coupling between magnon and phonon: personal...

20
2017-04-18 1 Coupling between Magnon and Phonon: Personal perspective Je-Geun Park Center for Correlated Electron Systems, Institute for Basic Science Dept. Physics & Astronomy Seoul National University POSTECH Colloquium 12 April 2017 Outline What is magnon-phonon coupling? Part 1: Magnon-magnon coupling Part 2: Magnon-phonon coupling

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2017-04-18

    1

    Coupling between Magnon and Phonon: Personal perspective

    Je-Geun ParkCenter for Correlated Electron Systems, Institute for Basic Science

    Dept. Physics & Astronomy

    Seoul National UniversityPOSTECH Colloquium 12 April 2017

    Outline

    What is magnon-phonon coupling?

    Part 1: Magnon-magnon coupling

    Part 2: Magnon-phonon coupling

  • 2017-04-18

    2

    Linearized Model & Quasiparticles

    Quasiparticle decay superfluid 4He

    M. B. Stone et al., Nature 440, 187 (2006)

    The notion of a renormalized and stable quasiparticle is fundamental to modern theories of condensed matter physics.

    D>1: Magnon

    T. Huberman et al., PRB 72, 014413 (2005)

    Nonlinear Phonon & Lifetime

    Decay process Silicon at RT

    At 0 K

    T. R. Hart et al., PRB 1, 638 (1970)

  • 2017-04-18

    3

    Magnon lifetime

    Decay process Magnon linewidth

    Crazy atoms: phonon & magnon

    Phonon

    Magnon

  • 2017-04-18

    4

    Magnon phonon coupling New hybrid quasi-particle [C. Kittel, Phys. Rev. 110, 836 (1958)] Related to many fundamental physical properties of solids e.g. pintronics & multiferroics: possible new functionality

    Photo induced magnetic domain in YIG

    N. Ogawa et al., PNAS 112, 8977 (2015)G. Laurence et al., RRB 8, 2130 (1973)

    Thermal conductivity of FeCl2

    Kab

    Kc

    Magnon phonon hybridization FeF2 (S. Lovesey, “Theory of Neutron Scattering from Condensed

    Matter systems,” sect. 9.8) Magnon-phonon hybridization: Lattice vibrations may modulate the

    orbital properties. The modulation is transmitted to the spin by the spin-orbit interaction

    ·Magnetic Hamiltonian

    Still the effect is small. Large K/J≃2 in FeF2, uncommon in 3d

    ions

  • 2017-04-18

    5

    Magnon-Phonon: CMR ManganitesLa0.70Ca0.30MnO3P. Dai et al., PRB (2000)

    J. A. Fernandez-BacaPINS workshop, BNL April 6-7, 2006

    Taste for Materials: Metal Physics

    Prof. Bryan R. Coles, FRS (1926-1997)

    My first foolish & expensive attempt to spin-lattice: Invar Problem

    Do you smell the material?

  • 2017-04-18

    6

    Invar Problem I met in 1990

    My Personal Journey to Spin-Lattice

    Prof. Duk Joo Kim (1934 ~ 1997)

    금속전자계의 다체이론, p119

    My first foolish & expensiveattempt to spin-lattice:Invar Problem

  • 2017-04-18

    7

    Multiferroic Physics

    FE FM/AFM

    Ferroelastic

    charge spin

    lattice

    mn mnmnm mmn nn HEHEFF , ,0 ME term

    Major issues• Spin-lattice coupling • New types of J• Broken Inversion Symm.• Spin-orbit coupling• DM Interaction

    FerroelectricityInversion symmetry broken

    MagnetismTime-reversal symmetry broken

    + ++- --

    + ++- --

    + ++- --

    Ferromagnet

    Antiferromagnet

    P

    P

    P=0

    noncentrosymmetric Magnetic Systems

    Dzyaloshinskii-Moriya Interaction arising from spin-orbit coupling: Skyrmion

    Similar physics with Dresselhaus/Rashba interaction

    Low energy dynamics: Electromagnon, spin-lattice coupling etc.

    Non-collinear spin structureCoupling to charge dipole

    Dzyaloshinskii-Moriya interaction

  • 2017-04-18

    8

    Principle of Neutron Scattering

    Incident neutrons

    Scattered neutrons

    전기적중성질량 스핀1/2

    강한투과력전기적중성

    물질내동력학적에너지범위와일치에너지~ meV

    자기구조와동력학스핀1/2

    원자수준부터나노수준파장Å~nm(열중성자& 냉중성자)

    동위원소간구별산란밀도대비법

    원자핵과의반응

    전기적중성질량 스핀1/2전기적중성질량 스핀1/2

    강한투과력전기적중성 강한투과력전기적중성

    물질내동력학적에너지범위와일치에너지~ meV

    자기구조와동력학스핀1/2 자기구조와동력학스핀1/2

    원자수준부터나노수준파장Å~nm(열중성자& 냉중성자)

    동위원소간구별산란밀도대비법

    원자핵과의반응 동위원소간구별산란밀도대비법

    원자핵과의반응

    ),()/exp(1),(Im STkB

    Hexagonal RMnO3h-RMnO3 (R=Sc, Y, Ho, Er, Tm, Yb, and Lu)

    Ferroelectricity from MnO5 tilting: Tc > 1000 K Mn spin forms noncollinear 120˚ structure: TN < 100 K Extensive studies on spin lattice coupling

    Atomic shiftMagnon phonon

    coupling

    S. Lee et al., Nature 451, 805 (2008)S. Petit et sl., PRL 99, 26604 (2007)

  • 2017-04-18

    9

    Hexagonal StructureA=Ho, Er, Tm, Yb, Lu, Y, Sc

    2-dim. Hexagonal RMnO3

    J. S. Kang, JGP et al., PRB 71, 092405 (2005)

    1 representation 2 representation

    3 representation 4 representation

    E. F. Lewy-Bertaut in 1960sA. Munoz et al., PRB (2000)

    ex

    eu

    Z=0 plane

    Ф

    Z=1/2 plane

    1 2

    Mn1

    Noncollinear 120º Structures

    JG Park’s GroupPRB (2003); PRL (2004); PRB (2005)PRB (2008); PRB (2009); PRB (2010)

  • 2017-04-18

    10

    Part I: Magnon-magnon coupling

    ToF inelastic neutron scattering

    detectors

    sample

    ω 2

    Momentum & energy changes of neutron Magnetic excitation at low Q & Phonon at high Q Time of Flight (ToF) technique: pulsed beam &

    2D detector

    Time

    Distance

    Moderator

    FermiChopper

    Sample

    Detectors

    Neutron path

    tdet

    Ei

    Ef

    texp

    ∆∆

    10 % at ~ 5 Å-1

    Magnon

    Phonon

  • 2017-04-18

    11

    Time-of-Flight Experiments• AMATERAS of J-PARC,

    Japan• MERLIN of ISIS, UK

    Direct Geometry Chopper Spectrometer

    ~180o in the horizontal plane; ± 30o in the vertical plane

    020

    40

    60

    80 meV0

    10

    20 meV

    Detector Coverage

    ω(m

    eV)

    Ei=70 meV Ei=25 meV

    ω(m

    eV)

    Ei=250 meV

    Total mass ~1.8 g

    Spin Hamiltonian: YMnO3

    T. J. Sato et al., PRB 68, 014432 (2003)

    2 21 2,

    zij i j i i i

    i j i iH J S S D S D S n

    Easy plane Easy axisExchange

    J1 J2 J1c-J2c D1 D23 meV 2.3 meV 0.018 meV 0.3 meV -0.007 meV

    J Park, JGP et al., PRB 68,104426 (2003)

    T Chatterji et al., PRB 76, 144406 (2007)X. Fabreges et al., PRL 103, 067204 (2009)H. J Lewtas et al., PRB 82, 184420 (2010)

    Parameters for YMnO3

  • 2017-04-18

    12

    Full spin waves dispersion curvesJ1=-9 meV, J2=-1.4 meV, J3=0 meV, J1’=-0.018 meV, D1=-0.28 meV, and D2= 0.006 meV

    Noncollinear magnets

    Noncollinear order Transverse-longitudinal coupling Breaking O(3) symmetry

    Not invariant under spin rotation or reflection

    x x y y z zi j i j i jij

    H J S S S S S S ( )i iS R S

    i iS S

    x x y y z zi j i j i jij

    H J S S S S S S

    Ferromagnet Conserves O(3) symmetry

  • 2017-04-18

    13

    nonlinear effects in Spin waves

    Roton-like minimum: W. Zheng et al., PRL (06)

    Magnon decay & Flat mode : M. E. Zhitomirsky and A. L. Chernyshev, PRL (06); : O. A. Starykh, A. Chubukov, & A. G. Abanov, PRB (06)

    See also a recent review: M. E. Zhitomirsky, & A. L. Chernyshev, Rev. Mod. Phys.85, 219–242 (2013)

    Quantum montecarlo studyW. Zheng et al., PRL 96, 057201

    (2006)

    Nonlinear spinwave theoryA. L. Chernyshev et al., PRB 79, 144416 (2009)

    Minimum, Flat mode, Magnon decay

    Roton-like minimum

    J. Oh et al., PRL 111, 257202 (2013)

    Flat mode

  • 2017-04-18

    14

    Spectrum broadening

    Noncollinear magnets Transeverse-longitudinal coupling Magnon decays into two magnon states

    M.E. Zhitomirsky et al., RMP 85, 219 (2013)A. L. Chernyshev et al., PRL 97, 207202 (2006), PRB 79, 144416 (2009)

    12! Γ ; ⋯,

    ≃ 21 magnon 2 magnon

    Triangular AFM

    Magnon Decay Rate

    Γ 2 ;

    Spectrum broadening

    Linewidth broadeningObservation of linewidth broadening in LuMnO3

    Two magnons DOS

    J. Oh, et al., PRL 111, 257202 (2013)

  • 2017-04-18

    15

    Part II: Magnon-phonon coupling

    Magnon: Y1-xLuxMnO3 Weak high energy peaks Minimum in AB direction Limitation of J1-J2 model ?

    2 21 2

    ,

    zij i j i i i

    i j i iH J S S D S D S n

    J1=4 meV, J2=1.8 meV, D1=0.28 meV, D2=-0.02 meV

    J1=12.5 meV, J2=0.97 meV, D1=0.18 meV, D2=-0.018 meV

    J1=9 meV, J2=1.4 meV, D1=0.28 meV, D2=-0.02 meV

    J. Oh et al., Nat. Commun. 7, 13146 (2016)

  • 2017-04-18

    16

    LuMnO3: J1-J2 Model ToF INS experiment at MAPS beamline of ISIS in UK Two peaks at K: J1≠J2 Three peaks at M & Λ: J1>J2 J1/J2=6.4 while DFT result is 1.15 [I. V. Solovyev et al., PRB 86, 054407 (2012)]

    J. Oh et al., PRL 111, 257202 (2013)

    J1=9 meV, J2=1.4 meV, J1c-J2c=0.018 meV,D1=0.28 meV, D2=-0.02 meV

    Noncollinear magnets

    '

    ' cos sin

    spin phonon ji i j i jij

    x x y y z z z y y zspin phonon ji i j i j i j i j i j i j i j i j

    ij

    H H H e u u S S

    H H e u u S S S S S S S S S S

    1 phonon 0,2 magnon 1 magnon

    Linear magnon-phonon coupling

    Exchange stiction Hamiltonian

    ≃ 2 ≃Transeverse Longitudinal

    Modulation of J is dominant Noncollinear structure:

    Transverse-longitudinal coupling Direct mixing of magnon and

    phonon

    Exchange DM Single-ionJ Dxy τxz

    2.71 meV -0.013 meV -0.05 meVLuMnO3 [H. Das et al., Nat. Communs. 5, 2998 (2014)]

  • 2017-04-18

    17

    Spin lattice HamiltonianExchange striction model Mn-O bond length change DFT phonon calculation & powder inelastic

    neutron scattering at AMATERAS, J-PARC Estimate α from pressure experiments

    Exchange striction model

    Calculated & measured phonon DOS

    α // 14

    Estimated α For YMnO3

    La2CuO4: 6~7CuCrO2: 30

    T. Lancaster et al., PRL 98, 197203 (2007) D. P. Kozlenko et al., JETP 82, 193 (2005) M. C. Aronson et al., PRB 44, 4657 (1991) K. Park et al., PRB 94, 104421 (2016)

    2 · · ·

    Optical phonons Several optical phonons below 25 meV Possible coupling of inplane phonons with magnons ?

    J. Varigon et al., arxiv 1203.1752v1 R. Basistyy et al., PRB 90, 024307 (2014)

    (E1 symmetry)

  • 2017-04-18

    18

    Magneto-elastic mode

    ' ij ijspin phonon O i i O j j i jij

    H H H e u e u S S

    Additional high energy peaks at zone boundaries: magneto-elastic (ME) mode

    Downward shift at B point: level repulsion between magnon & phonon.

    α =16 (Pressure exp.: 14) J1=J2 (DFT calc.: 0.8~1.15)

    (meV) J1 J2 D1 D2 α (no dim.)

    YMnO3 2.5 2.5 0.28 -0.02 16 Y0.5Lu0.5MnO3 2.7 2.7 0.28 -0.02 20LuMnO3 3 3 0.28 -0.02 16

    YMnO3

    LuMnO3

    Y0.5Lu0.5MnO3

    Dynamical structure factor

    · · ·

    Einstein phonon model Magneto-elastic mode energy ~ 20 meV Two magnon coupling due to noncollinear spin structure

  • 2017-04-18

    19

    Results

    ' ij ijspin phonon O i i O j j i jij

    H H H e u e u S S

    in (meV) J1 J2 D1 D2 α (no dim.)

    YMnO3 2.5 2.5 0.28 -0.02 16 Y0.5Lu0.5MnO3 2.7 2.7 0.28 -0.02 20LuMnO3 3 3 0.28 -0.02 16

    Parameters

    YMnO3

    LuMnO3

    Y0.5Lu0.5MnO3

    Calculation

    Experiment

    Calculations reproduce high energy signals Magneto-phonon mode: phonon having magnon character Downward shift near B point

    Linewidth broadening Calculated linewidth shows singular behavior near B & D point of LuMnO3 Consistent with the experimental result

    J. Oh et al., Nat. Commun. 7, 13146 (2016) Decay rate: Γ , ∑, ;

    , , ,

  • 2017-04-18

    20

    IBS-CCES Emergent Phenomena Grouphttp://magnetism.snu.ac.kr

    Joosung OhHasung Sim

    Ho-Hyun Nahm

    Acknowledgment: A. L. Chernyshev (UC), H. Woo, T.G. Perring (ISIS), W. J. L. Buyers, Z. Yamani (CINS), S.W. Cheong (Rutgers), A Baron (Spring8), K. Nakajima, S. Ohira-Kamamura (J-PARC), Y. Yoshida, H. Eisaki (AIST)

    Summary RMnO3: We have identified magneto-

    elastic mode together with magnon-magnon coupling and its linewidth broadening in noncollinear magnets (Y,Lu)MnO3.Nat. Comm. (2016), PRL (2013)

    CuCrO2: We found two clear evidence of magnon-phonon coupling: Roton-like minima at zone boundary, magnetic character of phonon intensity, which is enhanced at zone boundary below TN.PRB (2016)

    More general remark: In a noncollinear magnet, phonon mixes with magnon, resulting in a creation of magneto-elastic excitation.