cryogenics for the large hadron collider (lhc): design ......easitrain school 2, cea saclay 1st...

59
Cryogenics for the Large Hadron Collider (LHC): design, construction, operation & upgrade Philippe Lebrun CERN retired EASITrain School 2, CEA Saclay 1 st October 2019

Upload: others

Post on 09-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Cryogenics for the Large Hadron Collider (LHC):design, construction, operation & upgrade

    Philippe LebrunCERN retired

    EASITrain School 2, CEA Saclay

    1st October 2019

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Superconductivity and cryogenics are key technologies to the LHC and its large, multipurpose detectors

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • A new territory in energy and luminosity

    ISR

    SppS

    TeVatron

    LEP1

    LEP2 HERA

    LHC

    1.E+30

    1.E+31

    1.E+32

    1.E+33

    1.E+34

    1.E+35

    10 100 1000 10000 100000

    Lu

    min

    osity [cm

    -2.s

    -1]

    Center-of-mass energy [GeV]

    x 100

    x 7

    Ph. Lebrun EASITrain School 2 Saclay 2019 4

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 1232 twin-aperture superconducting dipolesBnom = 8.33 T, Inom = 11850 A

    Ph. Lebrun EASITrain School 2 Saclay 2019 5

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Superfluid helium coolingenhances performance of Nb-Ti superconductor at high field

    Ph. Lebrun EASITrain School 2 Saclay 2019 6

    10

    102

    103

    104

    0 5 10 15 20 25

    Engi

    ne

    eri

    ng

    Cri

    tica

    l Cu

    rre

    nt

    De

    nsi

    ty (

    A/m

    m²,

    4

    .2K

    )

    Magnetic Field (T)

    Nb₃Sn: Internal Sn RRP®

    Nb₃Sn: High Sn Bronze

    Nb-Ti: LHC 1.9 K

    Nb-Ti: LHC 4.2 K

    Nb-Ti: Iseult/INUMAC MRI 4.22 K

    High-Jc Nb3Sn

    Bronze Nb3Sn

    Nb-Ti

    High-Jc Nb3Sn

    Bronze Nb3Sn

    Nb-Ti

    Normal-

    conducting

    magnets

    LHCTeVatron

    RHIC HERA

    FCC

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Specific power consumption of particle collidersSuperconductivity and high fields

    allow strong reduction of the power bill!

    Ph. Lebrun EASITrain School 2 Saclay 2019 7

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • The beam screenA multi-function component required by thermodynamics and beam physics

    • Interception of beam-induced heat loads at 5-20 K (supercritical helium)

    • Shielding of the 1.9 K cryopumpingsurface from synchrotron radiation (pumping holes)

    • High-conductivity copper lining for low beam impedance

    • Low-reflectivity sawtooth surface at equator to reduce photoemission and electron cloud

    Ph. Lebrun EASITrain School 2 Saclay 2019 8

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Functions and constraints of LHC cryogenics

    Functions

    • Maintain all magnets at operating temperature below 1.9 K

    • Handle dynamic heat loads due to magnet powering and circulation of beams

    • Cooldown/warmup magnets (37’500 tons) from/to room temperature in less than 3 weeks

    • Handle magnet resistive transitions without loss of helium and recoverfrom them in few hours

    Constraints

    • Produce refrigeration in imited numberof points (5) around machine circumference

    • Re-use four 18 kW @ 4.5 K refrigerators from LEP2 project

    • Distribute refrigeration in 3.3 km long sectors

    • Tunnel slope 1.4 % leading to elevation differences of 150 m acrossthe ring

    • Minimize power consumption

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Thermophysical properties of superfluid heliumand engineering applications

    • Temperature < 2.17 K superconductor performance

    • Low effective viscosity permeation

    – 100 times lower than water at normal boiling point

    • Very high specific heat stabilization

    – 105 times that of the conductor by unit mass

    – 2x103 times that of conductor by unit volume

    • Very high thermal conductivity heat transport

    – 103 times that of OFHC copper

    – Peaking at 1.9 K

    – Still, insufficient for transporting heat over large distances across small temperature gradients

    0,00001

    0,0001

    0,001

    0,01

    0,1

    1

    10

    100

    0 1 2 3 4 5

    Temperature [K]

    Spe

    cific

    he

    at

    [J/g

    .K]

    LHe

    Cu

    0

    500

    1000

    1500

    2000

    1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

    T [K]

    Y(T

    ) ±

    5%

    T

    K T,q q Y T

    dT

    dX

    q

    Y(T)

    q in W / cm

    T in K

    X in cm

    2.4

    3.4

    2

    Copper OFHC

    Helium II

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Pressurized vs saturated He II

    1

    10

    100

    1000

    10000

    0 1 2 3 4 5 6

    Temperature [K]

    Pre

    ssure

    [kP

    a]

    SOLID

    VAPOUR

    He IHe IICRITICAL

    POINT

    PRESSURIZED He II

    (Subcooled liquid)

    SATURATED He II

    SUPER-

    CRITICAL

    SATURATED He I

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Advantages & drawbacks of He II p

    • Advantages– limits the risk of air inleaks and

    contamination in large and complex cryogenic systems

    – for electrical devices, limits the risk of electrical breakdown at fairly low voltage due to the bad dielectric characteristics of helium vapour (Paschen curve)

    • Drawbacks– one more level of heat transfer

    – additional process equipment (pressurized-to-saturated helium II heat exchanger)

    Paschen curve for helium

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Cooling LHC magnets with He II p

    1

    10

    100

    1000

    10000

    0 1 2 3 4 5 6

    Temperature [K]

    Pre

    ssure

    [kP

    a]

    SOLID

    VAPOUR

    He IHe IICRITICAL

    POINT

    PRESSURIZED He II

    (Subcooled liquid)

    SATURATED He II

    SUPER-

    CRITICAL

    SATURATED He I

    LHC

    Ph. Lebrun EASITrain School 2 Saclay 2019 14

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Heat transfer across electrical insulationof LHC superconducting cable

    Conduction in polyimide

    Double wrap with partial overlap maintainsporosity and percolation paths in electricalinsulation of superconducting cable

    Conduction in He II

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Steady-state conduction in He II p from 1.9 to 1.8 K

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 50 100 150 200

    Length, L [m]

    Qto

    t [W

    ]

    1 W/m 0.5 0.3

    0.2

    0.1

    0.4

    50

    65

    80

    100

    40

    DN

    Linear distributed heat load

    1.8 KHe II Pres.

    Cold sourceHe II Sat.(1.75 K)

    Qtot= .L

    SC magnet string

    DNL

    1.9 K (W/m)

    1.8 KHe II Pres. 1.9 K

    L

    Cold sourceHe II Sat.(1.75 K)

    Q

    Superconductingdevice

    DN

    Lumped heat load 45 T hybrid magnet at NHMFL

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Cooling magnet strings with superfluid heliumGetting the best of helium transport properties

    • Fixed temperature

    • Small flow, no pump

    • Monophase

    • Excellent thermal conductivity

    • Good dielectric strength

    Ph. Lebrun EASITrain School 2 Saclay 2019 17

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 18

    LHC magnet string cooling scheme

    107 m

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 3.3 km

    Cryogenic operation of LHC sector

    Ph. Lebrun EASITrain School 2 Saclay 2019 19

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • LHC cryostat cross-section

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Thermal insulation techniquesMulti-layer reflective insulation

    10 layers around cold mass at 1.9 K

    30 layers around thermal shield at 50-75 K

    Cold surface area in LHC ~ 9 hectares!

    Thermal radiation from 290 K (black-body) ~ 400 W/m2 = 4 MW/ha

    Heat flux from 290 K across 30 layers MLI ~ 1 W/m2 = 10 kW/ha

    Ph. Lebrun EASITrain School 2 Saclay 2019 22

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Thermal insulation techniquesLow-conduction non-metallic support posts

    LHC cold mass to be supported = 37’500 tons

    Conduction length = support height ~ 0.2 m

    At a compressive stress of 50 N/mm2, this requires a total support cross-section of 7.5 m2, representing a large thermal conduction path

    100 kN

    ~ 70 K

    5 K cooling line (SC He)

    Aluminium strips to thermal shield at 50-75 K

    Aluminium intercept plates glued to G-10 column

    Reflecting layer on section exposed to 300 K radiation 290 K

    5 K

    1.9 K

    0.2 m

    0.01

    0.1

    1

    10

    100

    1 10 100 1000

    Temperature [K]

    k [

    W/m

    .K]

    Stainless steel

    Titanium

    G-10

    Ph. Lebrun EASITrain School 2 Saclay 2019 23

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Distributed steady-state heat loads [W/m](Cryomagnets & distribution line in LHC arc)

    Temperature 50-75 K 4.6-20 K 1.9 K LHe 4 K VLP

    Heat inleaks* 7.7 0.23 0.21 0.11

    Resistive heating 0.02 0.005 0.10 0

    Beam-induced nominal** 0 1.58 0.09 0

    Beam-induced ultimate** 0 4.36 0.11 0

    Total nominal 7.7 1.82 0.40 0.11

    Total ultimate 7.7 4.60 0.42 0.11

    * no contingency

    ** Breakdown nominal ultimate

    Synchrotron radiation 0.33 0.50

    Image current 0.36 0.82

    Beam-gas Scattering 0.05 0.05

    Photoelectron 0.89 3.07

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 25

    Heat inleak measurements on full sectorsconfirm thermal budget

    LHC sector (3.3 km)

    TPhmQ ,

    Measured

    He property tables

    0100200300400500600700800

    DR Meas. DR Meas. DR Meas. DR Meas. DR Meas.

    Sector 1-2 Sector 4-5 Sector 5-6 Sector 6-7 Sector 8-1

    [W]

    Continuous cryostat IT 1 IT 2

    On average, measured values 20 % lower thandesign estimates

    Ph. Lebrun EASITrain School 2 Saclay 2019

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Layout of the LHC cryogenic system

    • 5 cryogenic islands

    • 8 cryogenic plants, each serving adjacent sector, interconnected when possible

    • Cryogenic distribution line feeding each sector

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 28

    18 kW @ 4.5 K helium refrigerators

    33 kW @ 50 K to 75 K 23 kW @ 4.6 K to 20 K 41 g/s liquefaction

    High thermodynamic efficiency

    COP at 4.5 K: 220-230 W/W

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Challenges of high-power 1.8 K refrigeration

    1

    10

    100

    1000

    10000

    0 1 2 3 4 5 6

    Temperature [K]

    Pre

    ssure

    [kP

    a]

    SOLID

    VAPOUR

    He IHe IICRITICAL

    POINT

    PRESSURIZED He II

    (Subcooled liquid)

    SATURATED He II

    SUPER-

    CRITICAL

    SATURATED He I

    Pressure ratio > 80

    • Compression of large mass flow-rate of He vapor across high pressure ratio

    intake He at maximum density, i.e. cold

    • Need contact-less, vane-less machine hydrodynamic compressor

    • Compression heat rejected at low temperature thermodynamic efficiency

    Ph. Lebrun EASITrain School 2 Saclay 2019 29

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Warm pumping unit for LHC magnet tests3 stages of Roots + 1 stage rotary-vane pumps

    6 g/s @ 10 mbar (1/160 of LHC!)

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Cycles for refrigeration below 2 K

    LHeCC

    CC

    CC

    CC

    CC

    4.5

    K r

    efr

    ige

    rato

    rHeat load

    HP

    MP

    LP

    CC

    CC

    CC

    LHe

    Sub-atmosphericcompressor

    4.5

    K r

    efr

    ige

    rato

    r

    Heat load

    HP

    MP

    LP

    1

    2

    3

    “Integral Cold”Compression

    “Mixed”Compression

    LHe

    Sub-atmosphericcompressor

    4.5

    K r

    efr

    ige

    rato

    r

    Heat load

    HPLP

    Ele

    ctr

    ica

    lh

    ea

    ter

    “Warm”Compression

    Sub-cooling

    heat exchanger

    ~ 2 kPa

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • 32

    2.4 kW @ 1.8 K refrigeration unitsCold hydrodynamic compressors

    Electric drive 6’000 to 48’000 rpm, active magnetic bearings

    1.8 K Refrigeration Unit Cycles

    CC

    He

    at

    Inte

    rcepts

    Air Liquide Cycle IHI-Linde Cycle

    4 K, 15 mbar124 g/s

    20 K, 1.3 bar124 g/s

    0.35 bar

    4.75 bar

    4 K, 15 mbar124 g/s

    20 K, 1.3 bar124 g/s

    0.59 bar

    9.4 bar

    4.6 bar

    CC

    CC

    CC

    CC

    CC

    CC

    CC

    T

    T

    T

    Adsorber

    Adsorber

    WC

    WC

    WC WC

    HX

    HX

    HX

    HX

    Ph. Lebrun EASITrain School 2 Saclay 2019

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Specific features of LHC cold compressors

    Axial-centrifugalImpeller (3D)

    Fixed-vanediffuser

    3-phase inductionElectrical motor(rotational speed: 200 to 700 Hz)

    Activemagneticbearings

    300 K

    under

    atm

    osp

    here

    Cold

    under

    vacu

    um

    Inlet

    Outlet

    Pressure ratio2 to 3.5

    Spiral volute

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Performance of LHC cold compressors

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1985 1993 2000Year of construction

    Isentr

    opic

    eff

    icie

    ncy [

    %]

    Tore Supra

    CEBAF

    LHC

    12

    12'is

    HH

    HHη

    Tem

    per

    atur

    e (T

    )

    Entropy (s)

    P1

    P2

    1

    2

    2'

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Warm sub-atmospheric screw compressors

    Compound two-stage screw compressor

    WCS at CERN:125 g/s @ 0.6 bar

    or4600 m3/h @ 15 °C

    Mycom

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Warm sub-atmospheric screw compressors

    Kaeser

    WCS at CERN:125 g/s @ 0.35 bar

    or2 x 3900 m3/h @ 15 °C

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Isothermal efficiencyof warm subatmospheric compressors

    0

    10

    20

    30

    40

    50

    60

    0 20 40 60 80 100Suction pressure [kPa]

    Iso

    the

    rma

    l e

    ffic

    ien

    cy [

    %]

    Tore Supra

    LHC Supplier #1

    LHC Supplier #2

    TESLA

    Liquid ring pump

    Screw compressors

    comp

    1

    20

    thQ

    P

    PlnTRn

    η

    Isothermalefficiency

    T0 = 300 KP1

    P2

    Qcomp.

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • C.O.P. of LHC cryogenic plants

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Efficiency of Joule-Thomson expansion

    Sub-cooling T1’ [K] H3-H2 [J/g] H3-H0 [J/g] [%]

    without 4.5 12.6 23.4 54

    with 2.2 20.4 23.4 87

    Sub-cooling efficiency :03

    23sc

    HH

    HH

    sc

    expansion

    valve

    m.

    Q.

    LHe

    Sat. He II

    1.8 K, 16 mbar

    expansion

    valve

    m.

    Q.

    LHe

    Sat. He II

    1.8 K, 16 mbar

    sub-cooling

    HX

    1

    23

    1

    1'

    23

    1'

    Enthalpy of pure liquid

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Subcooling before J-T expansion

    1

    10

    100

    1000

    0 10 20 30 40

    Enthalpy [J/g]

    Pre

    ssu

    re [

    kP

    a]

    Sub-cooled liquid @ 2.2 K

    Saturated liquid @ 4.5 K

    Saturation dome

    13 % of GHe produced in expansion

    46 % of GHe produced in expansion

    1

    22

    1’

    30

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Subcooling HX technologies for LHC

    Stainless steel sheet

    Perforatedcopper plateswith SS Spacers

    SS coiled tubes

    Mass-flow: 4.5 g/sP VLP stream: < 1 mbarSub-cooling T: < 2.2 K

    DATE

    SNLS

    Romabau

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Protection against air inleaks

    • Motor shaft of warm sub-atmospheric compressors placed at thedischarge side to work above atmospheric pressure.

    • For sub-atmospheric circuits which are not under guard vacuum or notcompletely welded, apply helium guard protection on dynamic seal ofvalves, on instrumentation ports, on safety relief valves and on criticalstatic seals

    I

    VLP circuitsSafety valves Instrumentation and components

    not completely welded,without double O-ring joints

    Static sealwith double O-ring joints

    HP helium

    PT

    Evacuationfor periodic rinsing

    He guard header

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Local Cryogenic

    control room

    Central Control Room

    OWS [1..x]

    PVSS DS Sector

    OWS

    [1..x]

    PROFIBUS DP

    networks

    PROFIBUS PA networks

    WFIP

    Networks (7)

    RadTol

    electronics

    UNICOS

    PLC

    S7-400

    Siemens

    FECs

    (FESA)

    RM sector 81

    RM sector 78 RM sector 78

    PLC

    QUIC

    Schneider

    Return

    Module

    Cryo instrumentation expert tool

    PVSS DS

    TT, PT, LT, DI, EH CV

    Controls for LHC cryogenics21300 AI, 7000 AO, 18400 DI, 4200 DO

    4700 analog control loops

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Cryogenics in CERN Accelerator Control Centre

    On shift 24/7

    Process synoptics and control

    Trend curves

    Fixed displays

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Display of cryogenic operation indicators

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • LHC temperature history 2009-2019(D. Delikaris)

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Cooldown to 80 K: 600 kW per sector with up to ~5 tons/h liquid nitrogen

    Precooling 37’500 t magnets with 10’000 t liquid nitrogen

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Helium inventory management

    Total He inventory of LHC accelerator: 135 tonsOn-site storage: 125 tons« Virtual » storage contract: 60 tons

    Storage capacity GHe @ 2 MPa, Tambient:- 58 x 250 m3 tanks- 40 x 80 m3 tanks

    Storage capacity LHe @ 0.1 MPa, 4.5 K:- 6 x 120’000 liter vacuum-insulated vessels

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Availability of LHC cryogenics 2010-2018(D. Delikaris)

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • LHC helium losses 2007-2019(D. Delikaris)

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Contents

    • Technical challenges of the LHC

    • He II magnet cooling scheme

    • Cryostat design and heat loads

    • Refrigeration at 4.5 K and 1.8 K

    • Specific He II technologies

    • Instrumentation and controls

    • Operation

    • Upgrade

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • The HL-LHC projectObjectives and contents

    • Determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

    – enable a total integrated luminosity of 3000 fb-1

    – enable an integrated luminosity of 250-300 fb-1 per year

    – design for m 140 ( 200) (peak luminosity of 5 (7) 1034 cm-2 s-1)

    – design equipment for ‘ultimate’ performance of 7.5 1034 cm-2 s-1 and 4000 fb-1

    Ph. Lebrun EASITrain School 2 Saclay 2019 55

    Major intervention on 1.2 km of LHC ring

    • New IR-quads using Nb3Sn superconductor

    • New 11 T Nb3Sn (short) dipoles

    • Collimation upgrade

    • Cryogenics upgrade

    • Crab Cavities

    • Cold powering

    • Machine protection

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Paths to high luminosity

    Beam-beam effect precludes too low crossing angle

    Ph. Lebrun EASITrain School 2 Saclay 2019 56

    𝑳 = 𝒏𝒃𝑵

    𝟐𝒇𝒓𝒆𝒗𝟒𝝅 𝜷∗ 𝜺𝒏

    𝑹; 𝑹 = ൗ𝟏 𝟏 +𝜽𝒄 𝝈𝒛𝟐𝝈

    Increase bunch population

    Reduce beta at collision Reduce emittance

    Increase R = reduce crossing angle?

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • The HL-LHC projectFrom accelerator physics to technology

    Ph. Lebrun EASITrain School 2 Saclay 2019 57

    Increase bunch population

    Reduce beta at collision

    Reduce emittance

    Reduce crossing angle

    Increase intensity & brightness of injectors:

    the LIU project

    More powerful cryogenicsImproved collimation

    Improved machine protection Stronger R to E relocation

    New low-beta quadrupoles

    Limit beam-beam effect

    “Crab” cavities

    Acce

    lera

    tor

    ph

    ysic

    s

    Acce

    lera

    tor

    tech

    no

    log

    y

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Additional cryogenics for HL-LHC(S. Claudet)

    P7

    P8

    P6

    P5

    P4

    P3

    P2

    P1

    Existing cryoplant

    New HL-LHC cryoplant

    +

    P1 and P5

    o 2 new cryoplants (~15 kW @ 4.5 K incl. ~3 kW @ 1.8 K)

    o 2 x 750m cryo-distribution for high-luminosity insertions

    P4

    o upgrade (+2 kW @ 4.5 K) of existing LHC cryoplant (18 kW @ 4.5 K)

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg

  • Some references

    • Ph. Lebrun, Cryogenics for the Large Hadron Collider, IEEE Trans. Appl. Supercond. 10 (2000) 1500-1506

    • Ph. Lebrun, Industrial technology for unprecedented energy and luminosity: the Large Hadron Collider, EPAC9 Lucerne, JACoW (2004) 6-10

    • LHC Design Report, vol.1, The LHC Main Ring, CERN-2004-003-V-1 (2004)

    • Ph. Lebrun, Advanced technology from and for basic science: superconductivity and superfluid Helium at the Large Hadron Collider, Inaugural Lecture of the Academic Year 2007-2008 -Politechnika Wroclawska/Wroclaw University of Technology, CERN-AT-2007-030 (2007)

    • Ph. Lebrun, Commissioning and First Operation of the Large Hadron Collider, Proc. ICEC23 Wroclaw (2011) 41-48

    • Ph. Lebrun, The LHC accelerator: performance and technology challenges, in LHC physics, Scottish Graduate Series, Taylor & Francis, ISBN 978-1-1398-3770-2 (2012) 179-195

    • D. Delikaris et al., The LHC cryogenic operation: availability results from the first physics run of three years, IPAC4 Shanghai, JACoW (2013) 3585-3587

    • Ph. Lebrun & L. Tavian, Cooling with superfluid helium, Proc. CERN Accelerator School Erice 2013, CERN-2014-005 (2014) 453-476

    • S. Claudet et al. Helium inventory management and losses for LHC cryogenics: strategy and results for Run 1, Phys. Procedia 67 (2015) 66-71

    • Ph. Lebrun, Twenty-three kilometres of superfluid helium cryostats for the superconducting magnets of the Large Hadron Collider, in J. Weisend (ed.) Cryostat design, Springer, ISBN 978-3-319-31150-0 (2016) 67-94

    http://doc.cern.ch/archive/electronic/cern/others/PHO/photo-bul/bul-pho-2007-046_01.jpg