dark matter, galactic dynamics, and gaia - testing ......moschella (princeton) galactic dynamics aps...

34
Dark Matter, Galactic Dynamics, and Gaia Testing Alternative Theories Matthew Moschella Princeton University APS DPF 2019 Image: ESA/Gaia/DPAC arXiv:1812.08169 & work in progress with M. Lisanti, N. Outmezguine, O. Slone

Upload: others

Post on 29-Mar-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Dark Matter, Galactic Dynamics, and GaiaTesting Alternative Theories

Matthew MoschellaPrinceton University

APS DPF 2019

Image: ESA/Gaia/DPAC

arXiv:1812.08169 & work in progresswith M. Lisanti, N. Outmezguine, O. Slone

Page 2: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Evidence for Dark Matter on Many ScalesGalaxies

Galaxy Clusters CosmologyEilers et al. (2018); Planck Collaboration (2018); Chandra X-Ray Observatory (2006)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 2 / 34

Page 3: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

The Missing Mass Problem in Galaxies

• Flat Rotation Curves

• Local Velocity Dispersions

• “Small Scale Crisis”• Missing Satellites• Too Big to Fail• Core vs. Cusp

• Dynamical Correlations with Baryons• Baryonic Tully-Fisher Relation• Diversity of Rotation Curves• Radial Acceleration Relation

Eilers et al. (2018);

Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34

Page 4: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

The Diversity of Rotation Curves

• Diversity of inner rotation curves for galaxies with similar halo mass• Correlates with surface brightness (baryons)

Ren et al. (2018)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 4 / 34

Page 5: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

The Radial Acceleration Relation

• SPARC: rotation curves for 175disk galaxies

• Observe a tight correlation:

a =

{aN aN � a0√a0aN aN � a0

• a0 ∼ 10−10 m s−2Lelli et al. (2017); McGaugh et al. (2016)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 5 / 34

Page 6: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Solutions to the Missing Mass Problem in Galaxies

Which is most consistent with observed Milky Way dynamics?

Moschella (Princeton) Galactic Dynamics APS DPF 2019 6 / 34

Page 7: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

MOND-like Forces

• Built to reproduce rotation curves:

a =

{aN aN � a0√a0aN aN � a0

a0 ≈ 10−10 m s−2

• Regardless of theoretical mechanism, the empirical target is:

a = ν

(aN

a0

)aN

• For simplicity, we assume this relation holds going forward.

Milgrom (1983); Famaey, McGaugh (2012)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 7 / 34

Page 8: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

MOND-like Forces vs. Dark Matter

• MOND-like forces predict a in the same direction as aN

• Dark Matter predicts a = aN + aDM

• In the Milky Way, aN is disk-like, but aDM is spherical

• Need to look at vertical acceleration to distinguish kinematically

• If you could measure a and aN, this is all you need – sincemeasurements are imperfect, the real situation is morecomplicated.

Image: ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt

Moschella (Princeton) Galactic Dynamics APS DPF 2019 8 / 34

Page 9: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A Teaser: The Direction of the Gravitational Acceleration

Data requires more enhancement in aR than in az

slope ∼ azaR

Moschella (Princeton) Galactic Dynamics APS DPF 2019 9 / 34

Page 10: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A Generalized Framework

Bayesian Approach: marginalize over model parameters

ρB = ρ∗,bulge + ρ∗,disk + ρg,disk

Bland-Hawthorn, Gerhard (2016); Image: Wikipedia

Moschella (Princeton) Galactic Dynamics APS DPF 2019 10 / 34

Page 11: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Milky Way Observables

For self-consistency, we must use only measurements that come fromdirect photometric observations, rather than dynamical fitting.

• Baryonic Surface Density

• Disk Scale Radius/Height

• Stellar Bulge Mass

• Rotation Curve

• Vertical Velocity Dispersions

σz(z)2 = − 1

n(z)

∫ ∞z

n(z′) az(z′) dz′

• probes vertical acceleration

• requires assumption ofequilibrium (Jeans equation)

• requires modelling the tracernumber density n(z)

Zhang et al. (2013); Read (2014)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 11 / 34

Page 12: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A MOND-like Force Model

• adopt interpolation function that fits the radial acceleration relation

ν(aN/a0) =1

1− e−√aN/a0

a0 = 1.20± 0.24× 10−10 m

s2

McGaugh et al. (2016)

• Compare Models:

BIC = k log n− 2 log L̂

• k: num. of model parameters• n: num. of data points• L̂: maximum likelihood

Table: Camarena, Marra (2018)

• Comparing to a reference DM model, we find that ∆BIC = 10.4• very strong preference for dark matter

Moschella (Princeton) Galactic Dynamics APS DPF 2019 12 / 34

Page 13: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A Generalized MOND-like Force Model

• avoid dependence on a particular parametrization of ν(aN/a0)• expand ν(aN/a0) about the local value: aN,ref . v2

0/R0 ∼ a0

ν

(aN

a0

)≈ ν0 + ν1 · aN

• Comparing to a reference DM model, ∆BIC = 4.1• positive, but not strong, preference for dark matter

• Prefers very small enhancements ν ≈ 1

• Does not fit the radial accelerationrelation

Moschella (Princeton) Galactic Dynamics APS DPF 2019 13 / 34

Page 14: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Superfluid Dark Matter

• Dark matter condenses to a superfluid core inside galaxies• In superfluid phase, phonons mediate a long-range MOND-like force

a = aN + aDM + aphonon

• Work in Progress: Because ρDM is small, expect to be similar topure MOND-like force scenario

Berezhiani, Khoury (2015); Berezhiani et al. (2017);

Moschella (Princeton) Galactic Dynamics APS DPF 2019 14 / 34

Page 15: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Solutions to the Missing Mass Problem in Galaxies

Which is most consistent with observed Milky Way dynamics?

Moschella (Princeton) Galactic Dynamics APS DPF 2019 15 / 34

Page 16: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Conclusions

• Local galactic observables can be used to test models withMOND-like forces precisely where they are most successful

• MOND-like forces appear in tension with existing data and are unableto simultaneously reproduce the observed radial and verticalaccelerations

• Currently working on applying this framework to Superfluid DarkMatter – similar results expected

Moschella (Princeton) Galactic Dynamics APS DPF 2019 16 / 34

Page 17: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Thank You

Moschella (Princeton) Galactic Dynamics APS DPF 2019 17 / 34

Page 18: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Supplementary Material

Moschella (Princeton) Galactic Dynamics APS DPF 2019 18 / 34

Page 19: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

The (Baryonic) Tully-Fisher Relation

• Look at many galaxies

• Observe Mb ∝ v4f

• Mb: total baryonic mass (luminosity)• vf : asymptotic rotational velocity

• Mb ∼ aNR2, vf ∼√Ra

⇒ a ∝ √aN• proportionality constant: Ga0

• a0 ≈ 10−10 m s−2

Milgrom (1983); McGaugh et al. (2016)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 19 / 34

Page 20: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Milky Way Observables

For self-consistency, we must use only measurements that come fromdirect photometric observations, rather than dynamical fitting.

• Baryonic Surface Density

• Disk Scale Radius/Height

• Stellar Bulge Mass

• Rotation Curve

• Vertical Velocity Dispersions

Σ1.1j = 2

∫ 1.1 kpc

0ρj(R0, z

′) dz′Σ1.1∗,obs = 31.2± 3.0 M� pc−2

Σ1.1g,obs = 12.6± 1.6 M� pc−2

McKee et. al. (2015); Flynn et. al. (2006)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 20 / 34

Page 21: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Milky Way Observables

For self-consistency, we must use only measurements that come fromdirect photometric observations, rather than dynamical fitting.

• Baryonic Surface Density

• Disk Scale Radius/Height

• Stellar Bulge Mass

• Rotation Curve

• Vertical Velocity Dispersions

ρ∗,disk = ρ̃∗ e−R/h∗,Re−|z|/h∗,z

h∗,z,obs = 300± 50 pc

h∗,R,obs = 2.6± 0.5 kpc

Bland-Hawthorn, Gerhard (2016); Juric et. al. (2008)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 21 / 34

Page 22: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Milky Way Observables

For self-consistency, we must use only measurements that come fromdirect photometric observations, rather than dynamical fitting.

• Baryonic Surface Density

• Disk Scale Radius/Height

• Stellar Bulge Mass

• Rotation Curve

• Vertical Velocity Dispersions

ρ∗,bulge(r) =M∗,b

r∗,br

1

(r + r∗,b)3

• Existing measurements have alarge variance

• Conservative range:0 < M∗,b < 2× 1010 M�

M∗,b,obs = 1.50± 0.38× 1010 M�

Licquia, Newman (2015); Calchi Novat et. al. (2008)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 22 / 34

Page 23: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Milky Way Observables

For self-consistency, we must use only measurements that come fromdirect photometric observations, rather than dynamical fitting.

• Baryonic Surface Density

• Disk Scale Radius/Height

• Stellar Bulge Mass

• Rotation Curve

• Vertical Velocity Dispersions

vc(R0) =√R0 · a(R0)

∣∣∣z=0

vc,obs = 229± 12km

s

(dvc/dR)obs = −1.7± 0.47km

s kpc

Eilers et. al. (2018)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 23 / 34

Page 24: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A Reference DM Model

• For our baseline DM model, wetake an NFW Profile:

ρDM(r) =ρ̃DM

(r/rs)α (1 + r/rs)

3−α

and the dynamics are:

a = aN + aDM ∇ · aDM = −4πGρDM

Navarro et. al. (1996);

Moschella (Princeton) Galactic Dynamics APS DPF 2019 24 / 34

Page 25: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Superfluid DM

a = −∇Φ +αΛ

MPl∇φ

∇2Φ = 4πG(ρDM + ρB)

ρDM =2√

2m5/2Λ(

3 (β − 1) µ̂+ (3− β) (∇φ)2

2m

)3

√(β − 1) µ̂+ (∇φ)2

2m

(∇φ)2 + 2m(

2β3 − 1

)µ̂√

(∇φ)2 + 2m (β − 1) µ̂∇φ = αMPlaN

Berezhiani, Khoury (2015); Berezhiani et al. (2017);

Moschella (Princeton) Galactic Dynamics APS DPF 2019 25 / 34

Page 26: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

A Lagrangian Formulation of MOND

• Gravitational Lagrangian:

LN = − 18πG (∇ΦN )2 ⇒ L = − a20

8πGF(

(∇Φ)2

a20

)• µ(x) = ∂F

∂x2 : an arbitrary function up to asymptotes• a = −∇Φ

• Equation of Motion:

∇ · [µ (a/a0)a] = −4πGρB

µ(a/a0)a = aN + S

• ∇ · S = 0, but S 6= 0 in general• For spherical (one dimensional) symmetries, S = 0• For disk-like potentials, S ≈ 0 outside of the disk

Bekenstein, Milgrom (1984); Brada, Milgrom (1994)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 26 / 34

Page 27: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Quasilinear MOND

• Gravitational Lagrangian:

L = − 18πG

(2∇Φ ·∇ΦN − a2

0Q(

(∇ΦN )2

a20

))• ν(x) = ∂Q

∂x2 : an arbitrary function up to asypmtotes• ΦN : Newtonian potential (∇2ΦN = 4πGρb)• a = −∇Φ, aN = −∇ΦN

• Equation of Motion:

∇ · a = ∇ · [ν(aN/a0)aN]

a = ν (aN/a0)aN + S

Milgrom (2010)

Moschella (Princeton) Galactic Dynamics APS DPF 2019 27 / 34

Page 28: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Is S Small?

0.04

0.04

0.04

0.04

0.04

0.04

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.09

0.09

0.09

0.09

2 4 6 8 10 12

-3

-2

-1

0

1

2

3

R [kpc]

z[kpc]

δ=|S |/|ν(aN) aN|

Moschella (Princeton) Galactic Dynamics APS DPF 2019 28 / 34

Page 29: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Is the Interpolation Function Linear?

Moschella (Princeton) Galactic Dynamics APS DPF 2019 29 / 34

Page 30: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Is the Interpolation Function Linear?

Moschella (Princeton) Galactic Dynamics APS DPF 2019 30 / 34

Page 31: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Results: Dark Matter Parameters

ρDM(R0) = 0.29± 0.06 GeV cm−3

α < 1.1 at 90% confidence

Moschella (Princeton) Galactic Dynamics APS DPF 2019 31 / 34

Page 32: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Results: MOND Parameters

• Red: Our analysis• Gray: ν(aN/a0) = 1

1−e−√

aN/a0, a0 = 1.20± 0.24× 10−10 m s−2

excluded at ∼ 95% confidenceMcGaugh et al. (2016)Moschella (Princeton) Galactic Dynamics APS DPF 2019 32 / 34

Page 33: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Model Parameters and Priors

• rs = 19 kpc

• r∗,bulge = 600 pc

• h∗,z = 300 pc

• hg,z = 130 pc

• hg,R = 2h∗,R• Also enforce that ν0 + ν1 · aN > 1 and that the baryon-only rotation

curve reaches its maximum before R = 5 kpc

Moschella (Princeton) Galactic Dynamics APS DPF 2019 33 / 34

Page 34: Dark Matter, Galactic Dynamics, and Gaia - Testing ......Moschella (Princeton) Galactic Dynamics APS DPF 2019 3 / 34 The Diversity of Rotation Curves Diversity of inner rotation curves

Systematic Checks

Moschella (Princeton) Galactic Dynamics APS DPF 2019 34 / 34