cosmic ray electrons and gc observations with h.e.s.s. · 2009. 7. 20. · cosmic ray electrons...

27
Cosmic Ray Electrons and GC Observations with H.E.S.S. Christopher van Eldik (for the H.E.S.S. Collaboration) MPI für Kernphysik, Heidelberg, Germany TeVPA '09, SLAC, July 2009

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Cosmic Ray Electronsand GC Observations with H.E.S.S.

    Christopher van Eldik (for the H.E.S.S. Collaboration)MPI für Kernphysik, Heidelberg, Germany

    TeVPA '09, SLAC, July 2009

  • The Centre of the Milky Way

    C. van Eldik • TeV PA 2009

  • Aharonian et al. (2006)

    H.E.S.S. 2004 (55 hours)

    G 0.9+0.1

    H.E.S.S. J1745-29038 sigma (55h)H.E.S.S. J1745-290point-like < 1.2' (95% CL)

    The Centre of the Milky Way

    C. van Eldik • TeV PA 2009

  • Diffuse emission

    H.E.S.S. 2004 (55 hours)

    G 0.9+0.1H.E.S.S. J1745-290point-like < 1.2' (95% CL)

    The Centre of the Milky Way

    Aharonian et al. (2006)

    C. van Eldik • TeV PA 2009

  • ● Lack of γ-raysfor l > 1°

    ● Injection ofprotons at GC

    ● Assumek = ~3 kpc2 Myr-1for TeV protons→ injection 104 years ago

    ● Fits age ofSgr A East

    Molecular Cloud Association

    C. van Eldik • TeV PA 2009

  • ● Not just passive illumination- enhanced flux for > 1 TeV- photon index ~2.3

    ● Similar index as HESS 1745-290everywhere in the region

    C. van Eldik • TeV PA 2009

    Diffuse Emission Spectrum

  • VLA Chandra

    SNR Sgr A East? SMBH Sgr A*? DM? PWN G359.95-0.04?

    10''300''

    Possible Counterparts?

    C. van Eldik • TeV PA 2009

  • VLA Chandra

    SNR Sgr A East? SMBH Sgr A*? DM? PWN G359.95-0.04?

    10''300''

    Possible Counterparts?

    C. van Eldik • TeV PA 2009

    ● Position?● Variability?● Energy spectrum?

  • Sgr A*Sgr A East

    Best Fit HESS J1745-290 (Aharonian et al. 2004)Best Fit HESS J1745-290 (van Eldik et al. 2007) - preliminary-

    VLA 90cm image

    0.04 deg

    Position: Sgr A East ruled out

    CvE et al., Proc. ICRC (2007)

    ● Dedicated data set using optical guiding telescopes

    ● 6'' systematic pointing error

    ● Lack of association with Sgr A East

    ● Chance probability 10-4 ... 10-11

    C. van Eldik • TeV PA 2009

  • Variability studies● Sgr A* highly variable at other wavelengths● Quasi-periodic oscillation● Expect correlated VHE variability if emission produced close to BH surface● No obvious variability in VHE lighcurve observed based on 93 hours of data

    Aharonian et al. (2009), arXiv:0906.1247

    HESS J1745-290, 28 min flux points

    C. van Eldik • TeV PA 2009

  • Flare Sensitivity

    Aharonian et al. (2009)

    ● Maximum needed lightcurve “amplification” for 3σ flare detection● (as usual) statistics limited

    Ahar

    onia

    n et

    al.

    (200

    9)

    C. van Eldik • TeV PA 2009

  • Variability studies● Simultaneous HESS and

    Chandra observations

    ● X-ray flare detected- 1700s duration- 9x quiescent level

    ● No increase of gamma flux→ 100% flux increase discarded at 99% CL

    Aharonian et al. (2008)

    C. van Eldik • TeV PA 2009

  • Search for QPOs (small time scales)● Quasi-periodic oscillations observed in X-rays and IR● X-ray periodicity 100 s, 219 s, 700 s, 1150 s, 2250 s● Related to accretion disk?● Rayleigh test for continuous 28 min observations (2004-2006 averaged)

    → no hint for QPOs < 1150 s in VHE data

    Ahar

    onia

    n et

    al.

    (200

    9)

    C. van Eldik • TeV PA 2009

  • Search for QPOs (large time scales)● Lomb-Scargle periodogram

    averaged over 2004-2006● Power spectrum compatible

    with noise● No indication for QPOs

    on 600 s – 1.5 h time scales

    Ahar

    onia

    n et

    al.

    (200

    9)

    C. van Eldik • TeV PA 2009

  • C. van Eldik • TeV PA 2009

    Spectrum – a bit of history

    ● Hard spectrum: Γ = 2.25 ± 0.04 ± 0.10● 10% Crab above 1 TeV● No cut-off: EC > 9 TeV (95% CL)

  • ● 2004-2006 data93 h live time

    ● 4185 γ-rays (61 σ)160 GeV < E < 70 TeV

    ● Exponential cut-offΓ = 2.10±0.04±0.10Ec = 15.7±3.5±2.5 TeVχ²/d.o.f. = 23/26

    Aharonian et al. (2009)A&A acceptedarXiv:0906.1247

    HESS J1745-290Spectrum

    C. van Eldik • TeV PA 2009

  • Aharonian et al. (2009)A&A acceptedarXiv:0906.1247

    HESS J1745-290Spectrum

    C. van Eldik • TeV PA 2009

    ● 2004-2006 data93 h live time

    ● 4185 γ-rays (61 σ)160 GeV < E < 70 TeV

    ● Exponential cut-offΓ = 2.10±0.04±0.10Ec = 15.7±3.5±2.5 TeVχ²/d.o.f. = 23/26

    ● Broken powerlawΓ1 = 2.02±0.08±0.10Γ2 = 2.63±0.14±0.10EB = 2.57±0.19±0.44χ²/d.o.f. = 20/19

  • 10''

    Sgr A*

    G359.95

    Wang et al. (2005)

    Hinton + Aharonian (2007)

    ● Dense radiation fields● Comparably low

    magnetic field→ IC dominant→ plausible candidate

    C. van Eldik • TeV PA 2009

    HESS J1745: a pulsar wind nebula?

  • ● All models viablewith current statistics

    ● CTA/AGIS will help● LAT?

    Sgr A* Emission Modelspp interactionsin accretion disk

    Aharonian & Neronov (2005)

    electron scenariocurvature + IC

  • Cosmic Ray Electrons

    Aharonian et al. (2008)

    ● Suffer severely from synchrotron and inverse Compton losses → steep GeV spectrum ~E-3.3 → steepening at TeV energies ~E-3.9 → TeV electrons must come from local sources

    ● Compatible with lower-energy measurements: Г = 3.1 with cut-off at 2.1 TeV

    ● H.E.S.S. can measure electrons at TeV energies → electrons are gamma-like → large detection area

    ● Large backgrounds - Cosmic ray showers - Galactic diffuse emission - extragalactic diffuse emission

  • Standard Background Modelling

    Ber

    ge e

    t al.

    (200

    7)

    C. van Eldik • TeV PA 2009

  • ● Random Forest: train machine learning algorithm on shower image parameters → needs electron simulations and cosmic background for training

    ● For each shower, RF determines “electron likeness” parameter ζ ε [0;1]

    ● For ζ>0.9, total background suppression is 10-6

    ● Signal extraction → Fit ζ-distribution with combination of electron/proton simulations → depends on hadronic interaction model (Sybill/QGSJet)

    data

    simulatedbackground

    Electrons: Background Modelling

    C. van Eldik • TeV PA 2009

  • ● Extrapolation of gamma-ray flux to VHE energies suggests small contribution only

    ● FERMI preliminary extragalactic diffuse gamma flux softer than EGRET

    ● Test with first interaction height (only poorly reconstructed)

    ● At most 50% gamma contamination

    Gamma-ray contamination

    Aharonian et al. (2008)

    C. van Eldik • TeV PA 2009

  • ● Separate fits in energy bands

    ● Two complementary analyses: - high energies: 600 GeV – 5 TeV (hard cuts for best reconstruction) - low energies: 340 GeV – 700 GeV (looser cuts on image intensity, 2004/2005 data only)

    Energy Spectrum

    Aharonian et al. (2008)

    Aharonian et al. (2009) arXiv:0905.0105

    C. van Eldik • TeV PA 2009

  • ● No indication of feature similar to ATIC

    ● Break in spectrum: Г1 = 3.0±0.1±0.3 Г2 = 4.1±0.3±0.3 EB = 0.9±0.1 TeV

    ● Compatible to FERMI within energy shift uncertainty

    Aharonian et al. 2009

    C. van Eldik • TeV PA 2009

    Low Energy Analysis

    Aharonian et al. (2009) arXiv:0905.0105

  • Meade et al. (2009)arXiv:0905.0480

    Putting Electrons and GC together

  • Summary● Solid detection of the GC point source● Sgr A East excluded as a source● After 100 hours of observation, spectrum shows significant deviation simple power-law● No indication for variability● No indication for QPOs

    ● Measurement of CR electrons (+ extragalactic diffuse gammas)● Implies existence of nearby sources● Energy range 340 GeV – 5 TeV● Consistent with FERMI● No indication for ATIC spectral feature● Significant spectral steepening beyond 1 TeV

    Thanks!

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27