaction strengths

Axions

WIMP Number Density

D. H

. Perkins, Particle Astrophysics (2004)

WIMP Mass Range

D. H. Perkins, Particle Astrophysics (2004)

WIMP-Nucleon Scattering Event Rate

σSI = 1E-44 cm2

Mχ = 100 GeV

Spin Independent:χscatters coherently off of the entire nucleus A: σ~A2

Spin Dependent:only unpaired nucleons contribute to scattering amplitude: σ~ J(J+1)

D. Z. Freedman, PRD 9, 1389 (1974)

kinematics: v/c ~ 1E-3!

χ

Heat

Ionization

Scintillation

Direct Detection Experiments Signal: χN ➙χN’

Backgrounds:n N ➙ n N’ γ e- ➙ γ e-’ N ➙ N’ + α, e-

ν N ➙ ν N’

χ

CDMS

Edelweiss

Picasso

Xenon100LUX

DEAP/CLEAN

COUPP

DRIFT

Newage

CoGeNT

ZeplinIII

XMASS

KIMS

Dama/LIBRA

WARPArDM

ANaIS

CRESST

IGEX

CRESSTIIROSEBUD

DMTPC

Ionization!

Scintillation!

Heat!

In dark matter experiments...

Backgrounds

radon10,000 decay

events background

1 event smallest dark matter scattering signal?

neutron1,000 scattering

events background

neutrino100 scattering

events background

photon10,000 scattering

events background

N

?

?

Anything else that does thiscan fake a dark matter signal!

EM Backgrounds

Gamma ray interaction rate is proportional to(# of electrons in detector) x (gamma ray flux)

Typical count rate = 100 events/s/kg = 10,000,000 events/day/kgin a good lead shield, rate drops to 100 events/day/kg

Best dark matter detectors: sensitive to 0.01 events/day/kg (σ~1E-44 cm2)

(D. McKinsey)

U and Th Decay Backgroundscan’t shield a detector from U and Th inside, recoiling progeny and associated betas can fake nuclear recoils

Neutron Backgrounds

Cosmic muons spall neutrons: ~10-4 neutrons/(100 GeV μ)/gm/cm2

neutron flux:10-8 - 10-10/cm2/s (range for depth)

n

μ μ

NN*

γ

eg. Study for CDMS-II Detector

D.-M. Mei, A. Hime, PRD73:053004 (2006)

ν Backgrounds

Z

N N

ν ν

100 events/ton-year =~ 10-46 cm2 limit

unless you measurethe direction!

can’t shield a detector from coherent elastic scattering ofsolar neutrinosΦ(B8) = 5.86 x 106 cm-2 s-1

JM, P. Fisher, PRD76:033007 (2007)

the best experiments are here

Backgrounds

radon10,000 decay

events background

1 event smallest dark matter scattering signal?

neutron1,000 scattering

events background

neutrino100 scattering

events background

photon10,000 scattering

events background

Jocelyn Monroe October 13, 2012

Transition Edge Sensors, operated at ~40 mK on Ge and Si crystals, in Soudan

CDMS

arXiv:0912.3592v1arXiv:0907.1438v1

3” (7.6

1 cm Ge: 250 gSi: 100 g

Phonon side: 4 quadrants of phonon sensors for energy & position (timing)

Charge side: 2 concentric electrodes (inner & outer) energy (& veto)

(material thanks to E. Figuroa)

Detector re-design a la EDELWEISS to reduce surface backgrounds x104

-3V

0V

h+

e-

Ionization/Phonon yield vs. Erecoil (keV)

Xenon100

(E. Aprile)

arXiv:1104.2549v2

Two-Phase liquid Xenon TPC, operated in LNGS

Energy [keVnr]10 20 30 40 50

(S2/

S1)-

ER m

ean

10lo

g

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

S1 [PE]5 10 15 20 25 30 35

(S1)

(S2)

“S2”: primary scintillation“S1”: amplified, drifted ionization signalboth read out with PMTs

nuclear recoil energy

1. using calibration data,define background and signal regions 2. using calibration data,define a region with zero expected background events

(any events in the blind region are signal candidates)

Experimental Procedure

3. measure event parameters in WIMP search data set

4. blind analysis: open the box!

5. measure number of events

Experimental Procedure

experimentalist:

theorist:

see a signalor set a limit?

what model

explains this

rate?

1 event/kg/day

1 event/100 kg/day

1 event/100 kg/100 days

!"#$%#&''%()*+,-./

0"%!"#$!12-3*41%564''%0*-7841%(-9./

!"#$#%&

&'()&%&

*

+,-.'()&

%&*

!"#$#%&

&'()&%%

*

-/0/+1"

2#

13!

,"24!5

6&&

+1"2#7'08

9:;8<'2;

+1"2#7

'#=

+1"2#7'

>=?<=9=>

'2;

:;:

:;.

:;<

:;!=>

:;!=?

:;!=@

:;!==

:;!=<

:;!=.

Scal

abili

ty o

f Det

ecto

r Tec

hnol

ogy

New

Tec

hniq

ues

for

Bac

kgro

unds

Complementary with High-Energy Frontier

need 100-1000dark matter eventsto measure mass,cross section

Many Results Here,Only 2 strongest shown

Dark Matter Direct Detection Parameter Space

The Low Background Frontier

allowed region

limit, excludes this region

Spin-Independent Cross Section: Latest Experiment Results

E. Aprile et al., arXiv:1207.5988

1 event/kg/day

1 event/100 kg/day

tonne-scale detectors likely required for discovery

Spin-Independent Cross Section: Latest Theory ResultsO. Buchmuller et al., arXiv:1207.7315

We are Here We are Here

CAVEAT: many more exotic models (Asymmetric DM, Dark Forces Models, Magnetic Inelastic DM, Sterile Nus + Freeze-In, Isospin-Violating DM, Emergent DM and L# models .....

103 is a lot of σ

10-28 cm2: σ(total inelastic pp at TeVatron)

10-35 cm2: σ(gg ➔ H) at LHC (Standard Model)

10-39 cm2: σ(single top) at TeVatron 10-40 cm2: σ(ν QE) at MINOS

σ(DM coherent scattering)? 10-48 cm2

10-45 cm2: σ(ν-e Elastic) for solar ν

Not

to S

cale

10-24 cm2: σ(neutron-A elastic scattering)

Z

N

χχ

N

dark matter? backgrounds?

DAMA/Libra

CDMS

COGENTarXiv:1002.4703

arXiv:0912.3592v1

Direct Dark Matter Signals?

arXiv:1109.0702

CRESST-II

arXiv:1109.2589

Indirect Dark Matter Signals?

PAMELAarXiv:0810.4995

χ χ

e+ e- ?

ATIC

Fermi LAT arXiv:0905.0025

dark matter? local astrophysics?

June-December event rate asymmetry ~2-10%Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986)

Eur. Phys. J. C56:333-355 (2008)

Days Since Dec 3, 20090 100 200 300 400 500

Even

ts/3

0 da

ys

60

80

100

120

140

eeCoGeNT: 442 days, 0.5-3.0 keV

42 days

CoGeNT modulationresult, 2.8σ, ~consistentwith DAMA/Libra

Annual Modulation

DAMA/Libra positive result, >8σ, inconsistent with many expts

J. Collar, STSI (2011),arXiv:1106.0650v1

CoGeNT(dashed line)

DAMA(solid line)

June-December event rate asymmetry ~2-10%Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986)

Eur. Phys. J. C56:333-355 (2008)

Days Since Dec 3, 20090 100 200 300 400 500

Even

ts/3

0 da

ys

60

80

100

120

140

eeCoGeNT: 442 days, 0.5-3.0 keV

42 days

Annual Modulation

DAMA/Libra positive result, >8σ, inconsistent with many expts

CoGeNT(dashed line)

CDMS(solid points)

BUT...CDMS modulation searchnot consistent with CoGeNT or DAMA/Libra (98.3% CL)arXiv:1203.1309

astro-ph/0609115

Simulated Dark Matter

Sky Map

Unambiguous proof:Correlation of WIMP-induced nuclear recoil signal with galactic motion

simulated reconstructed dark matter sky map: search for anisotropy

search for a dark matter source

The Dark Matter Wind “blows” from Cygnus

Directional Detection

Directional Detection

recoiling nucleus

Daily direction modulation: asymmetry ~ 20-100%in forward-backwardevent rate.Spergel, Phys. Rev. D36:1353 (1988)

Recoil Kinetic Energy (keV)

020406080100120140160180200

)LAB!

Cos(

-1-0.8-0.6-0.4

-0.200.20.4

0.60.81

Even

ts /k

g / d

ay

00.020.040.060.080.10.120.140.160.18

DRIFT: in Boulby (UK)

Directionality Around the World

NEWAGE: in Kamioka (JP), first directional dark matter limit!K. Miuchi, et al., Phys.Lett.B654:58-64 (2007)

DMTPC: in WIPP (US) CCD readoutMiMAC-He3: ILL/Modane (FR)

S. Burgos et al., Astropart. Phys. 28, 409 (2007)

D. Santos, et al., J. Phys. Conf. Ser. 65, 021012 (2007) D. Dujmic, et al., NIM A 584:337 (2008)

WIMP mass (GeV)210 310

)2 (c

mp

!

-4010

-3810

-3610

-3410

-3210

DMTPC limit(surface, 38 gm-day)

cMSSM theory

DMTPC 10L surface

S. Ahlen et al., Phys. Lett. B 695 (2011)

Theory region: Rozkowski et al JHEP 07 (2007) 075Ellis et al PRD63 (2001) 065016

Spin-Dependent Cross Section: Latest Experiment Results

WIMP mass (GeV)210 310

)2 (c

mp

!

-4010

-3810

-3610

-3410

-3210

cMSSM theory

DMTPC 10L surface

DMTPC, 10L sensitivity at WIPP

WIMP mass (GeV)210 310

)2 (c

mp

!

-4010

-3810

-3610

-3410

-3210NEWAGE limit(Kamioka)

DMTPC limit(surface, 38 gm-day)

directional searchesK. Miuchi et al.,

Phys.Lett.B686:11-17(2010)

DMTPC 10L surface

S. Ahlen et al., Phys. Lett. B 695 (2011)

DMTPC, 10L sensitivity at WIPP

cMSSM theory

DRIFT sensitivity,Astropart.Phys. 25 (2012) 397

WIMP mass (GeV)210 310

)2 (c

mp

!

-4010

-3810

-3610

-3410

-3210NEWAGE limit(Kamioka)

DMTPC limit(surface, 38 gm-day)

directional searchesK. Miuchi et al.,

Phys.Lett.B686:11-17(2010)

DMTPC 10L surface

S. Ahlen et al., Phys. Lett. B 695 (2011)

COUPPPRL.106, 021303 (2011) SIMPLEarXiv:1106.3014 PICASSOarXiv:1202.1240

1D results

cMSSM theory

Theory region: Rozkowski et al JHEP 07 (2007) 075Ellis et al PRD63 (2001) 065016

DRIFT sensitivity,Astropart.Phys. 25 (2012) 397

Spin-Dependent Cross Section: Latest Experiment Results

WIMP mass (GeV)210 310

)2 (c

mp

!

-4010

-3810

-3610

-3410

-3210NEWAGE limit(Kamioka)

DMTPC limit(surface, 38 gm-day)

1m3 at WIPP(DMTPCino)projectedsensitivity

K. Miuchi et al., Phys.Lett.B686:11-17(2010)

DMTPC 10L surface

S. Ahlen et al., Phys. Lett. B 695 (2011)

cMSSM theory

Theory region: Rozkowski et al JHEP 07 (2007) 075Ellis et al PRD63 (2001) 065016

directional searches

COUPPPRL.106, 021303 (2011) SIMPLEarXiv:1106.3014 PICASSOarXiv:1202.1240

1D results

DRIFT sensitivity,Astropart.Phys. 25 (2012) 397

Spin-Dependent Cross Section: Latest Experiment Results

Global SI Dark Matter Programme, Sensitivity Reach

NB: projected sensitivities (all except green) assume zero background.

)2 cm-46Spin-independent sensitivity (x10-210 -110 1 10 210

LZCLEAN

EURECA Stage-IISuperCDMS-100

XENON-1TDEAP-3600

LUXEDELWEISS III

miniCLEANXMASS

COUPP-60SuperCDMS-10

Xenon-100ZEPLIN III

EDELWEISS IICDMS II

Proposed

Being designed

Under construction/in operation

Current results

CYGNUS (Directional)

com

plet

edpr

esen

tfu

ture

2018

2016

resu

lts: 2

012

Backup Slides

Setting a Limit

Jocelyn Monroe October 31, 2007

1. The theoretical dark matter interaction rate is:

dRdER

=�

c1R0

E0r

�exp

�−c2ER

E0r

σW−N =�

µ1

µA

�2� 1A

�2σA

σA = σ0F2(ER,A)Ic Ic = A2

µ =mD mtarget

(mD +mtarget)

2. Experiments measure:

4. Normalize to to compare limits:

F2(ER,A) = nuclear f orm f actor

3. vary until (90% of the time) theory predicts observed rateσA

σW−N

R0 =��

2v0√π

��N0(ρD/mD)

A

��σ0× exposure

, ,

ER = nuclear recoil energy, E0 = dark matter particle energy

... in the Presence of Background

Jocelyn Monroe October 31, 2007

σAstep 3: vary until (90% of the time) theory predicts observed maximum

gap between background eventsS. Yellin, Phys. Rev. D66:032005 (2002)

Yellin gap method: a way to make a “zero-background” measurement over a restricted range of an experiment’s acceptance (zero signal too)

SI vs. SD

(nuclear form factor)

Savage et al.,arXiv:0808.3607

Ellis et al.,arXiv:0808.3607

Nuclear physics uncertainties are important!

Scale Parameters

SN1A Data