crack pattern development

33
Rigid Pavement Design Course Crack Pattern Development

Upload: kylia

Post on 23-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Crack Pattern Development. CRC Pavement Vetter, C.P. 1933 Reinforced Concrete Drying Shrinkage Temperature Drop. Consider a unit Length (L) between cracks . is restrained by the reinforcement . Causes tension in concrete & compression in the steel. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Crack Pattern Development

Rigid Pavement Design Course

Crack Pattern Development

Page 2: Crack Pattern Development

Rigid Pavement Design Course

CRC Pavement

Vetter, C.P. 1933

• Reinforced Concrete

Drying Shrinkage

Temperature Drop

Consider a unit Length (L) between cracks

a. is restrained by the reinforcement

b. Causes tension in concrete & compression in the steel.

c. Bond stress between steel & concrete and the concrete & subgrade

shrε

Page 3: Crack Pattern Development

Rigid Pavement Design Course

(1) Bond stress in the vicinity of crack

(2) Compression in steel and tension in the concrete increases until steel = concrete. In this region there

is no bond slip or stress.

d. Subsequent crack form in concrete when bond stress exceeds the concrete tensile strength.

Page 4: Crack Pattern Development

Rigid Pavement Design Course

Free Edge

‘t’

L

Longitudinal Joint

Traverse Crack

CL

Page 5: Crack Pattern Development

Rigid Pavement Design Course

Crack

Asfs Asfsc

Acft

Section XX Section YY

Forces Acting on CRC Pavement Section

Probable Strain Distribution Adjacent to a Crack

Page 6: Crack Pattern Development

Rigid Pavement Design Course

Extensive bond slip

Crack

L/2=nSmin

Good bond

Page 7: Crack Pattern Development

Rigid Pavement Design Course

Unrestrained shrinkage strain

Concrete strain

Crack width: equation 2.10a

Steel strain

Smin or (L-2x)/2

Co

mp

ress

ion

Ten

sio

nS

trai

n

Crack width: equation 2.10b

sΔε

Page 8: Crack Pattern Development

Rigid Pavement Design Course

Concrete Stress Steel stress

Stressed, full restraint

c.g. of bond

h

b/2cCondition of no stress

L

cw

Stresses and Strains in Fully Restrained, Cracked Reinforced Concrete for Decreasing Temperature

ss Aφ

tφcfAssφA

Page 9: Crack Pattern Development

Rigid Pavement Design Course

Assumptions of Vetter Analysis

1. Volumetric ‘s are uniformly distributed.

2. Compatibility exists in bonded region.

3. Total bond force=Total Tensile Force=

Total change in the steel stress

4. Total length of steel will remain unchanged. Total elongation = Total shortening

5. Equilibrium exists between forces at crack & the forces in the fully bonded region.

• In partially bonded region; compatibility of deformation does not exist.

• Crack width results from relative displacement

between the steel and the concrete.

Page 10: Crack Pattern Development

Rigid Pavement Design Course

Stress Distribution Between Cracks Subject to Shrinkage

LC of Crack

u

xL

Bond StressBond Stress

Tension

b) Concrete Stresses

a) Steel Stresses

Compression

TensionTension

x1

ftz

fsz

fsz

c) Bond Stresses

Page 11: Crack Pattern Development

Rigid Pavement Design Course

cs εε

c

tz

s

sz

E

fz

E

f

tzssz nfzEf

szszstzco ffAfAu(x)

sz

szsz

f

ffxL

(1) Center of crack spacing

(2) Bond Force = Concrete tensile force = Change in steel force

(3) Total length of steel bars remain unchanged total shortening= total elongation

s

sz

szszs

sz

szszs

sz

E

f

ff2

x

E

f

ff2

x

E

fx

2

L 22

Page 12: Crack Pattern Development

Rigid Pavement Design Course

Total Shortening = Total Elongation

Note

szf

szf

szf

2

x

sEsz

f

szfszfsz

f

2

x

sEsz

f

szfx

2

L

sE

1

sEsz

fx

2

Ldx

1x

0 sE

f(x)Δs

x1x

szff(x)

szfszfszf

1x

1sz

1

sz x2

f

2

x

x

ff(x)

x1

0

2

s

sz

s

sz1

s

sz

E

fx

E

f

2

L

2

x

E

fΔs

szsz

sz

s

szsz

s ff

f

2

x

E

ffx

2

L

E

1

2xLfff

ffx sz

szsz

szsz22

szszszsz f2xfLfxxf

Lf

ffx

sz

szsz

Page 13: Crack Pattern Development

Rigid Pavement Design Course

uQ

f

pu

fA

u

fAff

u

Ax tztzstzc

szszs

ooo

sc Ap

AVol. Conc.

area bondq oo

bd

4p pqQ

p

ff

A

Aff tz

tzs

cszsz

)nf(zEup

fA

p

f

f

1

u

AL

tzs

tzstz

sz

s

o2

2

2

2

o )fuqn(zEp

f

tzc

tz2

2

c

s

E

En

;q ;n ;p ;u asL zf tz ;

For temp. drop

Both

2t

2c t

fL

p uqn(αtE f )

2t

2c c t

fL

p uqn(αtE zE f )

2t

2c tφ

fL

p uqn(αtE f )

Page 14: Crack Pattern Development

Rigid Pavement Design Course

a) Steel Stresses

b) Concrete Stresses

Bond Stress Bond Stressy

L

c) Bond Stresses

u

Tension

C of CrackL

Stress Distribution Between Cracks Subject to Temperature Drop

sφsφ

tφf

Page 15: Crack Pattern Development

Rigid Pavement Design Course

cs εε

tcc

tφms

s

s tαE

ftα

E

φ

msstcstφs tαEtαEnfφ

(1) Center of crack spacing

(2) Bond Force = concrete tensile force = change in steel force

)φ(φAfAu(y) ssstφco

(3) Total length of steel bars remain unchanged total shortening= total elongation

s

s

s

ssms E

φy

2

L

2E

φφytα

2

L

s s

s s m s

φ φL y

E α t φ

Page 16: Crack Pattern Development

Rigid Pavement Design Course

uQ

f

pu

fA

u

fAff

u

Ax tztzstzc

szszs

ooo

sc Ap

AVol. Conc.

area bondq oo

bd

4p pqQ

p

ff

A

Aff tz

tzs

cszsz

)nf(zEup

fA

p

f

f

1

u

AL

tzs

tzstz

sz

s

o2

2

2

2

o )fuqn(zEp

f

tzc

tz2

2

c

s

E

En

;q ;n ;p ;u asL zf tz ;

For temp. drop

Both

2t

2c t

fL

p uqn(αtE f )

2t

2c c t

fL

p uqn(αtE zE f )

2t

2c tφ

fL

p uqn(αtE f )

Page 17: Crack Pattern Development

Rigid Pavement Design Course

Ave

rag

e C

r ack

Sp

a cin

g (

ft)

Ratio of Steel bond Area to Concrete Volume x 10-2 (in.2/in.3)

Relationship Between Steel Bond Area and Crack Spacing

2 3 4 5 6 7

20

18

16

12

8

4

0

Pavements Placed During Winter = Summer =

0 b

bc b

πd p 4pdA dπ4

q

Page 18: Crack Pattern Development

Rigid Pavement Design Course

Development Length

Allowable Bond Stress

ss Af Design Strength

of the Bar

ACI Definition of Development Length

(a)

Assumed and Actual Bond Stress-Slip Relationships.

Page 19: Crack Pattern Development

Rigid Pavement Design Course

Actual Bond Stress

Development Length

Vetter

Allowable Bond

StressForce in Bar Under Working Stress

Condition

Stress Transfer Length

(b)dx

dεEAu

o

ss

Page 20: Crack Pattern Development

Rigid Pavement Design Course

Bond Stress

Relative Slip Between Concrete and Steel

As Modeled in Computer Program

Actual bond Stress-Slip Relationship

(c)

Page 21: Crack Pattern Development

Rigid Pavement Design Course

concrete tension specimen

steel bar

P(a)

(b)

(c)

a b

x

Sb

eS

ssEA

P

dx

dεslope s

cf1.50)Slip3100(1.43xu • x-Displ.• Slip• cf

Determination of Slip from Strain Functions

b

c

d

f9.5u

ACI

Page 22: Crack Pattern Development

Rigid Pavement Design Course

If L =∞ (i.e., no cracking)0fzEthen tzc

Shrinkage Limiting is E

fz

c

t

SZ yBut f <f

)f(fAfA szszstc

sztsszszt fnfzEff

p

f

z)tα(tαEnp

1fzEn

p

1ff csststsz

minthe min p p to prevent yielding of steel

tmin

y s t

f shrinkage

f zE nfp

drop temp.nff

f

ty

t

cs αα :Note

AASHTO multiplier-A on steel %

1.0A 1.5 if 0.2-1.3A 1.0A 3.0 if 0.1- 1.3Aprefer

tzssz nfzEf

Page 23: Crack Pattern Development

Rigid Pavement Design Course

L/2x IF

sz

t

f

1

p

f

2

LL

Lf

ffx

sz

szsz

tsszt nfzEf

2p

f

ctt znEnf

2p

f

12pn

1

E

fz

c

t

y

t

f

fp ngSubstituti

y y tt

c c

f f 2nf1z f 1000

E 2n 2nE

Page 24: Crack Pattern Development

Rigid Pavement Design Course

Relative to temperature drop

Max. drop to cause L = 2x

substitute for in equation tαs z

tss

t

cs

t

o nfEαt2

fp

12pn

1f

to

ty

tmin nff

fpp setting

tty

cst

t

csf

2n

nff

1f

2pn

f

1t

y t

s s

f nf with steel yielding

2α E

minpt

For a greater temp. drop t2……only if syssys φfEα t,ff 2

y s minbut f φ then p p

otherwise

np

1fφ ts

2o ttT &

Page 25: Crack Pattern Development

Rigid Pavement Design Course

np

1ffEαt tyss2

n

EαEα ss

cs

12pn

1nfEαtEαt tsscs oo

n2p

1f t

np

1ffn

2p

1fETα tyzss

2p

ff t

y

ss

ty

ss

ty

Eα2p

ff

E2pα

f2pfT

0.0078(400)60ksi

400pmin

F219.4

36

18.0072

1400

αE

12pn

1f

tc

t

1

min

y tp

s c

f nf 60 8 400t 219.4 F

2nα E 2 8 6 3

t

y

s s

400f 60f2 .0072p

T 219.4 Fα E 6 8 3

Page 26: Crack Pattern Development

Rigid Pavement Design Course

F230T IF 2p

ffETα t

yss

ssy

t

ETαf2

fp

ssy

t

ETαf2

f

0074.

minpp

ys ff

2yL

Page 27: Crack Pattern Development

Rigid Pavement Design Course

Structural Response Models

Uniform Bond Stress Distribution

Vetter: Shrinkage and Temperature Drop

Zuk: Shrinkage

Friberg: Temperature Drop

tsmss

t

nfzEtαEpuQ

fL

2

czcc

c

ctc ff

u

fAL

E

ftαzLcw

o

sts zEnp

1ff

z) p, u, , tf(L,f mt

ctcc

c

c ff u

fAL

E

fzLcw

o

tαEφnptαE

ααtEφ

U

φL

ssscs

cssss

Page 28: Crack Pattern Development

Rigid Pavement Design Course

Hughes: Shrinkage and temperature Drop (concrete only)

u4E

φdcw

s

sb2

cnpa

αbtEtαEφ cs

sss

tαtαE

φEf cs

s

sct

min

Aulti

Si

Fnp)np(1Lcw 2

22

rmin

Aultist iS

Fnp)(1L

min

Aultisc 2iS

FnpL 2

Page 29: Crack Pattern Development

Rigid Pavement Design Course

CRCP-2: Computer Model for Shrinkage and Temperature Drop (force equilbrium)

Regression Equations:

1.794.60

5.202.19

1.156.70

1000z1p1

1000

σ1d1

α1

1000

f11.32L w

bc

st

4.554.91

2.206.53

p11000

σ1d1

1000

f1.00932cw w

bt

2.74

0.4943.144.090.425

p1

1000z11000

σ1

1000

f1

100

t147300f t

s

Page 30: Crack Pattern Development

Rigid Pavement Design Course

Percent Steel (p)

c

tc

m

tb

E

fCtαz

pu

fdCcw 21

mt

1 b

Lu pf

C d

sst

s tαEp

fCf 2

L

xφ f(φ(φ)4C i11/2

01

1/20

φ012 f(φ(φ)dφ8CC

tsy

tmin nfzEf

fp

ss

ty

E2α

nffdrop temp

; prevent yielding

; p=pmin

fs=fy

u

Lx

Um

Non-Uniform Bond Stress Distribution

TTICRCP: Computer model for Shrinkage and Temperature Drop (force equilibrium and energy balance)

Reis: Shrinkage and Temperature Drop

Page 31: Crack Pattern Development

Rigid Pavement Design Course

2002 AASHTO Guide CRC Design

t 0pcc

m

1 b

2f Cσ 1

hL

u pf2 C d

tσ ff where Strength Tensilef t

.60 xf9.5x c

If n

pccf

K a α

hg α g αpcc

c

c h

m 1u 0.002 K

1469.7f183f107f109K ccc26

1

cf117.2or

LnLcε

nεbaC 2

tot

tot1

K1

K2

Page 32: Crack Pattern Development

Rigid Pavement Design Course

Crack Width

c

σc

m

σb

E

fCΔtαz

u

fdCcw 21

c

σ

E

fCL 2

totε

H

21cσ

dC

puL

2

fLf o

o

ε

br

22 L

c

K

baC

r

3rh1Δtα αtot εε

Page 33: Crack Pattern Development

Rigid Pavement Design Course

Crack Spacing Distribution

L vLn(1 %P)

α

1

L v α Ln(1 %P)

1

maxL v α 10

i i

i i

L u

u i Lprob L L L 100 e e

L v L vα α

2 3 41 3.0626 28.024x 66.374x 64.653x 24.198x

L vα

1Γ 1

Γ 1 1/ (1/ )

1Ln Γ

4 3 21 1 1 1 1

Ln Γ 25.703 61.247 53.0072 21.346 4.0845

v c. spc

%P eα1