copyright 2005 by saksit siriprayoonsak1 real-time measurement of prehensile emg signals master...

54
Copyright 2005 by Saksit Siriprayoonsak 1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic Department of Computer Science San Diego State University August 24, 2005

Post on 21-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 1

Real-Time Measurement of Prehensile EMG signals

Master Thesis

Saksit Siriprayoonsak

Supervisor: Marko Vuskovic

Department of Computer ScienceSan Diego State University

August 24, 2005

Page 2: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 2

Contents

Introduction EMG Overview Apparatus for EMG Measurement Implementation of EMG Capture Program Experimental Results Conclusion

Page 3: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 3

Multifunctional Prosthetic Hand Control

A research in Robotics Laboratory, SDSU

Page 4: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 4

Object of Thesis

Main purpose: Design and develop hardware and software for

measuring surface EMG signals from real human muscles in real-time.

Immediate application: To control the existing SDSU multifingered robot

hand.

Page 5: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 5

EMG Overview• EMG – Electromyography• Electromyography measures the electrical impulses of muscles at

rest and during contraction.• Amplitudes of EMG signal range between 0 to 10 mV (peak-to-

peak) or 0 to 1.5 mV (rms).• Frequency of EMG signal is between 0 to 500 Hz.• The usable energy of EMG signal is dominant between 50-150 Hz.

Source: http://www.delsys.com/library/papers/SEMGintro.pdf

Page 6: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 6

Amplification of EMG Signals

Factors to be considered:• Boost signal to TTL standard level (± 5 V.)

– Enough gain

• Noise/Artifact problem– Filter, stability of electrodes attached to skin, proper

grounding

• DC offset or bias problem– Bias adjustment

• Power consumption– Consume less current

Page 7: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 7

EMG Measurement Stages

Page 8: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 8

EMG Amplifier: Electrode and Extension

• Stereo phone wire with 3 conductors– Positive input to preamplifier– Negative input to preamplifier– Shield as the input of body reference circuit

• Velcro strap for securing the electrode to the skin

Page 9: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 9

EMG Amplifier: Electrode and Extension (cont.)

• Plastic piece and snap on for holding electrode elements• Dimension of 1 inch between electrode contacts• 4 electrode extensions and 1 body reference extension• Total of 9 electrode contacts

Page 10: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 10

EMG Amplifier: Power Supply

• Dual Supply – Positive Power Supply– Negative Power

Supply

• Two 9-volt batteries connected in series

• Capacitors provide stability of electrical current.

Power Supply Unit Circuit

Page 11: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 11

EMG Amplifier: Preamplifier

• Industry standard instrumentation amplifier op-amp (INA2128)– Accuracy: providing high bandwidth at high

gain and output offset current

• Differential amplifier circuit with 2 inputs

• High gain to boost the EMG signals

• Body Reference Circuit or Feed Back (OPA2604)

Page 12: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 12

EMG Amplifier: Preamplifier (cont.)

BURR-BROWN INA2128 Application Information

Page 13: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 13

EMG Amplifier: Preamplifier (cont.)

Gain Equation:

501

1 22

G

G

kGain

R

Rwhere R R

Find RG at Gain = 1,000:

1 50

2 2 ( 1)

1 50

2 (1000 1)

25.025

GR k

Gain

k

Find Gain at RG = 22 ohm:

501 1137.364

2 22

kGain

Preamplifier with Body Reference Circuit (1 channel)

Page 14: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 14

EMG Amplifier: Averaging Body Reference Circuit

• Common body reference circuit for 4 channels• Using summing amplifier circuit and sign changing circuit

Inverting Summing Amplifier Circuit

Sign Changing Circuit (Inverting Amplifier Circuit)

For independent R1, R2, R3, and R4:

4

4

3

3

2

2

1

1

R

V

R

V

R

V

R

VRVout F

For R1= R2= R3= R4:

1 2 3 41

FRVout V V V VR

2

1

RVout Vin

R

For independent R1, and R2:

For R1= R2:VinVout

Page 15: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 15

EMG Amplifier: Average Body Reference Circuit (Cont.)

Common Body Reference Output:

Average Body Reference Circuit

1 2 3 4

1 2 3 4

1

11 1

1 4.7

1

4

kVoutB VoutA

kk k

Bodyref Bodyref Bodyref Bodyrefk k

Bodyref Bodyref Bodyref Bodyref

1 2 3 4

1

4.7

kVoutA Bodyref Bodyref Bodyref Bodyref

k

Page 16: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 16

EMG Amplifier: Filter

• Suppress noise that has been amplified by the preamplifier

• Help to sink any DC current that cause bias to the output

• Select particular signal frequency range

• Use RC High Pass Filter of 12 Hz

Page 17: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 17

EMG Amplifier: Filter (cont.)

Cutoff Frequency: Cutoff Frequency of 12 Hz:

RC High Pass Filter RC High Pass Filter

Cutoff Frequency of 12Hz

1

2cutofffRC

Hz

nFkf cutoff

12

66.11

150912

1

Page 18: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 18

EMG Amplifier: Amplifier and Bias Adjustment

• Provide abilities to amplify and adjust reference level of output signals

• Individual amplifier and bias adjustment unit for each channel

• Use Non-Inverting circuit for amplifier unit• Use Voltage Follower Offset Adjustment

circuit for bias adjustment unit• Provide Gain of 21 times• Provide Offset of ± 9 volts

Page 19: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 19

EMG Amplifier: Amplifier and Bias Adjustment (cont.)

Non-Inverting Amplifier Circuit

Non-Inverting Output:

3

1

1R

Vout VinR

3

1

1R

GainR

Page 20: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 20

EMG Amplifier: Amplifier and Bias Adjustment (cont.)

Amplifier Gain:

40

35

1

01

10

1

RGain

R

k

At :

040 R

Amplifier Circuit with Gain Adjustment

Amplifier Circuit with Gain Adjustment

At :

kR 20040 40

35

1

2001

10

21

RGain

R

k

k

Page 21: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 21

EMG Amplifier: Amplifier and Bias Adjustment (cont.)

Offset Adjustment for Voltage Follower

2R 2 0R Vadj VccCase 1: at 0% of : ( ohms; volts )

3

1

1R

GainR

3

1

1R

Vout Vin VccR

2RCase 2: at 50% of : ( ohms; volts )22 2

RR 0Vadj

3

21

1

2

RGain

RR

3

21

1

2

RVout Vin

RR

2RCase 3: at 100% of : ( ohms; volts )Vadj Vcc2 2R R

3

1 2

1R

GainR R

3

1 2

1R

Vout Vin VccR R

Output of the circuit:

( )Vout Vin Gain Vadj

1 2: where V Vadj V

Page 22: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 22

EMG Amplifier: Amplifier and Bias Adjustment (cont.)

Bias Adjustment Circuit

2R 2 0R Vadj VccCase 1: at 0% of : ( ohms; volts )

38

37

1

11

101.1

RGain

R

k

k

2RCase 2: at 50% of : ( ohms; volts )22 2

RR 0Vadj

38

4137

1

21

150

102

1.029

RGain

RR

kk

k

2RCase 3: at 100% of : ( ohms; volts )Vadj Vcc2 2R R

38

37 41

1

11

10 501.017

RGain

R R

k

k k

_ ( ) 9Vout final Vout Amp V

Output of the circuit:

: 9 _ 9 volts.where Vout final V

Page 23: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 23

A/D Interface Card

• NI 6220 M-Series Multifunction DAQ

• Clock Speed: 8 Hz, up to 1 MHz

• Analog Input Resolution: 16 bits

• Number of Analog Input Channels: 8

Page 24: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 24

Final Product Assembly

• Circuit designed and tested on breadboard• Schematic created by Multisim8• PCB layout created by Ultiborad7

Page 25: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 25

Final Product Assembly (cont.)

• A schematic diagram is drawn using Multisim8.

• Netlist contains all circuit connections.

• Netlist is transferred to Ultiboard7 for PCB layout.

• PCB is a double layer (top copper layer and bottom copper layer)

• Through holes connect between 2 layers.

Page 26: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 26

Final Product Assembly (cont.)

PCB shipped by the manufacturer

Page 27: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 27

Final Product Assembly (cont.)

PCB after soldering

Page 28: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 28

Calibration Procedure

• Each channel is individually calibrated.• Input is equal to output (100 mV.)• If an arbitrary gain is needed, the output is desired gain

value multiplied by input.

Page 29: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 29

EMG Capture

• Provides 3 play modes: Real-Time, Record, and Playback mode.

• Able to save and open EMG data to/from file.

• Display features:– Voltage scales– Time scales– Readout of exact values

Page 30: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 30

EMG Capture: User Interface

Page 31: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 31

EMG Capture: Main Parameter Subpanel

• Working with Real-Time mode and Record mode.

• Maximum Buffer Size (Samples per Channel)• Sampling Rate (Hz)

Page 32: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 32

EMG Capture: Play Mode

Page 33: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 33

EMG Capture: Real-Time Mode

- Start real time mode

- Stop real time mode

- Freeze output display for examine interesting segments or save the data

- Resume real time mode

- Save data in buffer to file

START

STOP

Pause

Resume

Save

Page 34: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 34

EMG Capture: Record Mode

- Start to Record the signals in specific time range in seconds.

- Save the data to file

START

Save

Page 35: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 35

EMG Capture: Playback Mode

- Open EMG data file (.emg)Open

Standard window open dialog

Page 36: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 36

EMG Capture: Voltage Scale• Voltage scale is

independent for each channel.

• Alternative voltage scales:– 200 mV/Div.– 500 mV/Div.– 1 V/Div.– 2.5 V/Div.– 5 V/Div.

Page 37: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 37

EMG Capture: Time Scale

• All channels use the same time scale

• Alternative time scales:– 1 mSec/Div.– 5 mSec/Div.– 10 mSec/Div.– 50 mSec/Div.– 100 mSec/Div.– 200 mSec/Div.– 400 mSec/Div.

Page 38: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 38

EMG Capture: Time Slider

• Scroll time slider to view data from beginning to the end.• The numbers on the left and right corner correspond to

the time stamp of the first and the last sample shown on the output display screen.

• ‘5.416’ is 5 seconds and 416 milliseconds.

Page 39: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 39

EMG Capture: Readout

• Read extract value at pink vertical line• Need not to compute the value of scale• Unit: Time (sec) , Voltage (V)

Page 40: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 40

EMG Capture: Output Display

• Displays 4 channels• Voltage: 4 divisions

– 2 positive divisions– 2 negative divisions

• Time: 15 divisions

• Maximum Display:– ±10 volts with 5 volts/Div.

– 6 seconds with 400 mSec/Div

Page 41: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 41

EMG Capture: Status Bar

• Guide user through the usage• Display important message

eg. Number of samples that went into the buffer.

Page 42: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 42

EMGC Implementation

• Developed by using Microsoft Visual C++ tool• GUI developed with MFC (Microsoft Foundation Class)

library• Runs on Windows 2000 machine which has A/D

interface card installed• A/D Interface Card: Multifunction Data Acquisition

(DAQ), M-6220 series from National Instrument Company

Page 43: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 43

EMGC Implementation: Output Buffer Structure

• CArray class from MFC Library used to store input signal data.

• CArray can dynamically shrink and grow if necessary.

struct SOutputData

{

int output_ii; //Iteration start from 0

double time; //Time stamp in Second

double volt1; //Voltage value for CH1, CH2, CH3, and CH4

double volt2;

double volt1;

double volt1;

};

CArray <SOutputData, SOutputData> dumpDataArray;

Page 44: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 44

EMGC Implementation: Creating Voltages and Time Scales

• Use spin control to select the scales.• Spin control increase/decrease spin value by a

specific number of steps.• Use spin value as the index of scale array.

//For Calculation

double voltScaleSet[5] = {5.0, 2.5, 1.0, 0.5, 0.2}; //unit in volt/div

//For Screen Display

CString voltScaleStrMap[5] = {“5 Volt/Div”, “2.5 Volt/Div”,

“1 Volt/Div”, “500 mVolt/Div”, “200 mVolt/Div”};

Page 45: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 45

EMGC Implementation: Draw Grid for Graph Output

• Use CDC class (Class Device-Context object) to draw output on the screen.

• The CDC class is a class from the MFC library.

• CDC provides various kinds of drawing functions (working with drawing tool, converting the coordinates,

drawing rectangles, drawing circles, drawing text, changing the color)

Page 46: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 46

EMGC Implementation: Draw Grid for Graph Output (cont.)

private:

//Variables for drawing output

int _maxTimeDiv; //Max number of divisions to display on Output-Panel

int _maxVoltDiv; //time axis = 15 divisions

//volt axis = 4 divisions (2 positive Divs)

// (2 negative Divs)

int _ptsPerDiv; //How many points are there in 1 division.

//1 point = 0.1 milimeter

//Default 100 points = 1 division is 1 cm wide

// ** Base on: Display Resolution= 1024 x 768

int _maxDrawPtsX; // _maxTimeDiv*_ptsPerDiv, Max Drawing Point for // time

int _maxDrawPtsY; // _maxTimeDiv*_ptsPerDiv, Max Drawing Point for volt

//Default x=1500, y=400

Page 47: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 47

EMGC Implementation: Draw Grid for Graph Output (cont.)

Page 48: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 48

EMGC Implementation: Drawing Graph Output

_ ptsPerDivdrawValueX time startTime

curTimeScale

Function CEMGCDlg::voltToDC()

_ _

2

ptsPerDiv maxDrawPtsYdrawValueY volt

vScale

Function CEMGCDlg::voltToDC()

The output can be drawn by using (x,y) coordinate to specify position to draw.

Page 49: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 49

EMGC Implementation: Saving Data Buffer To File

• File Extension (‘.emg’)• Header line contains

– Sampling rate (HZ)– Record time period (sec)

• Data speparate by a ‘space’.

• Each record separated by a ‘carriage return’ (put in front).

Page 50: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 50

EMGC Implementation: Read File To Data Buffer

• Read header file– Sampling rate -> computes sampling period– Record time period -> verifies the data file (completed or in

completed)

• Store data in buffer (dumpDataArray)

struct SOutputData

{

int output_ii; //Iteration start from 0

double time; //Time stamp in Second

double volt1; //Voltage value for CH1, CH2, CH3, and CH4

double volt2;

double volt1;

double volt1;

};

CArray <SOutputData, SOutputData> dumpDataArray;

Page 51: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 51

ResultsOur EMG Amplifier ME3000 Muscle Tester

A comparison of cylindrical grasp recorded from our EMG amplifier and ME3000.

Page 52: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 52

Results (cont.)Our EMG Amplifier ME3000 Muscle Tester

A comparison of preshaping of cylindrical grasp recorded from our EMG amplifier and ME3000.

Page 53: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 53

Conclusion This thesis presents an implementation of EMG amplifier

device and EMG Capture program. Major problems were:

• To reduce noise, moving artifacts, system grounding and DC bias.

Problems solved through:• Proper choice of discrete components (resistors, capacitors, and

ICs)• Proper design of circuitry• Final implementation of the device using PCB technology• Systematic experimentation with the prototype (implemented on

a breadboard)• Extensive testing of the device after implementation and

executing final corrections.

Page 54: Copyright 2005 by Saksit Siriprayoonsak1 Real-Time Measurement of Prehensile EMG signals Master Thesis Saksit Siriprayoonsak Supervisor: Marko Vuskovic

Copyright 2005 by Saksit Siriprayoonsak 54

Future Work

EMG amplifier• Smaller size of the housing unit.• Eliminate electrode extensions

EMG Capture program• Add print feature• Add properties feature for changing system

parameters• Improve drawing ability