critical materials report jan 2014 low res final

Upload: mithosoyku

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    1/76

    2014

    THIS REPORT

    HAS BEEN

    PRODUCED IN

    COLLABORATION

    WITH

    REPORT

    Critical materials forthe transition to a 100%

    sustainable energy future

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    2/76

    1 Introduction 5

    2 Supply Bottlenecks for Material Resources Worldwide 6

      Materials production, resource and reserves worldwide 8

      Materials which are vulnerable to supply bottlenecks 15

    3 Critical Materials for Transitioning to a

    100% Sustainable Energy System 18

      Critical materials for sustainable energy production technologies 20

      Critical materials bottlenecks for detailed assessment 24

    4 Detailed Assessment of Bottleneck Areas 26

      Indium, gallium, tellurium and silver for photovoltaics 28

      Indium and gallium for energy efcient lighting 32

      Rare earths for wind turbines (neodymium and yttrium) 34

      Cobalt and lithium for high density batteries 37

      Copper for infrastructure, energy supply and energy efcientelectric motors 41

      Semiconductors for smart electronics 44

      Nitrogen, phosphorus and potassium for biofuels 45

    5 Comparison Material Demand TER Scenario and

    Business as Usual Scenario 46

      Material requirements to achieve the TER scenario and NPS 48

      The importance of energy efciency and material efciency in

    the TER scenario and NPS 51

    References 52

     Appendix A: Copper Requirements for Electricity DistributionInfrastructure 56

     Appendix B: Assumptions Made for the Calculations 57

     Appendix C: Comparison of Results with SEI and STOA Study 61

     Appendix D: Results of the Calculations 70

    CONTENTS

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    3/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 1

    EXECUTIVE

    SUMMARY

    This study examines whether

    non-energy raw material supply bottlenecks could occur in thetransition to a fully sustainableenergy system. Such a transitionis represented in The EnergyReport, published in 2011 by

     WWF and Ecofys, which showsa way to almost 100% renewableenergy by 2050 coupled withstrong energy efciency efforts inall sectors.

    The most critical supply bottlenecks of non-energy rawmaterials are lithium and cobalt, which are used for

     batteries in electric vehicles. These bottlenecks can bealleviated by recycling lithium, substituting lithiumin other sectors, and by using less cobalt-intensivecathodes.

    By contrast indium, gallium and tellurium are not

    expected to become important bottlenecks. Their usein solar power (photovoltaics) can be substituted byapplying technologies requiring less critical materials,such as silicon. The use of indium and gall ium forenergy efcient lighting is very small compared to

    production in 2011. Supply bottlenecks are likely topose less of a problem also for copper, which is used fortransition grids and increasingly for more capture windand solar energy and in energy efcient motors.

    So-called ‘rare earths’, including neodymium and yttrium, and which are needed for wind turbines,are expected to exceed the demand. However, rare

    earths are nevertheless considered a bottleneck forother, geopolitical reasons. The majority of currentproduction is concentrated in a single country, China.In recent years, rare earths have been the subject ofexport restrictions, which have given rise to concernsin, for instance, Japan, the United States and Europe.Eliminating these geopolitical constraints in the shortterm is dif cult, but is possible in the longer term as

    resources become available in other geographical areasas well.

    The authors of this study used the followingapproaches: A quick scan was carried out to identifyareas where bottlenecks might occur. These bottlenecks

     were further analysed by taking information from TheEnergy Report, such as the installed electric capacity,amount of vehicles or building area, and multiplyingthis with the material intensity of the differenttechnologies, such as the amount of tellurium per GW

    installed capacity of photovoltaics. These calculationsresulted in the maximum material demand for atechnology, both on a yearly basis as well as cumulativefor the period 2012 to 2050. The maximum materialdemand per year was compared with the productionof that material in 2011. The cumulative demand forthe material was compared with the reserves and theresources of that material. Ways of mitigating materialscarcities were also investigated.

    This study concludes that although the scenario in TheEnergy Report leads to additional material demand forspecic applications, there are also signicant material

    savings related to the high energy and materialefciency pathways chosen for these scenarios. As

    a result, the overall impact on scarce resources in ahighly renewable powered and energy-efcient world

    is likely to be substantially smaller than in a scenario with more modest sustainable energy ambitions.However, new political legislation in all majoreconomies to promote material recycling and drivesubstantial technological development is still requiredto increase material efciency.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    4/76

    Page 2 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Global politics permitting we know that sustainable renewable energy can fuel the world reliably while overcoming threats of climate change, air pollution and higheconomic costs for the majority of countries from increased import costs of fossilfuels. While a vision for a fossil fuel and nuclear free global energy supply by 2050is environmentally sound and a key condition to stay well below 2 degree global

     warming, reduce nuclear risks and substantially diminish air pol lution which stil lkills more than 3 million people annually and mostly in developing countries, such a

     vision seems to imply that clean renewables have no limits and resource constraints.

    It is true that the simple amount of clean energy from sun, wind and geothermalalone can power our global energy demand by more than 100 times. It is, however,not true that the overal l renewable energy supply chain and conversion technologieshave no limits. We need more grids, more transformers, more batteries, simply morematerials, new specialised materials, more rare earth materials, copper, lithium etc.for highly innovative and modern energy technologies that provide a close to zero-emission energy sector. But we also know that mining of materials has a footprintin nature, creates waste, consumes fresh water, and that often practices of thesenon-energy minerals mined are highly dangerous and extremely polluting in somedeveloping countries. In addition, some of these minerals are limited and not highly

    concentrated in the Earth crust.

    Modern, innovative energy-related technologies often have a high demand for thesematerials. And they do not stand alone. Modern information technology sectors fromcomputers to T V at screens and mobile phones, various industrial applications and

    processes, lighting technologies and transport applications also increasingly requirethese materials.

    For a long-term 100% renewable energy vision powered by modern technologiesand assuming substantive growth and demand for all kind of other industrialtechnologies worldwide, and particular in developing countries, we need to makesure that there are no bottlenecks. A lready some authorities and institutions warn of

    shortages of some rare earth materials before 2020. Though geologically we may notrun out of rare earths that easily and that fast, 90% of worldwide production of thesematerials is presently concentrated in China. And in some cases, such as l ithiumfor electric car drives and batteries, we may see shortages as this report by Ecofysdocuments.

    Hence, a strong focus on energy efciency and conservation is paramount to

    reduce non-energy material needs for the emerging renewable energy technologies worldwide. Also, WWF strongly urges all governments to legislate as soon as possiblestrong incentives and create regulations for enhanced recycling and reuse of preciousand rare materials. In paral lel, research and development shall be fostered for newmaterials and high material ef ciency. This will not only provide a sufcient ow

    for materials for highly-innovative technologies and applications both in energy

    and non-energy usage, but also reduce overall environmental and social impacts ofmining non-renewable resources.

    FOREWORD About 3 years ago, WWF

    launched its energy vision toarrive at a 100% renewable energypowered economy by 2050.

    Dr Stephan Singer,

    Director Global

    Energy Policy, WWF

    International

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    5/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 3

     We are happy to see the ev idence in this Ecofys repor t that a transition to a 100%sustainable energy supply is possible, in spite of supply chain bottlenecks, which can

     be mitigated through increased recycling and substitution.

    Stephan Singer,January 2014

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    6/76

    Lithium being ex tracted from ore. The demand for lithium, a major component in batteries for cell phones, laptops andelectric vehicles, is expe cted to increase rapidly and is widely regarded as a key bottleneck for the large sca le introductionof electric vehicles.

     © S H U

    T T E R S T  O C K

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    7/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 5

    This concern focuses especially on rare earth metals, but also includes more commonmetals such as copper and aluminium. The upcoming material requirements forsustainable energy technologies is crucial in the debate, though non-energy materialneeds such as for IT and highly specialised manufacturing and modern transportindustries also claim an ever larger share of these extractive non-renewableminerals.

    The development of a fully sustainable energy system will denitely lead to a

    change of material demands compared to a business-as-usual development of theconventional energy system. However, and strongly depending on overall successesin material, resource and energy efciency, it remains to be seen whether the entire

    package of technologies belonging to a 100% sustainable renewable energy scenarioactually leads to a higher net resource demand.

    This study investigates what material supply bottlenecks may occur in a transitionto a 100% sustainable energy system, and how these bott lenecks can be overcome.It bases its calculations on the 100% sustainable energy scenario presented in TheEnergy Report (TER), a study produced by WWF and Ecofys in 2011.

    The critical materials report is divided up into ve chapters.

    Chapter 1 is this introduction.

    Chapter 2 provides an overview of material production worldwide and a quickscan of materials for which supply bottlenecks may occur in future.

      Chapter 3 describes which critical materials impact on which sustainable energy

    production technologies utilised in The Energy Report.

      Chapter 4 provides a detailed assessment of ten critical material bott lenecks forTER, including proposed mitigation measures.

      Chapter 5 compares the material demand related to The Energy Report scenario with a business as usual scenario f rom the International Energy Agency (IEA).

    INTRODUCTION

    There are increasing concerns

    about the future availabilityof mined and non-renewableminerals and materials forour society.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    8/76

    2. Supply Bottlenecks for

    Material ResourcesWorldwide

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    9/76

     © S H UT T E R S T  O C K

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    10/76

    Page 8 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Materials production, resource and reserves worldwide

    This chapter considers current materials production, resources and reserves

     worldwide. In resource accounting, the distinct ion between reserves and resources isimportant:

      ‘Resources’ are everything that is known and expected to exist somewhere. Theyare dened as materials of economic interest for extract ion, which either now or

    in the future become commercially available (EU, 2010. USGS, 2012).

    ‘Reserves’ are every thing for which there is reasonable certainty about wherethey are located. They are dened as “a subset of resources which are fully

    geologically evaluated and which can be economically, legally and immediatelyextracted; reserves are often described as the ‘working inventory’ of a miningcompany, which is continually updated according to changing economic,

    technological, legal and political situations” (EU, 2010. USGS, 2012).

    In general, these denitions are almost identical to those used with fossil fuels.

    High commodity prices increase the reserve base while lower ones reduce its size.

     While production gures are generally available, estimating reserves and resources

    on a global scale involves some uncertainty. Information about materials of strategicimportance (e.g. radioactive materials, materials used in weapons production) isoften not publically available. In addition, production gures of some of the rarer

    materials (e.g. many of the rare earth elements) are not always readily availablesince these materials are often traded directly via long term delivery contracts ratherthan on the open global market. Further detail is provided in chapter 3 on how these

    uncertainties should be taken into account when analysing critical materials.

    SUPPLYBOTTLENECKSFOR MATERIAL

    RESOURCESWORLDWIDE

    This chapter contains an overviewof non-biomass, non-renewablemineral material production

     worldwide and a quick scanof materials for which supply

     bottlenecks may occur in future.Biotic resources, such as sh andtimber, and fuel resources, such

    as coal and oil, are excluded fromthis analysis. Included are metals,such as copper (Cu), platinum(Pt) and rare earth elements, andindustrial minerals such as barite(BaSO4) and uorspar (CaF2).

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    11/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 9

     We distinguish the group of rare earths and the specic group of platinum group

    metals (PGMs). These groups consist of respectively seventeen and six differentmetals. Rare earths are: scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce),praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium(Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er)and thulium (Tm). Platinum group metals are: platinum (Pt), osmium (Os), ir idium(Ir), ruthenium (Ru), rhodium (Rh) and palladium (Pd). Each is of ten groupedtogether because they are generally mined and processed as a group.

    Table 1 provides a comprehensive overview of the most important material resourcesproduced worldwide, their annual production rates, the most important sectors andapplications for which they are used and, where available, information on reserves,resources and the ratio of reserves and resources to annual production. Reservesand resources are quantied as far as possible. Where quantitative information

    for a material is limited, the material’s status is indicated as either1: 

    adequate, i.e. needs can be met into the foreseeable future

    abundant, i.e. needs can be more than met into the foreseeable future

      NA, i.e. no information is available.

    Table 1 is div ided into ve sections: minerals (rock type materials obtained by

    mining), noble metals (metals resistant to attacks by acids and other reagents andnon-corrosive), metalloids (semimetals displaying properties of both metals andnon-metals), non-metals and metals.

    Note that Table 1 excludes materials that are judged to be of low relevance to thisstudy. That is, materials for which:

      supply is very large, and the material is easy to obtain and widely availableon a global scale (e.g. nitrogen (N), sand and stone)

      supply may not be very large, but the material can be readily synthesised(e.g. diamonds and quartz)

      the material is used in low-tech applications and can be easily substituted forother materials (e.g. perlite and pumice)

      the material is primarily used as a feedstock for a material already on the list,or the material is the product of a precursor that is already on the list (e.g.

     bauxite, which is the feedstock for aluminium (Al) and iron (Fe) and steel, which are the products of iron ore)

      the main funct ion of the material is as an energy carrier (e.g. uranium (U)or coal).

     As can be seen in Table 1, many of the mater ials currently in demand worldwideare not considered to have near or long term supply bottlenecks. Many resourcesare available for over 100 years, sometimes even over 1000 years. There are a fewexceptions. Zirconium (Zr) and molybdenum (Mo) resources are only expected to last

    1 Please note that this terminology has been introduced by Ecofys. The USGS does not use standardizedterminology in its handbook to indicate quantitative information on materials

    PRODUCTION RATIOSARE NOT ALWAYSGOOD INDICATORSFOR THE LIKEL IHOODOF A SUPPLY CHAIN

    BOTTLENECK, ASTHESE CAN ALSO BEAFFECTED BY ANINCREASE IN DEMAND

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    12/76

    Page 10 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    for respectively 43 and 56 years at current production levels. Reserves are clearly

    more constrained than resources, sometimes down to only 20 years. Notably lowreserves to production ratios are present for antimony (Sb), strontium (Sr), gold(Au), lead (Pb) and tin (Sn), which are each below 20 years.

    Note that the reserves to production and resources to production ratios are notalways good indicators for the likelihood of a supply chain bottleneck, as theyonly are relevant for materials with a stable demand. With rapidly increasingdemand, exhaustion may happen much earlier. On the other hand, developmentsin reuse, recycling and substitution of critical metals can alleviate the exhaustionof materials.

    Materials judged to be vulnerable to supply bottlenecks, i.e. critical materials, will now be considered further.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    13/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 11

       T   a    b    l   e   1

       2   0   1   1  p  r  o   d  u  c   t   i  o  n  r  a   t  e  s ,  r  e  s  e  r  v  e  s ,  r  e  s  o  u  r  c  e  s  a  n   d   k  e  y  s  e  c   t  o  r  s  o

       f  u  s  a  g  e   f  o  r  m  o  s   t   i  m  p  o  r   t  a  n   t  m  a   t  e  r   i  a   l  r  e  s  o  u  r  c  e  s  w  o  r   l   d  w   i   d  e   (   U   S   G   S ,   2   0   1   2   )

       M  a

       t  e  r   i  a

       l

       W  o  r   l

       d

      p  r  o

       d  u  c

       t   i  o  n

       (   M   t   /  y  e  a  r   )

       W  o  r   l   d

      r  e  s  e  r  v

      e  s

       (   M   t   )

       R  e  s  e  r  v  e  s

       /

       P  r  o

       d  u  c

       t   i  o  n

       (  y  e  a  r  s

       )

       W  o  r   l

       d

      r  e  s  o  u  r  c  e  s

       (   M   t   )

       R  e  s  o  u  r  c  e  s

       /

       P  r  o

       d  u  c

       t   i  o  n

       (  y  e  a  r  s

       )

       K  e  y  s  e  c

       t  o  r  s  o

       f  u  s  a  g  e

       M   i  n  e  r  a   l  s

       B  a  r   i   t  e

       (   B  a   S   O   4   )

       7 .   8

       2   4   0

       3   1

       7   4   0

       9   5

      p  e   t  r  o   l  e  u  m   i  n   d  u  s   t  r  y ,  p  a   i  n   t  s ,  p   l  a  s   t   i  c  s ,  r  u   b   b  e  r ,   t  r  a  n  s  p  o  r   t ,  m  e   t  a   l  c  a  s   t   i  n  g ,  r  a   d   i  a   t   i  o  n  s   h   i  e   l   d   i  n  g

       F   l  u  o  r  s

      p  a  r   (   C  a   F   2   ) .

       6 .   2

       2   4   0

       3   9

       5   0   0

       8   1

      p  r  o  c  e  s  s   i  n  g  o   f  a   l  u  m   i  n  u  m

      a  n   d  u  r  a  n   i  u  m ,  s   t  e  e   l  m  a   k   i  n  g ,  g   l  a  s  s  m  a  n  u   f  a  c   t  u  r  e

       K  y  a  n   i   t  e   (   A   l   2   S   i   O   5   )

       0 .   0   0   0   4   6

       N   A

       N   A

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

       i  r  o  n  m  a   k   i  n  g  a  n   d  s   t  e  e   l  m

      a   k   i  n  g ,  m  a  n  u   f  a  c   t  u  r  e  o   f  c   h  e  m   i  c  a   l  s ,  g   l  a  s  s ,

      n  o  n   f  e  r  r  o  u  s  m  e   t  a   l  s

       T   i   t  a  n   i  u  m   d   i  o  x   i   d  e

       (   T   i   O   2   )

       6 .   7

       6   9   0

       1   0   3

       2 ,   0   0   0

       2   9   9

      p   i  g  m  e  n   t  s ,  a  e  r  o  s  p  a  c  e  a  p  p   l   i  c  a   t   i  o  n  s ,  a  r  m  o  r ,  c   h  e  m   i  c  a   l  p  r  o  c  e  s  s   i  n  g ,  m  a  r   i  n  e ,  p  o  w  e  r  g  e  n  e  r  a   t   i  o  n

       W  o   l   l  a  s   t  o  n   i   t  e

       (   C  a   S   i   O   3   )

       0 .   5   1

       1   8   0

       3   5   3

       N   A

       N   A

      p   l  a  s   t   i  c  s ,  r  u   b   b  e  r  p  r  o   d  u  c   t  s ,  c  e  r  a  m   i  c  s ,  m  e   t  a   l   l  u  r  g   i  c  a   l  a  p  p   l   i  c  a   t   i  o  n  s ,  p

      a   i  n   t ,   f  r   i  c   t   i  o  n  p  r  o   d  u  c   t  s

       N  o   b   l  e

      m  e   t  a   l  s

       G  o   l   d   (   A  u   )

       0 .   0   0   2   7

       0 .   0   5   1

       1   9

       N   A

       N   A

       j  e  w  e   l   l  e  r  y ,  a  r   t  s ,   d  e  n   t  a   l ,  e

       l  e  c   t  r   i  c  a   l  a  n   d  e   l  e  c   t  r  o  n   i  c  s

       P   l  a   t   i  n  u  m  g  r  o  u  p

      m  e   t  a   l  s

       N   A

       0 .   0   6   6

       N   A

       1   0   0

       N   A

      c  a   t  a   l  y  s   t  s ,  c   h  e  m   i  c  a   l  s  p  r  o   d  u  c   t   i  o  n ,  e   l  e  c   t  r  o  n   i  c  s ,  g   l  a  s  s  m  a  n  u   f  a  c   t  u  r   i  n

      g ,   d   i  s  p   l  a  y  s ,   j  e  w  e   l  r  y

       S   i   l  v  e  r

       (   A  g   )

       0 .   0   2   3   8

       0 .   5   3

       2   2

       N   A

       N   A

       i  n   d  u  s   t  r   i  a   l  a  p  p   l   i  c  a   t   i  o  n  s ,   j  e  w  e   l   l  e  r  y ,  p   h  o   t  o  g  r  a  p   h  y ,   b  a   t   t  e  r   i  e  s  a  n   d  c  a   t  a   l  y  s   t  s ,  e   l  e  c   t  r  o  n   i  c  s ,   b  e  a  r   i  n  g  s ,

      m   i  r  r  o  r  s ,  s  o   l  a  r  c  e   l   l  s

       M  e   t  a   l   l  o   i   d  s

       A  n   t   i  m  o  n  y   (   S   b   )

       0 .   1   6   9

       1 .   8

       1   1

       N   A

       N   A

         a  m  e  r  e   t  a  r   d  a  n   t  s ,

       t  r  a  n  s  p  o  r   t  a   t   i  o  n ,

       b  a   t   t  e  r   i  e  s ,  c   h  e  m   i  c  a   l  s ,  c  e  r  a  m   i  c  s

      a  n   d  g   l  a  s  s

       A  r  s  e  n

       i  c   (   A  s   )

       0 .   0   5   2

       1 .   0

       2   0

       1   1

       2   1   2

      a  m  m  u  n   i   t   i  o  n ,   b  a   t   t  e  r   i  e  s ,   b  e  a  r   i  n  g  s ,   f  e  r   t   i   l   i  s  e  r  s ,  p  e  s   t   i  c   i   d  e  s ,  e   l  e  c   t  r  o  n   i  c  s ,  s  o   l  a  r  c  e   l   l  s

       B  o  r  o  n

       (   B   )

       0 .   0   0   4   3

       2   1   0

       4   8 ,   8   3   7

       A   d  e  q  u  a   t  e

       A   d  e  q  u  a   t  e

      g   l  a  s  s ,  c  e  r  a  m   i  c  s ,  s  o  a  p  s ,   d  e   t  e  r  g  e  n   t  s ,   b   l  e  a  c   h  e  s ,  a  g  r   i  c  u   l   t  u  r  e ,  e  n  a  m

      e   l  s  a  n   d  g   l  a  z  e  s

       G  e  r  m  a  n   i  u  m   (   G  e   )

       0 .   0   0   0   1   1   8

       N   A

       N   A

       A   d  e  q  u  a   t  e

       A   d  e  q  u  a   t  e

          b  e  r  -  o  p   t   i  c  s  y  s   t  e  m  s ,

       i  n   f  r  a  r  e   d  o  p   t   i  c  s ,  p  o   l  y  m  e  r   i  s  a   t   i  o  n  c  a   t  a   l  y  s   t  s ,  e   l  e

      c   t  r  o  n   i  c  s ,  s  o   l  a  r  e  n  e  r  g  y

       S   i   l   i  c  o  n   (   S   i   )

       8

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

      a   l  u  m   i  n  u  m  a  n   d  a   l  u  m   i  n  u  m  a   l   l  o  y  s ,  c   h  e  m   i  c  a   l   i  n   d  u  s   t  r  y ,  s  e  m   i  c  o  n   d  u  c   t  o  r ,  s  o   l  a  r   i  n   d  u  s   t  r  y

       T  e   l   l  u  r   i  u  m   (   T  e   )

       0 .   0   0   0   1   1   5

       0 .   0   2   4

       2   0   9

       N   A

       N   A

      s   t  e  e   l ,  c  o  p  p  e  r  a  n   d   l  e  a   d  a   l   l  o  y  s ,  c   h  e  m   i  c  a   l   i  n   d  u  s   t  r  y ,  s  o   l  a  r  c  e   l   l  s ,  p   h  o   t  o  r  e  c  e  p   t  o  r ,   t   h  e  r  m  o  e   l  e  c   t  r   i  c

      e   l  e  c   t  r  o  n   i  c   d  e  v   i  c  e  s ,   t   h  e  r

      m  a   l  c  o  o   l   i  n  g   d  e  v   i  c  e  s

       N  o  n   M

      e   t  a   l  s

       B  r  o  m   i  n  e   (   B  r   )

       0 .   4   6

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

       1 ,   0   0   0

       2   0   0   0

         a  m  e  r  e   t  a  r   d  a  n   t  s ,

       d  r   i   l   l   i  n

      g     u   i   d  s ,  p  e  s   t   i  c   i   d  e  s ,  w  a   t  e  r   t  r  e  a   t  m  e  n   t ,  p   h  a  r  m  a  c  e  u   t   i  c  a   l  s ,  c   h  e  m   i  c  a   l  s

       G  r  a  p   h

       i   t  e

       0 .   9   2   5

       7   7

       8   3

       8   0   0

       8   6   5

      r  e   f  r  a  c   t  o  r  y  a  p  p   l   i  c  a   t   i  o  n  s ,

      c  r  u  c   i   b   l  e  s ,   f  o  u  n   d  r  y  o  p  e  r  a   t   i  o  n  s ,  s   t  e  e   l  m  a   k   i  n  g ,   b  a   t   t  e  r   i  e  s ,   l  u   b  r   i  c  a  n   t  s

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    14/76

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    15/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 13

       M  a

       t  e  r   i  a

       l

       W  o  r   l

       d

      p  r  o

       d  u  c

       t   i  o  n

       (   M   t   /  y  e  a  r   )

       W  o  r   l   d

      r  e  s  e  r  v

      e  s

       (   M   t   )

       R  e  s  e  r  v  e  s

       /

       P  r  o

       d  u  c

       t   i  o  n

       (  y  e  a  r  s

       )

       W  o  r   l

       d

      r  e  s  o  u  r  c  e  s

       (   M   t   )

       R  e  s  o  u  r  c  e  s

       /

       P  r  o

       d  u  c

       t   i  o  n

       (  y  e  a  r  s

       )

       K  e  y  s  e  c

       t  o  r  s  o

       f  u  s  a  g  e

       N   i  o   b   i  u

      m   (   N   b   )

       0 .   0   6   3

       3

       4   8

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

      s   t  e  e   l   i  n   d  u  s   t  r  y ,  a   l   l  o  y  s ,  a  e  r  o  s  p  a  c  e   i  n   d  u  s   t  r  y

       R  a  r  e  e  a  r   t   h  s

       0 .   1   3

       1   1   0

       8   4   6

       N   A

       N   A

      c  a   t  a   l  y  s   t  s ,  m  e   t  a   l   l  u  r  g   i  c  a   l

      a  p  p   l   i  c  a   t   i  o  n  s  a  n   d  a   l   l  o  y  s ,  g   l  a  s  s  p  o   l   i  s   h   i  n  g ,  c  e  r  a  m   i  c  s ,  p  e  r  m  a  n  e  n   t

      m  a  g  n  e   t  s ,  c  e  r  a  m   i  c  s ,  r  a  r  e  e  a  r   t   h  p   h  o  s  p   h  o  r  s   f  o  r  c  o  m  p  u   t  e  r  m  o  n   i   t  o  r  s

     ,   l   i  g   h   t   i  n  g ,  r  a   d  a  r ,   t  e   l  e  v   i  s   i  o  n  s

       R   h  e  n   i  u  m   (   R  e   )

       0 .   0   0   0   0   4   9

       0 .   0   0   2   5

       5   1

       0 .   0   0   6

       1   2   2

      c  r  u  c   i   b   l  e  s ,  e   l  e  c   t  r  o  n   i  c  s ,  e

       l  e  c   t  r  o  m  a  g  n  e   t  s ,   h  e  a   t   i  n  g  e   l  e  m  e  n   t  s ,  m  e   t  a   l   l   i  c  c  o  a   t   i  n  g  s ,  s  e  m   i  c  o  n   d  u  c   t  o  r  s

       R  u   b   i   d

       i  u  m   (   R   b   )

       N   A

       N   A

       N   A

       N   A

       N   A

       b   i  o  m  e   d   i  c  a   l  r  e  s  e  a  r  c   h ,  e   l  e  c   t  r  o  n   i  c  s ,  s  p  e  c   i  a   l   t  y  g   l  a  s  s ,  p  y  r  o   t  e  c   h  n   i  c  s

       S  c  a  n   d

       i  u  m   (   S  c   )

       N   A

       N   A

       N   A

       A   b  u  n   d  a  n   t

       A   b  u  n   d  a  n   t

      a   l  u  m   i  n  u  m   a

       l   l  o  y  s ,  m  e   t  a   l

       l  u  r  g   i  c  a   l  r  e  s  e  a  r  c   h ,

       h   i  g   h  -   i  n   t  e  n  s   i   t  y  m  e   t  a   l   h  a   l   i   d  e   l  a  m  p  s ,  e   l  e  c   t  r  o  n   i  c  s

       S   t  r  o  n   t   i  u  m   (   S  r   )

       0 .   3   8

       6 .   8

       1   8

       1 ,   0   0   0

       2 ,   6   3   2

      p  y  r  o   t  e  c   h  n   i  c  s  a  n   d  s   i  g  n  a

       l  s ,

       f  e  r  r   i   t  e  c  e  r  a  m   i  c  m  a  g  n  e   t  s ,  m  a  s   t  e  r  a   l   l  o  y  s

     ,  p   i  g  m  e  n   t  s ,

          l   l  e  r  s

       T  a  n   t  a   l  u  m   (   T  a   )

       0 .   0   0   0   7   9

       0 .   1   2

       1   5   2

       A   d  e  q  u  a   t  e

       A   d  e  q  u  a   t  e

      a   l   l  o  y  s ,  c  a  p  a  c   i   t  o  r  s ,  a  u   t  o  m  o   t   i  v  e  e   l  e  c   t  r  o  n   i  c  s ,  p  a  g  e  r  s ,  p  e  r  s  o  n  a   l  c  o  m

      p  u   t  e  r  s ,  p  o  r   t  a   b   l  e   t  e   l  e  p   h  o  n  e  s

       T   h  a   l   l   i  u  m   (   T   l   )

       0 .   0   0   0   0   1   0

       0 .   0   0   0   3

       8

       3   8

       0 .   0   1   7

       1 ,   7   0   0

      m  e   d   i  c  a   l  p  u  r  p  o  s  e  s ,  g  a  m

      m  a  r  a   d   i  a   t   i  o  n   d  e   t  e  c   t   i  o  n  e  q  u   i  p  m  e  n   t ,  w   i  r  e   l  e

      s  s  c  o  m  m  u  n   i  c  a   t   i  o  n  s ,   i  n   f  r  a  r  e   d

      a  p  p   l   i  c  a   t   i  o  n  s ,  v  a  r   i  o  u  s  s  p

      e  c   i  a   l   t  y  e   l  e  c   t  r  o  n   i  c  s

       T   h  o  r   i  u

      m   (   T   h   )

       N   A

       1 .   4

       N   A

       0 .   5

       N   A

      c  a   t  a   l  y  s   t  s ,

       h   i  g   h  -   t  e  m  p  e  r  a

       t  u  r  e  c  e  r  a  m   i  c  s ,  a   l   l  o  y  s ,  w  e   l   d   i  n  g  e   l  e  c   t  r  o   d  e  s

     ,  n  u  c   l  e  a  r   f  u  e   l

       T   i  n   (   S

      n   )

       0 .   2   5   3

       4 .   8

       1   9

       A   d  e  q  u  a   t  e

       A   d  e  q  u  a   t  e

      c  o  a   t   i  n  g  o   f  m  e   t  a   l  s ,  a   l   l  o  y  s ,  g   l  a  s  s  m  a   k   i  n  g ,  c  a  n  s  a  n   d  c  o  n   t  a   i  n  e  r  s ,  c  o  n  s   t  r  u  c   t   i  o  n ,   t  r  a  n  s  p  o  r   t  a   t   i  o  n

       T  u  n  g  s

       t  e  n   (   W   )

       0 .   0   7   2

       3 .   1

       4   3

       N   A

       N   A

      c  o  n  s   t  r  u  c   t   i  o  n ,  m  e   t  a   l  w  o  r   k   i  n  g ,  m   i  n   i  n  g ,  o   i   l  -  a  n   d  g  a  s  -   i  n   d  u  s   t  r  y ,  e   l  e  c   t  r  o  n   i  c  s ,

       h  e  a   t   i  n  g ,

       l   i  g   h   t   i  n  g ,

      c   h  e  m   i  c  a   l  s

       V  a  n  a   d

       i  u  m   (   V   )

       0 .   0   6

       1   4

       2   3   3

       6   3

       1 ,   0   5   0

      a   l   l  o  y  s ,  c  a   t  a   l  y  s   t  s

       Y   t   t  r   i  u  m   (   Y   )

       0 .   0   0   8   9

       0 .   5   4

       6   1

       A   d  e  q  u  a   t  e

       A   d  e  q  u  a   t  e

      c  e  r  a  m   i  c  s ,  m  e   t  a   l   l  u  r  g  y  a  n   d  p   h  o  s  p   h  o  r  s ,  m  a  g  n  e   t  s ,  e   l  e  c   t  r  o  n   i  c  s ,   l  a  s  e

      r  s

       Z   i  n  c   (   Z  n   )

       1   2 .   4

       2   5   0

       2   0

       1 ,   9   0   0

       1   5   3

      g  a   l  v  a  n   i  s   i  n  g ,  a   l   l  o  y  s ,  a  g  r   i  c  u   l   t  u  r  e ,  c   h  e  m   i  c  a   l ,  p  a   i  n   t ,  r  u   b   b  e  r

       Z   i  r  c  o  n

       i  u  m   (   Z  r   )

       1 .   4   1

       5   2

       3   7

       6   0

       4   3

      c  e  r  a  m   i  c  s ,

       f  o  u  n   d  r  y  a  p  p   l

       i  c  a   t   i  o  n  s ,  o  p  a  c   i     e  r  s ,  r  e   f  r  a  c   t  o  r   i  e  s ,  a   b  r  a  s   i  v  e

      s ,  c   h  e  m   i  c  a   l  s ,  m  e   t  a   l  a   l   l  o  y  s

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    16/76

    Molybdenum (Mo), a rare earth mineral, r esources are only expecte d to last for 56 years at current production levels.

     © S H U

    T T E R S T  O C K

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    17/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 15

    Materials which are vulnerable to supply bottlenecks

    The scarcity of a particular material and whether or not it can lead to a supply chain bottleneck depends on a lot of factors. First of all, the total amount of mater ialand the part of this which is potentially recoverable. Secondly, the development ofdemand in the future and to which extent supply can be adjusted to meet changesin demand. This is also affected by the possibilities of recycling and substitutingthe material. Thirdly, the geological distribution of the material supply, which canlead to trade disruptions and supply risks. This last factor is up for debate. When thetransition to a sustainable energy system is looked at from a global perspective, thedistribution of the material over indiv idual countries is not relevant and geopoliticalfactors do not play a role.

    This section considers which materials from Table 1 are vulnerable to supply bottlenecks. This is done by analysing six recent reports which identif y crit icalmaterials for various sectors:

       Ad-hoc Working Group on dening critical raw materials – Criticalraw materials for the EU (2010). The Working Group has identied 14

    critical materials at the EU level based on supply risk and economic importance.These include platinum group metals (PGMs) and the rare earths.

      The Hague Centre for Strategic Studies – Scarcity of Minerals: A strategic security issue (2010). The HCSS has identied 15 individual

    elements, as well as the rare earths and PGMs, as critical materials using the

    following criteria: the importance of the metals for the high tech industrialsector, the limited availability of substitutes and the elements which areessential to emerging technologies and ‘green technologies’ in particular.

    Joint Research Centre Institute for Energy and Transport – Supply

    chain bottlenecks in the Strategic Energy Technology Plan (2010). This study identies supply chain bottlenecks based on technologies included

    in the Strategic Energy Technology Plan, focusing on a wide range of renewableenergy technologies, including wind power, onshore and offshore, solarphotovoltaics (PV), concentrated solar power (CSP), carbon capture and storage(CCS), advanced biofuels, nuclear power generation, fuel cells and hydrogen intransport, solar thermal, electricity networks.

    Joint Research Centre Institute for Energy and Transport – Critical

    Metals in Strategic Energy Technologies (2011). This study assesses14 metals which are used in large quantities in technologies presented in theStrategic Energy Technology Plan, considering market and political factors todivide the metals into three groups: high risk, medium risk and low risk. For ouranalysis, Ecofys focuses on materials considered high and medium risk, withlow risk metals considered where relevant to the deployment of renewable andenergy efcient technologies.

       APS Panel on Public Affairs & The Materials Research Society –Energy Critical Elements: Securing Materials for Emerging

    Technologies (2011). This report considers ‘energy-critical elements’,

     which are dened as elements for which scarcity can signicantly hamperthe introduction of game-changing energy technologies, with energy-critical

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    18/76

    Page 16 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Table 2 Critical materials identied in recent reports

    EuropeanCommissionRaw MaterialsSupply group

    The HagueCentre forStrategicStudies

    JRC Study JRC Study 2 AmericanPhysicalSociety

    United NationsEnvironmentProgram

     Antimony (Sb)

    Beryllium (Be)

    Caron Fibre

    Cobalt (Co) Cobalt (Co) Cobalt (Co)

    Copper (Cu) Copper (Cu)

    Dysprosium (Dy)

    Fluorspar (CaF2)

    Gallium (Ga) Gallium (Ga) Gallium (Ga) Gallium (Ga) Gallium (Ga) Gallium (Ga)

    Germanium (Ge) Germanium (Ge) Germanium (Ge)

    Graphite

    Hafnium (Hf)

    Helium (He)

    Indium (In) Indium (In) Indium (In) Indium (In) Indium (In)

    Lanthanum (La)

    Lithium (Li) Lithium (Li) Lithium (Li)

    Magnesium (Mg)

    Manganese (Mn)

    Molybdenum(Mo)

    Neodymium (Nd)

    Nickel (Ni)

    Niobium (Nb) Niobium (Nb) Niobium (Nb)

    Palladium (Pd)

    PGM PGM Platinum (Pt) Platinum (Pt) Platinum (Pt)

    Rare Earths Rare Earths Rare Earths Rare Earths

    Rhenium (Re)

    Ruthenium (Ru)

    Selenium (Se) Selenium (Se)

    Silver (Ag) Silver (Ag)

    Tantalum (Ta) Tantalum (Ta) Tantalum (Ta)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    19/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 17

    elements grouped according to their usage. For the rare earths, specical ly

    dysprosium (Dy), neodymium (Nd), praseodymium (Pr), samarium (Sm),gadolinium (Gd), europium (Eu), terbium (Tb) and yttrium (Y) are mentioned.

      United Nations Environment Programme – Critical Metals forFuture Sustainable Technologies and their Recycling Potential

    (2009). This report identies crit ical metals for future sustainable technologies

    such as renewable energy production and energy efciency technologies, based

    on demand growth, supply risks and recycling restrictions and classifyingmetals according to whether they wil l be critical on the short, medium or longterm.

    Table 2 below shows the subset of materials from Table 1 which are identied in the

    six reports as vulnerable to supply bottlenecks.

    Some of the studies from Table 2 mention the platinum group metals as a group, while others mention them individually (platinum (Pt), palladium (Pd) andruthenium (Ru)). The same holds for rare earths, which are mentioned as a groupin some studies and as individual elements in others.

    The next chapter considers the implications of these critical metals for transitioningto a 100% sustainable energy system.

    EuropeanCommissionRaw MaterialsSupply group

    The HagueCentre forStrategicStudies

    JRC Study JRC Study 2 AmericanPhysicalSociety

    United NationsEnvironmentProgram

    Tellurium (Te) Tellurium (Te) Tellurium (Te) Tellurium (Te)

    Tin (Sn) Tin (Sn)

    Tungsten (W) Tungsten (W)

    Vanadium (V)

    Zinc (Zn)

    Zirconium (Zr) Zirconium (Zr)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    20/76

    3. Critical Materials for

    Transitioning to a 100%Sustainable Energy System

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    21/76

     © S H UT T E R S T  O C K

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    22/76

    Page 20 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    This ful ly sustainable energy system is as represented in The Energy Report (TER)and identies which material supply bottlenecks are recommended for more detailed

    analysis in the following chapter. In that chapter, a full analysis will be given ofthe expected material requirement for building a fully sustainable energy system.That material requirement will then be compared to the long-term availability ofmaterials. The rst part of this chapter describes the technologies from the TER and

    gives a general indication of their material requirements. The second part l ists themost important bottlenecks, based on

    the technologies from the TER and information on critical materials.

    Critical materials for sustainable energy productiontechnologies

    The six studies used to make the overview of cr itical metals in Chapter 2 each havetheir own basis for determining whether a material is critical or not. For this study,only the materials which might lead to a bottleneck for the TER scenario are ofinterest.

    The 100% renewable energy scenario which forms the basis for TER contains manydifferent renewable energy supply technologies and energy efciency technologies

    across the transport, built environment and industrial sectors. However, not all ofthese technologies are dependent on the materials identied in Chapter 2 and not

    all are vulnerable to materials supply bottlenecks.

      Solar energy  - Solar energy is an important consumer of critical materials.In the TER scenario, solar energy supplies half of our total electricity demandin 2050, half of our building heating and 15% of industrial heat and fuel. Solarenergy can be subdivided into photovoltaics, concentrated solar power, low-temperature heating and ‘concentrating solar heat’. Photovoltaics can be further

    subdivided into silicon-based crystalline cells and thin lm cells. Especial ly forthin lm cells photovoltaics, which require several types of scarce materials,

    This chapterassesses whichcritical materials

     will impact onthe sustainableenergy productiontechnologies

    utilised in a fullysustainable energysystem.

    CRITICAL MATERIALSFOR TRANSITIONING TO

    A 100% SUSTAINABLE

    ENERGY SYSTEM

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    23/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 21

     bottlenecks can occur. In addition, a large increase in photovoltaics wil l cause anincrease in demand for silver, tin and silicon.

       Wind energy  - If wind energy is deployed on a large scale, as is foreseen in theTER, it could become a signicant consumer of critical materials, particularly

    for the production of permanent magnets for direct-drive solutions. Anadditional 1,000,000 onshore and 100,000 offshore wind turbines could meeta quarter of the world’s electricity needs in 2050 (Ecof ys, 2011). In addition toscarce materials, copper is also required for the transformers needed for the

     wind turbines. How a large scale increase in wind energy affects supply anddemand of these materials, is elaborated upon further on in the report.

     Wave and tidal energy  - Wave and tidal energy, which make a relatively smallcontribution to the TER scenario, will not be signicantly affected by a scarcity

    of critical materials, with the possible exception of copper for generators.

      Hydropower - Hydropower is not anticipated to be signicantly affected bycritical material bottlenecks despite the use of copper, since the amount ofcopper required per MW electricity is relatively low due to the large scale ofhydropower stations.

    Geothermal power - Geothermal power requires copper for heat exchangers.Especially with the increase in instal led capacity of geothermal power, this couldaffect future copper demand. However, no reliable quantitative data is available.

      Efciency in industry  - Improving energy efciency in the industrial sector

    includes a wide variety of measures (Ecofys, 2009). On the one hand this will involve integration of processes and process intensication, which willlead to a reduction in material usage. On the other hand, there will be add-ontechnologies, like heat exchangers and power speed control. Heat exchangersrequire materials with a large thermal conductivity, such as copper andaluminium. Power speed control equipment requires power semiconductors.In addition, lightweight and more durable alloys can improve the efciency

    of machinery, such as motors and drives, making them useful for processimprovements.

    For chemical processes, catalysts are important. Improvements in catalysts, which of ten include cr itical materials such as PGMs, can lead to energy efciency

    improvements in industry. The materials used in catalysts, however, are sodiverse, that not one specic critical material stands out. In addition, since their

    usage is already widespread in industry, the projected increase in demand forthese materials due to additional energy efciency measures in TER w ill not

     be exceptional. Finally, in comparison with other industrial energy efciency

    improvements, catalysts are only a small aspect. New catalysts are not critical forachieving the TER scenario and wil l therefore not become a material bottleneck.

     With the exception of control equipment, which composes only a small partof efciency improvements in industry, efciency improvements in industry do

    not require critical materials.

    Low carbon transport – Low carbon transport involves improving energyefciency, fuel switching to biofuels and electric vehicles. Improving energy

    efciency includes measures such as using lighter materials, improving

    aerodynamics and making more efcient engines. This requires lightweightmaterials such as carbon bre and super al loys, which are stronger, lighter and

    SOLARENERGYIS AN IMPORTANTCONSUMER OF

    CRITICAL MATERIALS

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    24/76

    Page 22 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    more durable than conventional alloys and require scarce materials such asmolybdenum and tungsten. Switching from fossil fuels to electricity will seeincreased demand for materials to produce, for example, electrical engines,

     batteries, loading stations for fuels. High densit y energy storage devices, whichare mainly batteries containing lithium or cobalt, will be required for electric

     vehicles.

      Energy efciency in the built environment - Energy efciency in the builtenvironment is dominated by two main measures: insulation and installations.• Insulation is of key importance in the TER. Heating and cooling of new

     buildings should require virtually no energy by 2030 and existing buildings

    should have energy demands for heating and cooling reduced by 60%. Mostof the materials used for insulation, such as mineral wool and foam, do notrequire critical materials.

    • Installations include the energy-using infrastructure within buildings,including heat pumps, air conditioning and lighting. A heat pump contains aheat exchanger, which contains high conductivity materials such as copperand aluminum, as well as less common materials such as selenium andchromium. Energy efcient lighting consists of light-emitting diodes (LEDs)

    and uorescent lamps, which require critical materials such as gallium,

    indium and rare earths. Energy efcient homes also make use of smart

    electronics which help save energy in households and ofces, for example by

    turning off equipment that isn’t used, regulating temperature and preventingthe waste of food. These smart electronics contain semiconductors, whichcontain scarce materials such as indium and gallium. Scarce materials forsemiconductors are discussed further on in this report.

      Infrastructure - In order to switch to a 100% renewable energy scenario, theenergy transport, distribution and storage infrastructure has to adapt to a moreexible, decentralised energy system. This will result in additional material

    demand, most notably copper for instance for the enlarged transmission gridinfrastructure.

    Semiconductors, which are used for a wide variet y of purposes, are included in manyapplications in for instance the built environment and industry. Depending on theirpurpose, semiconductors are designed using different materials. Further on in thereport, a brief assessment is included on whether materials for semiconductors can

     become a bottleneck for the implementation of a fully sustainable energy system asrepresented in The Energy Report (TER).

    Biomass is used in TER for specic purposes where no other renewable energy

    sources are available. An increased production of biomass will result in an increaseddemand of both organic and articial fert ilisers. The total amounts, however, may

    differ based on selection and use of crops, plant materials and their products,management practices, regions and technological progress as well as specic

    demand for biofuels. The three main components of articial fertilisers are nitrogen,

    phosphorus and potassium. This study contains a concise assessment of whether thesupply of these materials can become a bott leneck for the implementation of theTER scenario.

    WAVE

    & TIDALENERGYWILL NOT BESIGNIFICANTLYAFFECTED BYA SCARCITY OFCRITICAL MATERIALS.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    25/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 23

    Table 3 Critical materials required by technologies from The Energy Report. Highlighted

    cells indicates a potentially critical material for a technology.

      Solar(photo-voltaics)

    Wind Low carbontransport

    Efciencyin the builtenvironment

    Efciency inindustry

    Energy infra-structure

    Beryllium

    Cobalt

    Copper 

    Fluorspar 

    Gallium

    Germanium

    Graphite

    Helium

    Indium

    Lithium

    Magnesium

    Manganese

    Molybdenum

    Nickel

    Niobium

    PGM

    Rare earths

    Rhenium

    Selenium

    Silver 

    Tantalum

    Tellurium

    Tin

    Tungsten

    Vanadium

    Zinc  

    Zirconium  

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    26/76

    Page 24 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Identifying technologies that suffer from specic critical material bottlenecks is

    complex. In this study, Ecofys has drawn on a broad range of sources including thesix studies listed in chapter 2, as well as scientic publications and Ecofys’ informed

    expert opinion. Table 3 lists the critical materials identied for the TER technology

    sectors which are most likely to be affected by supply bottlenecks.

    Critical materials bottlenecks for detailed assessment

    This section identies critical materials bott lenecks for achieving a fully sustainable

    energy system as represented in The Energy Report (TER) that will be the focus of

    the more detailed analysis in the following chapter. These have been selected on the basis of:

      the number of studies that emphasise the critical material for the technology 

      the expected quantities of the material required for the technologies, relative toother critical materials (informed expert judgement)

      having representation across as many TER technologies that will be impacted bycritical materials as possible.

    Using these selection criteria, the critical materials bottlenecks to be the focus of thedetailed analysis are proposed to be:

        tellurium, indium and gallium specically for thin lm photovoltaics andsilver for photovoltaics• These rst three critical materials are identied from literature review as the

    three critical materials of greatest importance for thin lm photovoltaics.

    In addition, silver, which is used in several types of photovoltaics, is alsoexpected to be critical.

    indium and gallium for energy efcient lighting•  Additional critical materials, such as rare earths, were identied for energy

    efcient lighting, however assessing two materials only will stil l allow for

    representation of the key issues and challenges associated with critical

    materials for this technology (and allow resources for this project to bedeployed between a greater number of TER technologies).

    • Indium and gallium were selected as the two materials to analyse in moredetail, but it would have been equally valid to have selected alternativematerials.

    rare earths, used for magnets in wind turbines, in particular neodymiumand yttrium• Rare earths are one of the most important bottlenecks for wind turbines,

     being mentioned in almost all the studies on critical materials.• Other materials such as cobalt, manganese and molybdenum are also

    potential material bottlenecks for wind turbines.

    COPPERIS NOT CRITICAL FORONE PARTICULARTECHNOLOGY BUTFOR THE SYSTEMAS A WHOLE

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    27/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 25

      materials used in smart electronics in the built environment and powerelectronics in industry 

    • Smart electronics and power electronics in the built environment andindustry require semiconductors, which contain different types of scarcematerials, depending on their purpose. Examples are arsenic, germanium,indium and gallium. Semiconductors are a complicated topic which requiresfurther research. During this study, more information on materials requiredfor semiconductors will be collected and where bottlenecks occur, these will

     be explained.

    cobalt and lithium for high energy density batteries for electric transport• Demand for lithium, a major component in batteries for cell phones, laptops

    and electric vehicles, is expected to increase rapidly and is widely regardedas a key bottleneck for the large scale introduction of electric vehicles.

    • Cobalt is another important component of lithium ion batteries; it is alsoused for making super alloys and in wind turbines.

      copper for electricity distribution and energy supply • Copper is a main component of electricity distr ibution networks and could

     become a bot tleneck for developing the exible, decentralised energy system

    required to realise the TER scenario. In addition, copper is used in manyother renewable energy technologies such as wind and solar energy butalso in transformers and motors.

    • It stands apart from the previously mentioned materials because it is notcritical for one part icular technology but for the system as a whole. A moredetailed analysis on copper is presented further on in this report.

    nitrogen, phosphorus and potassium for biomass• In the TER scenario, biomass is used where no other renewable energy

    sources are available. The enhanced production of biomass requires organicand articial fertilizers, which have nitrogen, phosphorus and potassium

    as their main components. This study wil l contain a brief assessment on whether material bottlenecks will occur for biomass in the TER scenar io.

    ENERGYEFFICIENTLIGHTINGREQUIRES CRITICALMATERIALS SUCH ASGALLIUM, INDIUMAND RARE EARTHS

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    28/76

    4. Detailed Assessment ofBottleneck Areas

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    29/76

     © S H UT T E R S T  O C K

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    30/76

    Page 28 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    It calculates the maximum annual material demand and the cumulative materialdemand for each bottleneck to 2050 and then compares both these gures with the

    production, reserves and resources of the material in 2011.

     As explained in chapter 2, the distinction between reser ves and resources is:

      Resources - are everything that is expected to exist. They are dened asmaterials of economic interest for extraction, either now or in the future (EU,2010. USGS, 2012).

    Reserves - are every thing for which there is reasonable certainty about wherethey are located. They are dened as “a subset of resources which are fully

    geologically evaluated and which can be economically, legally and immediately

    extracted; reserves are often described as the ‘working inventory’ of a miningcompany, which is continually updated according to changing economic,technological, legal and political situations” (EU, 2010. USGS, 2012).

    The basis for the calculations is the data from The Energy Report (TER). The sourcesfor the data used in the calculations and the reasoning behind the assumptionsmade for the calculations are explained in each chapter. The only exception isthe bottleneck for semiconductors, which is explained qualitatively rather thanquantitatively.

    For each of the bottlenecks, the results of the calculations are shown in a graphand further analysed in a separate paragraph. A brief supply forecast and some

    information on supply risks is also included. For each of the bottlenecks, mitigationmeasures, e.g. options for recycling and substitution, are mentioned.

    Indium, gallium, tellurium and silver for photovoltaics

    The two main technologies in photovoltaics are thin lm photovoltaics and

    crystalline photovoltaics. For thin lm photovoltaics, indium, gallium and tellurium

    are potential material bottlenecks. For crystal line photovoltaics, silver is a potentialmaterial bottleneck. In 2050, The Energy Report (TER) assumes that around 29%

    of total electricity production is from photovoltaic energy. With an estimated annualelectricity production of 127.4 EJ, this means 37 EJ is produced by photovoltaics

    in TER.

    29 %0F TOTALELECTRICITYPRODUCTION ISFROM PHOTOVOLTAIC

    ENERGY

    DETAILED ASSESSMENTOF BOTTLENECK AREAS

    This chapter

    providesa detailedassessment ofthe potential

     bottleneckareas identiedin the previouschapter.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    31/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 29

    For thin lm photovoltaics, four different technologies exist. It has been assumed

    that each of these technologies will have a market share of 25% in 2050. These thinlm photovoltaics are the following:

      CdTe – cadmium and telluride, with tellurium as a potential bottleneck 

      CI(G)S - copper, indium, selenium and optionally gallium, with indium as apotential bottleneck 

      GaAs - gal lium, arsenic (and optionally germanium), with gallium as a potential bottleneck 

        aSi – silicon, with no bottlenecks identied.

    The material intensities for each of these technologies and for silver in crystallinephotovoltaics are taken from Wild - Scholten (2007) and Fraunhofer (2009). For all

    four materials, a progress ratio1  of 85% is assumed. This progress ratio is used tocalculate the decrease in material intensity over time. For the material calculations,it was assumed that the 37 EJ produced by photovoltaics in 2050 is either met by

    100% crystalline photovoltaics or by 100% thin lm photovoltaics.

    Analysis of materials in photovoltaics

    The annual capacity increase of photovoltaics until 2050, and hence also the annualmaterial demand attributed to photovoltaics, were calculated based on annual energyproduction gures in the TER scenario. Figure 1 shows a comparison between the

    maximum material demand for one year and production of that material in 2011.

     Figure 1 Comparison of maximum annual material demand forphotovoltaics in the period 2010 – 2050 with production in 2011for silver, gallium, indium and tellurium. All numbers are inkilotonnes per year (Source: Ecofys).

    0

    5

    10

    15

    20

    25

    Silver Gallium Indium Tellurium

         K     I     L     O     T     O     N     N     E     S

         P     E     R

         Y     E     A     R

    1 For each doubling in capacity, the material intensity is multiplied by 0.85

    Maximum annualmaterial demand(ktonnes)

    Production 2011(ktonnes)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    32/76

    Page 30 | Critical Materials for the Transition to a 100% Sustainable Energy Future

     Figure 2 Comparison of cumulative material demand for photovoltaicsuntil 2050 with reserves and resources. All numbers are in

    megatonnes (Source: Ecofys).

    0

    0.2

    0.6

    0.8

    1.0

    1.2

    0.4   M       E        G       A       T        O       N       N       E        S

    Silver Gallium Indium Tellurium

    The TER scenario was a lso used to calculate the cumulative material demand fordeploying the photovoltaics capacity up to 2050. Figure 2 shows a comparison ofcumulative material demand with the reserves and resources of the materials in

    2011.

     As can be seen in Figure 1, with silver being the notable exception, the maximumannual demand for gallium, indium and tellurium exceeds current production byfar. On the other hand, in spite of the lack of information on reserves and resourcesof many of the materials, Figure 2 shows us that current reserves and resources arein principle able to accommodate the cumulative material demand for photovoltaicsuntil 2050. As can be seen in Figure 2, reserves for silver are currently sufcient

    to meet cumulative silver demand for photovoltaics, even in a 100% crystallinescenario.

     When looking at the material requirements in Figure 1 and Figure 2, one shouldtake into account that in reality, it is most likely a mix of crystalline and thin lm

    photovoltaics will be used. This means that total material requirements will bespread over crystal line and thin lm photovoltaics. In addition, economic principles

     will cause a shift to a dif ferent technology when material scarcity drives up pricesfor a certain materials. This will cause the shift to technologies with less materialrestrictions.

    In addition to the demand from photovoltaics, material demand arising from othertechnologies can put additional strain on the market for these materials. An exampleis the increase in demand for smart phones and light emitting diodes (LEDs), bothcontaining gallium. Currently, the main application of gallium (66%) is in integratedcircuits, used in computers and telecommunications. 18% of gallium is used forlaser diodes and LEDs and 14% is used in R&D act ivities. At the moment, only 2% of

    gallium is used in photovoltaics (UNIA, 2011). An increased demand for gallium for

    Cummulative annualmaterial demanduntil 2050 (Mtonnes)

    Reserves (Mtonnes)

    Resources (Mtonnes)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    33/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 31

    integrated circuits and LEDs can put additional strain on the supply of gallium forphotovoltaics.

    In addition to bottlenecks caused by a mismatch between supply and demand, bottlenecks can also occur because of geopolitical constraints. An example is thefact that over 50% of rened indium production is controlled by China (UNIA, 2011).

    Disruptions in trade routes could result in short term material bottlenecks.

    Key mitigation measures

    For the three thin lm photovoltaic technologies containing indium, gallium and

    tellurium, substitution can take place with silicon, for which no bottlenecks areexpected (USGS, 2012)

    Indium

      Indium is currently considered an impurity in the production process of zinc(JRC, 2011). When an increase in demand for indium causes prices for indium toincrease, this will be an economic incentive to produce indium as a co-product ofzinc production.

    Research into the substitution of indium in Liquid Crystal Displays (LCDs) isunderway and is estimated to become commercially available in the next three

     years. This could free up additional indium for photovoltaics. Gall ium arsenidecan substitute for indium phosphide in solar cells, but this is a scarce material as

     well. (USGS, 2012).

      Recycling of indium from at panel displays will become an important aspect

    of maintaining an adequate indium supply, noting that 74% of total indium

    consumption is for at panel displays (JRC, 2011) and hence increasing demand

    for at screen displays can put additional strain on the supply of indium for

    photovoltaics.

    Gallium

        Recycling from electronic scrap is currently non-existent and is difcult becausethe waste stream is smal l and dissipative.

    There is little research put into the substitution of gallium in solar cells, butsubstitution will probably lead to lower efciencies (UNIA, 2011). Possibilities for

    substituting gallium in LEDs and lasers are being researched (USGS, 2012).

      Current gallium production mainly takes place as a by-product of the productionof other metals, such as zinc and aluminium. Currently, less than 10% of galliumin bauxite is recovered, mainly due to a lack of rening equipment (JRC, 2011).

    This means that a gallium bottleneck might be prevented by increasing galliumproduction by constructing additional rening equipment. This will be more

    attractive when the economics for recovering gallium become more favourable.

    50 %+OF REFINED INDIUMPRODUCTION ISCONTROLLED BYCHINA

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    34/76

    Page 32 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Tellurium

      Recycling rates are currently very small, but could increase when PV cells are being recycled. Recovery of tellurium from electronic scraps is difcult due to its

    dissipative use in small electronics.

      For most of its uses, tellurium can be subst ituted for a different material,although this does lead to production efciency losses or product characteristics

    (USGS, 2012).

    Silver 

      For several of its current applications, silver could be substituted by othermaterials. Hence, if supply constraints would arise; silver supply could shiftfrom other applications, such as cutlery and jewellery, to photovoltaics.

      Current recycling rates are between 30 and 50%. Good candidates for increasing

    the recycling rate are jewellery, coinage, catalysts and electronics (UNIA, 2011). A further increase in the price of precious metals will make additional recyclingmore attractive (UNEP, 2011).

    Conclusion

    For some photovoltaics technologies, supply bottlenecks can be expected, but in allcases there are ways to at least part ly overcome them. But it is anyway possible tocontinue with currently dominant crystalline silicon technology, for which no real

     bottlenecks exist.

    Indium and gallium for energy efcient lighting

    Indium and gallium are important materials for the manufacturing of light emittingdiodes (LEDs). LEDs wil l become the dominant technology for energy efcient

    lighting in the following decades (McKinsey, 2011). Material demand for indium andgallium in LEDs was calculated using:

        the total oor surface area of buildings in 2050 (square meters), taken fromThe Energy Report (TER) scenario

    the amount of LEDs per square meter (1 LED per square meter has beenassumed)

    the material demand per LED, taken from a Fraunhofer study on resources forfuture technologies (Fraunhofer, 2007) whereby the material demand for a high

    performance WLED (White LED), an efcient LED type, was taken by Ecofys as

    the primary source of energy efcient lighting up to 2050.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    35/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 33

    Analysis of indium and gallium in energy efcient lighting

     Figure 3 Comparison of maximum annual material demand for energyefcient lighting in the period 2010 – 2050 with production in2011 for indium and gallium. All numbers are in tonnes per year(Source: Ecofys).

    0

    100

    300

    500

    700

    200

    600

    400

         T     O     N     N     E     S

         P     E     R

         Y     E     A     R

    GalliumIndium

    SMALL

     Figure 4 Comparison of cumulative material demand for energy efcient

    lighting until 2050 with production in 2011. A comparison withproduction instead of reserves and resources was made, inorder to provide an indication of the magnitude of demand andinformation on reserves and resources is difcult to obtain. All numbers are in tonnes (Source: Ecofys).

    0

    100

    300

    500

    700

    200

    600

    400

         T     O     N     N     E     S

         P     E     R

         Y     E     A

         R

    GalliumIndium

    Maximum annualmaterial for energyefcient lighting

    (LEDs) in tonnes

    Production 2011

    Cummulativematerial for energyefcient lighting

    (LEDs) in tonnes

    Production 2011

    (tonnes)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    36/76

    Page 34 | Critical Materials for the Transition to a 100% Sustainable Energy Future

    Even though the demand for LEDs is expected to increase signicantly over the

    coming decades, Figure 3 shows that the indium and gallium demand per LED is

    so small that the maximum annual material demand is insignicant compared

    to production in 2011. As shown in Figure 4, the cumulative material demand forenergy efcient lighting for indium is several magnitudes smaller than production

    in 2011 and for gallium this is about equal. It should be noted that this cumulativedemand is spread out over about 40 years. The comparison with production, insteadof with reserves and resources has been made, because gures on reserves and

    resources are not available for indium and gallium.

    Key mitigation measures

      The development of liquid crystals from organic compounds could become substitutes for indium and gallium in LEDs, although the

    adjustments of colours might still require indium.

      If, in the unlikely event, materials for LEDs become scarce, energy efcient

    uorescent lighting could be used as a substitute for LEDs. Fluorescentlighting requires rare earths, however (JRC, 2011).

    The paragraph on indium and gallium in photovoltaics explains further optionsfor expanding supply and recycling and substitution for indium and gallium.

    Conclusion

    Even though our assumptions on the material demand for LEDs is uncertain,

    it is clear from the results that neither indium nor gallium is likely to become a bottleneck for the production of LEDs. In the unlikely scenario that this would bethe case, substitution by other materials and the development of organic LEDs willalleviate the problem.

    Rare earths for wind turbines (neodymium and yttrium)

    Rare earths are used in a number of technologies from The Energy Report (TER)scenario, such as w ind turbines, electr ic vehicles (magnets and batteries) andenergy efcient lighting. The supply constraints of rare earths for wind energy are

    frequently mentioned in studies on critical materials for renewable energy and aretherefore selected for a detailed analysis in this study. This requires calculating themaximum annual material demand for wind turbines and the cumulative materialdemands for wind turbines and comparing them with current production, reservesand resources.

    Offshore turbines must be able to withstand harsh conditions at sea, such as stronger winds and a salt y environment, compared to onshore wind turbines.

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    37/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 35

    In addition, maintenance for offshore turbines is more dif cult than maintenance

    for onshore turbines. For these reasons, offshore turbines may prot more from

    direct drive and superconductivity, which are less prone to technical failures andrequire less frequent maintenance. Since onshore turbines do not suffer from harshenvironments and costly maintenance, it has been assumed that onshore windturbines consist of conventional gearbox turbines, which do not require rare earths.Onshore wind turbines are therefore excluded from this analysis. In the future, ifcosts for direct drive and superconductive turbines are less prohibitive, onshore

     wind turbines could also benet from this technology. This is, however, not included

    in this analysis. In addition, if serious material constraints would occur, the currenttechnology (without direct drive and use of superconductivity turbines) can be usedto avoid these constraints.

    Direct drive and superconductive turbines require the rare earth elements

    neodymium and yttrium, respect ively, and are therefore included in this analysis.The share of direct drive turbines in 2050 is assumed to be 90% and the share ofsuper conductive turbines is assumed to be 10%. Estimates on the material intensityof neodymium and yttrium for direct drive and superconducting wind turbines have

     been taken from Fraunhofer (2009). Just as with solar energy, a progress ratio of85% is assumed.

    It should be noted that reliable information on rare earths is difcult to obtain

    (APS, 2011). Information on yttrium is available as a separate entry in the USGScommodities summar y. Neodymium, however, only appears as part of the rareearths group. Production statistics for neodymium for 2010 have been obtained fromDOE (2010). The reserves of neodymium are assumed to be equal to the reserves

    of rare earths. For neodymium and yttrium as well as for rare earths in general,information on resources is not available.

    Analysis of rare earths in wind turbines

    In 2050, the TER scenario assumes that 5% of global electricity production comesfrom off-shore wind turbines. With an estimated annual electricity productionof 127 EJ, this means that around 6.4 EJ is produced by off-shore wind turbines

    annually. Based on this gure, assumptions have been made for the annual growth

    of offshore wind turbines and the total capacity of turbines required to produce thiselectricity in 2050. Using these data, the maximum annual material demand has

     been calculated. The cumulative material demand for offshore wind t urbines has also been determined. This has been compared with gures for production, reserves and

    resources in 2050, see Figure 5 and Figure 6. Even if offshore wind energy supply ishigher, such as around 10-20 EJ eventually by 2050, constraints for both elements,neodymium and yttrium, are unlikely.

    RAREEARTHSARE ONE OF THEMOST IMPORTANTBOTTLENECKS FOR

    WIND TURBINES

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    38/76

    Page 36 | Critical Materials for the Transition to a 100% Sustainable Energy Future

     Figure 5 Comparison between maximum annual material demand foroffshore wind turbines and production in 2011. All numbers are

    in megatonnes per year (Source: Ecofys).

    0

    5

    10

    15

    20

    25

         K     I     L     O     T     O     N     N     E     S

         P     E     R

         Y     E     A     R

    YttriumNeodymium (DOE, 2010)

    SMALL

     

     Figure 6 Commparison between cumulative material demand until 2050for offshore wind turbines and reserves in 2011. The material

    demand is so small in comparison with reserves that it doesn’tshow up on the graphs. All numbers are in megatonnes(Source: Ecofys).

    0

    20

    60

    80

    100

    120

    40     M     E     G     A     T     O     N     N     E     S

    Neodymium (DOE, 2010)

    SMALL0

    0.1

    0.3

    0.4

    0.5

    0.6

    0.2     M     E     G     A     T     O     N     N     E     S

    Yttrium

    SMALL

     As can be seen in Figure 5, the ma ximum yearly demand of neodymium and y ttrium

    for wind technologies is a lot lower than the current production of neodymium and yttrium. Furthermore, Figure 6 shows that the cumulative demand for neodymiumand yttrium required for offshore wind turbines is a lot smaller than reserves in

    Maximum annualmaterial demand(ktonnes)

    Production ( ktonnes)

    Cummulative annualmaterial demanduntil 2050 (Mtonnes)

    Reserves (Mtonnes)

  • 8/21/2019 Critical Materials Report Jan 2014 Low Res Final

    39/76

    Critical Materials for the Transition to a 100% Sustainable Energy Future | Page 37

    2011. Additional deman