copyright r. janow – spring 2012janow/physics 111 spring 2012... ·  · 2012-01-18... average...

23
Copyright R. Janow – Spring 2012 Physics 111 Lecture 02 Motion in One Dimension SJ 8th Ed.: Ch. 2.1 – 2.8 Introduction to motion & kinematics, definitions Position and Displacement Average velocity, average speed Instantaneous velocity and speed Acceleration Motion diagrams Constant acceleration - a special case Kinematic equations Free fall Another look at constant acceleration (kinematic equations derived using calculus). 2.1 Position, Velocity, and Speed 2.2 Instantaneous Velocity and Speed 2.3 A particle under Constant Velocity 2.4 Acceleration 2.5 Motion Diagrams 2.6 A particle under Constant Acceleration 2.7 Free Fall 2.8 Kinematic Equations Derived from Calculus

Upload: phungxuyen

Post on 26-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Physics 111 Lecture 02

Motion in One Dimension

SJ 8th Ed.: Ch. 2.1 –2.8

•Introduction to motion & kinematics,

definitions

•Position and Displacement

•Average velocity, average speed

•Instantaneous velocity and speed

•Acceleration

•Motion diagrams

•Constant acceleration -a special case

•Kinematic equations

•Free fall

•Another look at constant acceleration

(kinematic equations derived using

calculus).

2.1

Po

sit

ion

, V

elo

cit

y,

an

d S

pe

ed

2.2

Ins

tan

tan

eo

us

Ve

loc

ity a

nd

Sp

ee

d

2.3

A p

art

icle

un

de

r C

on

sta

nt

Ve

loc

ity

2.4

Ac

ce

lera

tio

n

2.5

Mo

tio

n D

iag

ram

s

2.6

A p

art

icle

un

de

r C

on

sta

nt

Ac

ce

lera

tio

n

2.7

Fre

e F

all

2.8

Kin

em

ati

c E

qu

ati

on

s D

eri

ve

d

fro

m C

alc

ulu

s

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Motion -Kinematics

Mech

anics describes motion resulting from

interactions betw

een

masses (m

atter) and

forces.

•“Kinematics”: very little physics

describes motion but ignores the causes

•“D

ynamics”

invoke

s “forces”

that cause m

otion

Kinematic motion concepts:

•Position x(t) & displacement ∆ ∆∆∆x

•Rates of change

•Velocity v(t) & spe

ed

•Acceleration a(t)

Abstractions –

mod

eling assum

ptions:

•Point ob

jects called “pa

rticles”

–infinitesimally

small, no shape

, no spin, no distortion, …

•1 dimensional world

•Motion variables position, displacement, velocity &

acceleration only along + &

-x-axis

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Position

Position: an ob

ject’s location

measured relative to a chosen

reference point

(the origin of a

coordinate system).

The road sign in the diagram is

used as the origin.

The position is the displacement

from

the origin.

The position-

time graph

show

s the

location of the particle (car) at every

time in some range.

Points betw

een measurements are

interpolated guesses.

The function x(t) ge

nerating the curve

is continuous and

smooth

(differentiable).

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Displacement & Position

)t(

x)

t(x

x

x

xi

fi

f

rr

rr

r− −−−

= ===− −−−

≡ ≡≡≡∆ ∆∆∆

Language

:∆ ∆∆∆

“delta”means difference

Often it shrinks to infinitesimal size

i.e:

∆ ∆∆∆x

� ���dx

� ���0

)t(

x

x

)t(

x

xi

if

f

rr

rr

≡ ≡≡≡≡ ≡≡≡

Positions

ti

me

o

f

fun

cti

on

as

o

sit

ion

p

)t(x

≡ ≡≡≡

rUsually w

e w

ant to find

this.

orig

inx

ix

f∆ ∆∆∆

x

x(t

i)x(t

f)

[x(t

)] an

d [∆ ∆∆∆

x]

= le

ng

th, S

I u

nit

s a

re m

ete

rs

Displacement is a particle’s cha

nge in position(a vector)

during some time interval

A scalar

t

t

ti

f∆ ∆∆∆

≡ ≡≡≡− −−−

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

The Difference between Distance Covered and Displacement

A basketball player starts in

the center, runs back and

forth

to the baskets a couple of times

(See graph

of x(t)).

L = length of the court

∆ ∆∆∆x= displacement

d = distance covered

(always positive)

2/L

xx

xa

ba,

b= ===

− −−−≡ ≡≡≡

∆ ∆∆∆2/

Ld

a,b

= ===

2/L

xx

xa

ca,

c− −−−

= ===− −−−

≡ ≡≡≡∆ ∆∆∆

Ld

a,c

23= ===

2/L

xx

xa

ea,

e− −−−

= ===− −−−

≡ ≡≡≡∆ ∆∆∆

Ld

a,e

27= ===

2/L

xx

xa

da,

d= ===

− −−−≡ ≡≡≡

∆ ∆∆∆L

da,

d25

= ===

0= ===

− −−−≡ ≡≡≡

∆ ∆∆∆a

fa,f

xx

xL

da,f

4= ===

t �

a

b

c

d

e

fx(t

)

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Average Velocity (a Vector)

Th

e a

vera

ge v

elo

cit

yo

f a p

art

icle

du

rin

g s

om

e t

ime in

terv

al is

th

e

dis

pla

cem

en

td

ivid

ed

by t

he t

ime in

terv

al fo

r th

e d

isp

lacem

en

t to

occu

r –

the a

vera

ge r

ate

of

ch

an

ge o

f p

osit

ion

du

rin

g t

he in

terv

al

if

if

avg

tt

xx

tx

v

− −−−− −−−= ===

∆ ∆∆∆∆ ∆∆∆≡ ≡≡≡

rr

rr

Th

e x

in

dic

ate

s m

oti

on

alo

ng

th

e x

-axis

Dimensions of velocity &

/or speed are length / time [L/T

]SI units are m

/s

ft

to it

fr

om

seg

men

t

lin

e

of

lo

pe

savg

v≡ ≡≡≡

Example:

m

/s.

.

.

..

v

m .

s.

x

.

t

m.

s

.

x

.t

avg

bb

aa

46

16

44

9

00

60

01

3

00

13

49

00

66

4

= ===− −−−− −−−

= ===

= ==== ===

= ==== ===

What would v

avgbe betw

een

a,c

or b,c?

On position vstime graph

:t �

a

b

∆x

ba

∆t b

a

c

x(t

)

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Average Speed (a Scalar, Positive Quantity)

Th

e a

vera

ge s

peed

of

a p

art

icle

du

rin

g s

om

e t

ime in

terv

al is

th

e

tota

l d

ista

nce t

ravele

d d

ivid

ed

by t

he len

gth

of

the t

ime in

terv

al.

if

ere

dco

vce

tan

dis

to

tal

avg

tt

td

s

− −−−= ===

∆ ∆∆∆∆ ∆∆∆≡ ≡≡≡

Dim

ensions: L/T.

SI units: m/s

•Drive 50 km east at 50 km/h

r for 1 hour

•Stop for 1 hour

•Drive 50 km w

est for 2 hours at 25 km/h

r

km

x

50

+ +++= ===

∆ ∆∆∆

Average

Velocity:

0

)x

(x

)x

x(

x1

tot

= ===− −−−

= ===− −−−

+ +++− −−−

= ===∆ ∆∆∆

50

50

21

2h

ou

rs

t t

ot

4= ===

∆ ∆∆∆

0

tx

v

to

t

tot

tot

,a

vg

= ===∆ ∆∆∆∆ ∆∆∆

= ===

Example

km

x

50

− −−−= ===

∆ ∆∆∆

km

x

0= ===

∆ ∆∆∆

x1

x2

Average

Spe

ed:

km

km

50

km

dto

t100

50

= ===+ +++

+ +++= ===

∆ ∆∆∆h

ou

rs

t t

ot

4= ===

∆ ∆∆∆ km

/hr

25

ho

urs

4

km

100

td

s

to

t

tot

tot

,a

vg

= ==== ===

∆ ∆∆∆∆ ∆∆∆= ===

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Instantaneous Velocity and Speed

“In

sta

nta

neo

us”

mean

s “

at

so

me g

iven

tim

e in

sta

nt”

vin

stis

va

vg

over

an

in

fin

itesim

alin

terv

al

∆ ∆∆∆t� ���

0

Limiting process:

•T

he c

ho

rd’s

slo

pe i

s t

he a

vera

ge v

elo

cit

y.

•L

et

∆ ∆∆∆t� ���

0,

en

clo

sin

g t

fo

r th

e r

ed

do

t.

•T

he c

ho

rds b

eco

me s

ucc

essiv

ely

b

ett

er

ap

pro

xim

ati

on

s t

o t

he t

an

gen

tat

the t

ime o

f in

tere

st.

.

Th

e i

nsta

nta

neo

us v

elo

cit

y i

s t

he r

ate

of

ch

an

ge o

f p

osit

ion

at

the

tim

e o

f in

tere

st;

i.e

. th

e s

lop

e o

f th

e t

an

gen

t li

ne o

n a

n x

(t)

gra

ph

d

t

dx

tx

Lim

v L

imv

v

tavg

tin

st

≡ ≡≡≡∆ ∆∆∆∆ ∆∆∆

= ===≡ ≡≡≡

≡ ≡≡≡→ →→→

∆ ∆∆∆→ →→→

∆ ∆∆∆0

0

The limit define

s the time derivative

of the position function

The instantaneous speedis the m

agnitud

e

of the instantane

ous velocity

|v

|

s

ins

t≡ ≡≡≡

t �

tangent

line

∆ ∆∆∆x

0chord

∆ ∆∆∆t 0

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Finding instantaneous velocity when the position

is known as a function of time

Approximate M

ethod

: Calculate the average

velocity over a

“sufficiently short”

interval (squeeze

its duration)

Calculus M

ethod

: Find the derivative of the position function,

prod

ucing the velocity as a function of time.

Evaluate v

(t)at time t

.1

− −−−= ===

nn

kn

t]

kt

[d

td E

xam

ple

1:

Fin

d v

(t)

wh

ere

:)

t -(t

k

x

(t

)x

0

0+ +++

= ===

So

luti

on

:

dt

dt

k

]

[kt

dtd

[kt]

dtd

dt

dx

dt

dx

(t)

v

00

= ===− −−−

+ +++= ===

= ===

k

(t

)v

= ===∴ ∴∴∴

Constant

Exam

ple

2:

Fin

d v

(t=

3.5

s)

wh

ere

:m

t

2.1

t

9.2

7.8

(t)

x

3− −−−

+ +++= ===

9.2

6.3

t

t

)(3)

(2

.1

9.2

(t

)x

dtd

v(t

)

22

+ +++− −−−

= ===− −−−

= ==== ===

So

luti

on

:

m/s

68

9.2

6.3

(3.5

)

3.5

)

v(t

2= ===

+ +++− −−−

= ==== ===

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Motion with constant velocity (Special Case)

Slope

of position vs. time graph

is constant

-x

0is

th

e y

-in

terc

ep

t =

in

itia

l co

ord

ina

te-

Ave

rag

e a

nd

in

sta

nta

neo

us v

elo

cit

ies

are

eq

ual

0 t

x - x(t

)

tx

v

v

0a

vg

− −−−= ===

∆ ∆∆∆∆ ∆∆∆= ===

= ===

t

v

x

x(t

)

0+ +++

= ===

Equation for v(t)is a straight line

Graph

of velocity versus time

-v(t

)=

co

nsta

nt

v0

for

an

y t

ime

-D

isp

lacem

en

t =

x –

x0

t

v

co

vere

d

ista

nce

d

0= ===

Th

e d

isp

lacem

en

t is

th

e a

rea b

etw

een

th

e t

ime a

xis

an

d t

he c

urv

e o

n a

velo

cit

y v

ers

us t

ime g

rap

h.

t

v0

∆ ∆∆∆t

v(t

)

velo

cit

y =

co

nsta

nt

t

∆ ∆∆∆t

x(t

)

slo

pe =

velo

cit

y (

co

nsta

nt)

x0

∆ ∆∆∆x

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Average and Instantaneous Acceleration

Ac

cele

rati

on

is t

he r

ate

of

ch

an

ge o

f velo

cit

yIn

sta

nta

neo

us a

ccele

rati

on

a(t

) is

th

e s

lop

e o

f a v

elo

cit

y-t

ime

gra

ph

v(t

)

Limiting process:

Th

e c

ho

rd r

ep

resen

ts a

vera

ge

accele

rati

on

. L

et

∆ ∆∆∆t� ���

0.

tv

a a

vg

∆ ∆∆∆∆ ∆∆∆= ===

Average

Acceleration:

Dim

en

sio

ns

: [

a]

=

L /

T2

Un

its

: m

/s2,

ft/s

2

Vecto

r: i

n 1

D c

an

be j

us

t +

or

-

t � ���

tangent

line

∆ ∆∆∆v

chord

∆ ∆∆∆t

20

0d

txd

dt

dv

tv

Lim

a L

ima

a

2

tavg

tin

st

= ==== ===

∆ ∆∆∆∆ ∆∆∆= ===

≡ ≡≡≡≡ ≡≡≡

→ →→→∆ ∆∆∆

→ →→→∆ ∆∆∆

Instantane

ous acceleration is the time derivative of the velocity function

“deceleration”means slowing dow

n:

v

a

n

eg

ati

ve

is

ro

r

Wh

at

accele

rati

on

do

es e

ach

se

gm

en

t

a,…

e

rep

rese

nt?

v(t

)a

bc

de

!*?

!*? !*

?

!*?

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Motion Diagrams

Co

nsta

nt

velo

cit

y.

Ac

cele

rati

on

is z

ero

Nothing quantitative –just an aid to visualize what’s happening

-Snapshots at later and later equally spaced times

Ac

cele

rati

on

co

nsta

nt

an

d

alo

ng

in

itia

l velo

cit

y

Ac

cele

rati

on

co

nsta

nt

an

d

op

po

sit

e t

o

init

ial

velo

cit

y

An o

bje

ct

spe

eds u

p w

he

n v

and

aare

in t

he s

am

e d

irection.

It s

low

s d

ow

n w

hen v

and

aare

in o

pposite d

irectio

ns.

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Kinematic Equations –Constant Acceleration

•C

an

be u

sed

fo

r o

ne d

imen

sio

nal

mo

tio

n o

f an

y p

art

icle

u

nd

er

co

nsta

nt

accele

rati

on

.•

Ap

pli

cab

le t

o:

gra

vit

y,

co

nsta

nt

forc

es,

eq

uilib

riu

m

bu

t n

ot

c

ircu

lar

mo

tio

n,

vari

ab

le f

orc

es

•A

sm

all

set

of

tracta

ble

fo

rmu

las f

or

co

nsta

nt

accele

rati

on

The m

ost useful ones [see also table 2.1]:

For the particular case

0

a

= ===

v

v

0f

= ===

t

v

x

x

00

f= ===

− −−−

Co

nsta

nt

velo

cit

y

Dis

tan

ce g

row

s lin

earl

y w

ith

tim

e

t a

v

v

0

f+ +++

= ===

2

210

0f

t a

t

v

x

x

+ +++

= ===− −−−

)x

2a(x

v

v

f

2 02 f

0− −−−

+ +++= ===

t)v

(v

x

x

0f

210

f+ +++

= ===− −−−

Ju

sti

ficati

on

s

foll

ow

2.1

3

2.1

6

2.1

7

2.1

5

t =

tf

t 0 =

0

NO

TE

:

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Kinematics Formulas via Velocity-time Graph

Equation 2.13:

t a

v

v

0

f+ +++

= ===

ais constant, so

v(t

)is a straight line

v0

is the slope

-intercept

t

v -

v

a

a

0

fa

vg

≡ ≡≡≡= ===

Or, rearrange the definition:

Constantacceleration

Equation 2.16:

Thedisplacement d

(t)is the area

betw

een

v(t

)and

the time axis on

a velocity vs. time graph

Are

a

Are

a

x

x

d(t

)

0f

ΙΙ ΙΙΙΙ

ΙΙ+ +++

Ι ΙΙΙ= ===

− −−−= ===

v(t

)

v(t

) g

rap

hS

lop

e =

a

v0

vf

at

t

Are

Ι

Ι

Ι

= v

0t

Are

aΙΙ

ΙΙ

ΙΙ

ΙΙ

=

½at2

v0

2

210

0f

t a

t

v

x

x

+ +++

= ===− −−−

Or, integrate Eq. 2.13

Equation for a parabola

Equations 2.13 and

2.16 can

gene

rate the others on prece

ding slide:

Or, differentiate Eq. 2.16

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Kinematics Formulas Discussion, Continued

Equation 2.15:

The displacement d

(t)is the average

velocity m

ultiplied by the time

Constantacceleration

Equation 2.17:

t ]v

[v

tv

x

x

d(t

)

f21

avg

0f

0+ +++

= ===≡ ≡≡≡

− −−−≡ ≡≡≡

Solve Eq2.13 for the time:

t a

v

v

0

f+ +++

= ===a

v

v

t

0

f− −−−

= ===

2

210

0f

t a

t

v

x

x

+ +++

= ===− −−−

2

0f

210

f0

0f

a

vv

a

a

vv

v

x

x

− −−−

+ +++− −−−

= ===− −−−

Eliminate time t

in Eq2.16 and

simplify:

avv

a

v

av

a

v

avv

x

x

f

00

21f

210

f0

0f

− −−−+ +++

+ +++− −−−

= ===− −−−

22

2

v

v

]x

[x

a 2

f

00

f2

2+ +++

− −−−= ===

− −−−

)x

2a(x

v

v

f

2 02 f

0− −−−

+ +++= ===

∴ ∴∴∴

xf–

x0

= d

isp

lacem

en

t

oft

en

den

ote

d d

(t)

or

∆ ∆∆∆x

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Reading Graphs of Position, Velocity, and Acceleration vs. Time

•Th

e s

lop

e o

f th

e c

urv

e i

s t

he

velo

cit

y•T

he c

urv

ed

lin

e i

nd

ica

tes

th

e v

elo

cit

y i

s c

han

gin

g

•Th

ere

fore

, accele

rati

on

is n

on

-zero

•If

a is

co

ns

tan

t, t

he c

urv

e is

a p

ara

bo

la

•T

he a

rea

un

der

the c

urv

e is

me

an

ing

less

Graph

of

x(t

)versus time

•Th

e s

lop

e g

ives

th

e a

ccele

rati

on

•Th

e s

traig

ht

lin

e in

dic

ate

s a

co

nsta

nt

acce

lera

tio

n•T

his

mig

ht

be t

he d

eri

va

tive o

f th

e c

urv

e a

bo

ve

•T

he a

rea

un

der

the c

urv

e is

th

e d

isp

lace

men

t,w

hic

h c

an

be n

eg

ati

ve

wh

ere

v(t

) is

neg

ati

ve

Graph

of

v(t

)versus time

Graph

of

a(t

)versus time

•Th

e z

ero

slo

pe

in

dic

ate

s a

co

ns

tan

t acce

lera

tio

n

•T

he a

rea

un

der

the c

urv

e is

th

e c

han

ge

in

ve

loc

ity d

uri

ng

th

e t

ime

in

terv

al:

∆ ∆∆∆

v=

at

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

More Graphs of Position, Velocity, and Acceleration versus Time

•T

he s

lop

e o

f th

e c

urv

e i

s t

he

velo

cit

y•

Th

e v

elo

cit

y i

s c

han

gin

g f

rom

a t

o b

an

d c

to

d

•A

cce

lera

tio

n is

no

n-z

ero

in

th

ose in

terv

als

•F

rom

b t

o c

velo

cit

y i

s c

on

sta

nt

Graph

of

x(t

)versus time

•T

he s

lop

e g

ive

s t

he

accele

rati

on

•A

ll l

ine

seg

me

nts

are

str

aig

ht,

in

dic

ati

ng

co

nsta

nt

accele

rati

on

s

•F

rom

t =

1 t

o 3

s, accele

rati

on

is p

osit

ive.

Fro

m t

= 8

to

9 s

, accele

rati

on

is n

eg

ati

ve

.•

Acce

lera

tio

n =

0 e

lsew

here

•T

he d

isp

lace

men

t is

th

e a

rea u

nd

er

the

cu

rve

( tw

o t

rian

gle

s +

a r

ecta

ng

le)

Graph

of

v(t

)versus time

Graph

of

a(t

)versus time

•T

he z

ero

slo

pe i

nd

ica

tes

co

nsta

nt

acce

lera

tio

ns

•T

he a

reas

un

de

r th

e c

urv

e r

ep

resen

t ve

loc

ity

ch

an

ges

: P

os

itiv

e f

rom

t =

1 t

o 3

s a

nd

neg

ati

ve

fro

m t

= 8

to

9 s

.•

Velo

cit

y i

s a

lwa

ys p

osit

ive,

so

th

ese i

nte

rva

ls

mean

sp

eed

ing

up

an

d s

low

ing

do

wn

resp

ecti

ve

ly

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Kinematics Example:

Yo

ur

car’

s b

rakes g

ive i

t a c

on

sta

nt

accele

rati

on

of

5 m

/s2

op

po

sit

e t

o t

he

dir

ecti

on

of

mo

tio

n.

Wh

at

is t

he s

top

pin

g d

ista

nce f

rom

a s

peed

of

15 m

/s?

xcar

v0

a

a =

-5 m

/s/s

v0

= +

15 m

/s

Stopping distance ~ v

02

m

90

)((3

0)

-

d'

2

= ===− −−−

= ==== ===

52

What ch

anges if v

0=

30 m

/sinstead?

The acceleration is constant so kine

matics applies.

Select:

d2a

v

v

2 02 f

+ +++= ===

d =

sto

pp

ing

dis

tan

ce (

fin

d it)

No

tim

e v

ari

ab

les

Set

vf

= 0

(t

he c

ar

sto

ps)

Solve:

d2a

v

0

2 0+ +++

= ===ms

sm )

((15)

-

av-

d

22

22 0

2

52

2− −−−

= ==== ===

m

22.5

d

+ +++= ===

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Free Fall: Earth’s Acceleration Acting on Bodies

Ob

jects

in

fre

e f

all

resp

on

d t

o g

ravit

y a

lon

e

(n

o a

ir r

esis

tan

ce,

oth

er

forc

es)

Fre

e f

all

sta

rts w

ith

dif

fere

nt

so

rts o

f in

itia

l co

nd

itio

ns:

dro

pp

ed

(re

leased

fro

m r

est)

, th

row

n u

pw

ard

, o

r th

row

n d

ow

nw

ard

.

Earth’s gravity:

•Causes constant dow

nward acceleration a

g

•Is indepe

ndent of mass

•is reasonably constant over some region of interest

)ft

/s

32

.2(~

m/s

9

.8

g

a2

2g

≅ ≅≅≅≡ ≡≡≡

g i

s p

osit

ive

ag

is n

eg

ati

ve i

f +

dir

ecti

on

is u

p

m/s

1

0

g

2

e

ap

pro

xim

at

o

me

tim

es

S≈ ≈≈≈

For typical prob

lems:

Nam

e t

he a

xis

“y”

rath

er

than

“x”

Usu

all

y y

-axis

is p

osit

ive u

p (

no

t alw

ays)

Try

to

ch

oo

se o

rig

in s

o t

hat

y0

= 0

v(t

)

v0

t

Slo

pe =

-g

t g

v

v(t

)

0− −−−

= ===For v

0up, y positive up

2

210

0t

g t

v

y

y(t

)− −−−

+ +++= ===

Bo

th v

an

d y

� ���-

infi

nit

y a

t t � ���

infi

nit

y

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Free Fall Kinematics Example:

A p

itch

er

tosse

s a

baseb

all

dir

ectl

y u

p w

ith

a s

peed

of

12

m/s

.a)

Ho

w lo

ng

(t m

ax)d

oes

it t

ake

to

reach

th

e m

axim

um

heig

ht?

b)

Wh

at

is t

he m

ax

imu

m h

eig

ht?

c)

Ho

w lo

ng

(t 5

) u

nti

l it

passes

a p

oin

t 5

m a

bo

ve

rele

ase?

d)

Wh

at

is t

he v

elo

cit

y a

t y

0o

n t

he

wa

y d

ow

n?

v0

= 1

2

x

y

Co

nsta

nt

a =

-g

Sta

rt a

t y

0=

0

Part

a:

At

ma

xim

um

heig

ht,

v =

0

Ch

oo

se:

t a

v

v

0

+ +++= ===

max

0t

g

v

0

− −−−= ===

9.8

/

12

g/

v

t

0m

ax

= ==== ===

∴ ∴∴∴

s.

t

max

21

= ===

Part

b:

Ap

ply

9.8

gv

gv

g -

gv

0

t

g

t

v

y

y

212 0

21

021

2 02 m

ax

21m

ax

00

ma

x

22

12

= ==== ===

+ +++

= ===− −−−

+ +++= ===

m

7.3

y

m

ax

= ===∴ ∴∴∴

Part

c:

Set

y =

5

m…

2 521

52

210

t 9.8

12t

5

t

g

t

v

y− −−−

= ===⇒ ⇒⇒⇒

− −−−= ===

Qu

ad

rati

c e

qu

ati

on

in

tre

su

lts:

0

5

12t

t 4.9

52 5

= ===+ +++

− −−−

So

luti

on

:= ===

× ×××× ×××

± ±±±= ===

9.8

54.9

4-

144

12

t 5

t 5=

1.9

s

(on

way d

ow

n)

{t 5

= 0

.53 s

(o

n w

ay u

p)

Part

d:

Ap

ply

)y

2a(y

v

v

f

2 02 f

0− −−−

+ +++= ===

Set

yf=

y0

:m

/s

12

v

v

v

f2 0

2 f= ===

⇒ ⇒⇒⇒= ===

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Calculus Derivation of Kinematic Formulas

Constant acceleration

a

Initial cond

itions

t 0 x

0 v

0Final cond

itions

t fx

fv

f

Goa

l: Derive Equations 2.13 and

2.16 by direct integration

tv

a

a

avg

inst

∆ ∆∆∆∆ ∆∆∆≡ ≡≡≡

= ===For constant

ain

st

= a

Velocity change over a short time interval

∆ ∆∆∆t:

ta

v

∆ ∆∆∆≡ ≡≡≡

∆ ∆∆∆t

d a

vd

≡ ≡≡≡

as ∆ ∆∆∆

t� ���

0

2.1

6

2.1

3

Inte

gra

te d

vb

etw

een

th

e l

imit

s t

0to

tf:

]t

a[t

dt

a

d

t

a

v -

v

v

d

ft t

t t0

fv v

f 0

f 0

f 0

0− −−−

= ==== ===

= ===≡ ≡≡≡

∫ ∫∫∫∫ ∫∫∫

∫ ∫∫∫

f0

f ]

t[t

a

v

v

0− −−−

+ +++= ===

∴ ∴∴∴

0t fo

rf

0f

t a

v

v

0= ===

+ +++= ===

Displacement during

∆ ∆∆∆t:

tv

x

avg

∆ ∆∆∆≡ ≡≡≡

∆ ∆∆∆d

tv

t

d

v

x

d

inst

= ===≡ ≡≡≡

as ∆ ∆∆∆

t� ���

0

Inte

gra

te d

xb

etw

een

th

e l

imit

s t

0to

tf:

d

tt

a

dt

v

dt

v

x

- x

x

d

f 0

f 0

f 0

f 0

t t

t t

t t0

fx x

∫ ∫∫∫∫ ∫∫∫

∫ ∫∫∫∫ ∫∫∫

+ +++= ===

= ===≡ ≡≡≡

0

Note:

B A

2

21B A

t

t

d t

= ===∫ ∫∫∫

2f

21

f0

0f

]t

[t a

]

t[t

v

x

x

00

− −−−+ +++

− −−−+ +++

= ===∴ ∴∴∴

0t

for

2 f21

f

00

f

t a

tv

x

x

0

= ===+ +++

+ +++= ===

Extr

a

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Kinematic Equations from Calculus

What if acceleration is NOT constant? V(t) graph is not a straight line

•The area und

er the

velocity-time graph

represents displacement

•Break graph

into rectangles

of w

idth ∆ ∆∆∆teach

•Each

rectangle has area: n

na

vg

nt

)

t(v

)t(

A∆ ∆∆∆

= ===∆ ∆∆∆

× ×××

•Add up all the area

rectangles from

tito t

f

if

xx

x− −−−

= ===∆ ∆∆∆

)t(

Ax

f it tn

∑ ∑∑∑∆ ∆∆∆

= ===∆ ∆∆∆

•The limit of the sum

is

a definite integral

∑ ∑∑∑∫ ∫∫∫

∑ ∑∑∑= ===

∆ ∆∆∆= ===

∆ ∆∆∆= ===

∆ ∆∆∆

→ →→→∆ ∆∆∆

→ →→→∆ ∆∆∆

f i

f i

f in

t t

t tt

t tn

tv(t

)dt

t)t(

v

Lim

)

t(A

L

imx

00

Extr

a