control and data acquisition for fusion experiments€¦ · b. carvalho | eiroforum school on...

61
Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble Control and Data Acquisition for Fusion experiments Bernardo Brotas Carvalho [email protected]

Upload: others

Post on 21-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt

B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Control and Data Acquisition for Fusion experiments

Bernardo Brotas Carvalho [email protected]

Film by Jean-Luc Godard, (1967) “2 ou 3 choses que je sais d'elle”

“The  stakes  are  considerable,  not  to  say  vital  for  our  planet.“        José  Manuel  Barroso,  President  of  the  European  Commission  

Fusion  –  a  Global  Challenge  

Fusion  powers  the  sun  and  the  stars  

•  Essentially limitless fuel, available all over the world

•  No greenhouse gases

•  Intrinsic safety

•  No long-lived radioactive waste

•  Large-scale energy production

On Earth,

fusion could provide:

The  Fusion  ReacBon  on  Earth  “...  is  not  the  same  as  in  the  Sun“  

+ 3.5 MeV

+ 14.1 MeV

41H + 2e --> 4He + 2 υ+ 6 γ + 26.7 MeV (solar process)

Why  D-­‐T  ?:  Cross  secBon!  

Fusion  Fuel  

Raw  fuel  of  a  fusion  reactor  is  water  and  lithium*  

Lithium in one laptop battery + half a bath-full of ordinary water (-> one egg cup full of heavy water) 200,000 kW-hours = (current UK electricity average consumption) for 30 years * Deuterium/hydrogen = 1/6700

+ tritium from: neutron (from fusion) + lithium → tritium + helium

CH4 + 2O2 --> CO2 + 2H2O + 5.5 eV (Chemical) 2D + 3T --> He + n + 17.6 MeV (Fusion)

Basic  Principle  of  Stable  MoBon  of  Ions  in  MagneBcally  confined  Plasma  

Reactor conditions

ITER

Progress  in  fusion  performance  

Author’s name | Place, Month xx, 2007 | Event 10 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Control for Fusion Performance

Fusion  Control  System  is  a  tool  to  achieve  and  maintain  plasma  condi6ons  with  best  performance  for  •   plasma  physics  invesBgaBons  •   energy  confinement  and  stability  

•   and  -­‐  at  the  end  -­‐  fusion  power  yield  

Author’s name | Place, Month xx, 2007 | Event 11 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Benchmark for Fusion Performance

•  The  aim  is  to  generate  power:  Pfusion/Pheat↑  –  Pfusion~(nT)2  :  power  expelled  (lost)  with  fusion  neutrons  –  Pheat  :  power  needed  to  sustain  plasma  

•  from  external  heaBng  •  from  α  heaBng  (dominaBng  in  a  reactor)  

•  For  present-­‐day  experiments  alpha  α  heaBng  can  be  neglected:  Pheat=Wplasma/τE  and  Wplasma~nT  –  Wplasma:  thermal  energy  –  τE  :energy  confinement  Bme  (thermal  insulaBon)  

•  So:  Pfusion/Pheat    ~n⋅  T  ⋅  τE  (fusion  product)  

Author’s name | Place, Month xx, 2007 | Event 12 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Strategies to Improve the Fusion Product

•  Simply increasing each individual factor does not work: Complex limits restrict operational space.

•  Limits depend on spatial distribution of the quantities (profiles).

•  Each actuator affects multiple factors. •  We need to find transition paths to

plasmas with suitable combinations of n, T and τE.

Optimise the fusion product n⋅T⋅τE by •  n↑ : increasing density •  n⋅T ↑ : increasing pressure •  τE ↑ : increasing confinement •  Ip↑ : increasing current

Tip: PLAY with the virtual tokamak at http://w3.pppl.gov/~dstotler/SSFD

Author’s name | Place, Month xx, 2007 | Event 13 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Applications of Performance Control in Fusion

Presently, Performance Control is not a monolithic application but a composition of various tools.

Simple •  Electron/Neutral

Density Control •  Radiation Control •  H/D (Isotopes)

Control •  beta control

Advanced •  Gap/Shape Control •  VS Control •  Profile Control

(current, density, temperature)

•  MHD Control

Protection •  Disruption Prediction,

Avoidance and Mitigation

•  Hot-Spot Detection •  Radiation Peaking

Author’s name | Place, Month xx, 2007 | Event 14 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Rationale for Fusion Performance Control

Performance Control is a tool •  to guide plasma state to a desired domain (scenario,

regime) on prescribed paths •  to simplify the plant operation scheme

  replacing actuator inputs by higher level control variables

  linearizing and decoupling the system behaviour •  to increase the safety margin to critical limits •  to counteract external disturbances •  compensate for incomplete system knowledge

For This

Feedback from measured quantities is Essential.

Author’s name | Place, Month xx, 2007 | Event 15 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

r ControllerC(s)

e u PlantP(s)

y

FeedbackF(s)

-

reference error command Outputr Closed-Loop

Hcl(s)y

=

Feedback Control System Basics: LTI Systems

r ControllerC(s)

u PlantP(s)

y

reference error command Output

)()()( sRsCsU =

)()()()( sYsFsRsE −= )()()()()()(1

)()()( sRsHsRsCsPsF

sCsPsY cl=+

=

)()()(1)()()(

sCsPsFsCsPsHcl +

=

Closed-­‐loop  transfer  funcBon  of  the  system  

)()()( sCsPsHo =

Open-­‐Loop  transfer  funcBon  of  the  system  

)()()()()()()()( sRsHsRsCsPsUsPsY o===

Transfer Functions are represented in frequency (Laplace) domain rather than in time domain.

{ } dttfetfLsF st )()()(0∫∞ −==

iws +=σ

Author’s name | Place, Month xx, 2007 | Event 16 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Control Loop with Disturbance

C l o s e d -­‐ l o o p  transfer  funcBon  

r ControllerC(s)

e u PlantP(s)

y

FeedbackF(s)

-

reference errordisturbance

Outputd

))()()()(()()()()()()()()( sYsFsRsCsPsDsPsUsPsDsPsY −+=+=

)()()()()()()()()()( sRsCsPsDsPsYsFsCsPsY +=+

)()()()(1

)()()()()()(1

)()( sRsFsCsP

sCsPsDsFsCsP

sPsY+

++

=

)()()()()()( sRsHsD

sCsHsY cl

cl +=

Author’s name | Place, Month xx, 2007 | Event 17 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Feed-Forward Control

r ControllerC(s)

e u PlantP(s)

y

FeedbackF(s)

-

reference errordisturbance

Outputdff

feedfoward

•   same  entry  point  in  the  loop  as  standard  disturbance  input  •   difference:  synchronized  with  the  reference  •   predicBon  of  required  actuator  command  values  

GOAL:  • test  control  scenarios  without  stability  concerns  • provide  adequate  iniBal  values  when  switching  on  a  controller  • shortcut  and  speed-­‐up  control  reacBon  

Author’s name | Place, Month xx, 2007 | Event 18 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Transfer Function: Poles and Zeros

)sin()()(2

)(

)()(

222 ϕ+=⇒+++

+=

=⇒+

=

wtCetywaass

BAssY

Aetyas

AsY

at

at

)(...)()(...)(

......)(

1

1

10

10

n

mmn

n

mm

pspsqsqsb

sbasaasbsbbsH

+⋅⋅+

+⋅⋅+=

+++

+++=

Zeros  q1,...,  qm    :  M  complex  roots  of  the  transfer  funcBon  numerator  

Poles  p1,...,  pn    :  N  complex  roots  of  the  transfer  funcBon  denominator  

n>=  m  CAUSALITY  CONSTRAIN  

Single  real  pole    (|a|>0;  p  =  -­‐a)  

Pair  of  complex  poles    (|a|>0;  p  =  -­‐a  ±  i  w)  

Examples:

Re

Im

p1 qi pp

Pp*

pa

Author’s name | Place, Month xx, 2007 | Event 19 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Pole Positioning

Can be roughly denoted as follows:

Re

Im

RHP Not allowed

LHP

Too oscillatory

Good/ok Good/fast

OK

Too slow

Debatable

Author’s name | Place, Month xx, 2007 | Event 20 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Control Stability: Effects of Closing the Loop

)()()()()()(1

)()()( sRsHsRsCsPsF

sCsPsY cl=+

=

)()()(1)()()(

sCsPsFsCsPsHc +

=

•   Feedback  preserves  the  zeros  •   moves  the  poles  (alters  the  denominator)  •   can  stabilize  but  also  destabilize!  

r ControllerC(s)

e u PlantP(s)

y

FeedbackF(s)

-

reference error command Output

)()()( sCsPsHo =

A controller changes the dynamic behavior of the closed loop system – But how ? There is no simple analytical formula to translate controller parameters to closed loop poles and zeros • Ideal method: pole-placement

 requires full feedback of all state variables, or reconstruction by observers  potentially complex  can be compromised by parasitic delays

• Pragmatic method: frequency response shaping

 infer characteristic properties from open loop to closed loop  live with approximations and incomplete models  more robust, less performing

Author’s name | Place, Month xx, 2007 | Event 21 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Impact of sensor dynamics in the feedback loop

r ControllerC(s)

e u PlantP(s)

y

FeedbackF(s)

-

reference error command Output

Gain inversion: )(1)( ∞→=∞→ trK

tyf

Sensors  are  in  the  feedback  branch  of  the  loop  

)()()()()()()(

)()(

)()(1

)()()()()(1

)()()(sQsCsPsP

sPsCsP

sPsQ

sCsP

sCsPsFsCsP

sCsPsHff

f

f

fc +

=+

=+

=

)()(

)(sPsQ

sFf

f=

Poles  of  F(s)  become    Zeros  of    Hc(s)  

Author’s name | Place, Month xx, 2007 | Event 22 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Impact of delays in the control loop

Originators  of  delays:  • Digital  control  systems  • Digital  data  processors  (real-­‐Bme  diagnosBcs)  • Event  counBng  sensors  • Switching  power  supplies  (e.g.  thyristor  converters)  

Transfer function for a delay in time dsTd esFT −=⇒ )(

• Constant  gain,  no  damping  at  all  frequencies  

1)( =ωiF

• But  conBnuously  increasing  phase  delay  :      limits  the  achievable  bandwidth  of  the  closed  loop    • Transcendent  funcBon  (not  representable  by  poles  and  zeros)  

ωω ⋅−=∠ dTiF )(

• TIP:  keep  measurement  delays  short  (e.g.  filtering,  computer  network  communicaBon  latencies)  

Author’s name | Place, Month xx, 2007 | Event 23 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Example: Plasma Density Control

3)   IdenBfy   Parameters  and  Simplify      

Plant

F Density build-up

no Transportne(core)

Pumping

-

Commandgas flux

disturbance (wall influx)Outputd

01.01 =K

sssP

025.011

1.0101.0)(

+⋅

+=

1)  Describe  behaviour  

Plant

F no ne

-

Commandgas flux

disturbanceOutput

d

sKdens

1

pumpK

transp

transp

sTK+1

2)  Formulate  Model  

Plant P(s)

F no ne

Commandgas flux Output

transp

transp

sTK+1

1

1

1 sTK

+

sec1.01 =T1=transpK sec025.01 =T

)40()10(4

)025.01()1.01(01.0)(

+⋅+=

+⋅+=

sssssP

DC  gain  (s=0):    K=  0.01  

Author’s name | Place, Month xx, 2007 | Event 24 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Controlling the example: Proportional Control

nref

-

Plant P(s)

e no ne

Commandgas flux Output

transp

transp

sTK+1

1

1

1 sTK

+

1=K

F100=PK

Unity Feedback

P-controller

Add  some:  Feedback  (Unity)  Controller  (ProporBonal)  

Simulate!  Beeer  sBll:  if  you  have  a  Tokamak  nearby:  TRY-­‐IT!!  

Steady  State  Error  (SSE):  Lets  increase  KP  to  500?  

P

P

P

P

cl KssK

ssK

ssK

sH⋅++⋅+

⋅=

+⋅+⋅+

+⋅+⋅

=4)40()10(

4

)40()10(41

)40()10(4

)(

SSE error

Author’s name | Place, Month xx, 2007 | Event 25 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Increasing K by Trial & Error

Now  we  have  Overshoot      

P

Pcl Kss

KsH⋅++⋅+

⋅=

4)40()10(4)(

K  =  500  

Author’s name | Place, Month xx, 2007 | Event 26 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Improving the Density control: Integration Controller

nref

-

Plant P(s)

e no ne

Commandgas flux Output

transp

transp

sTK+1

1

1

1 sTK

+

1=K

F

100=IK

Unity Feedback

I-controllersKI

I

I

I

I

cl KsssK

sssK

sssK

sH⋅++⋅+⋅

⋅=

+⋅+⋅+

+⋅+⋅

=4)40()10(

4

)40()10(41

)40()10(4

)(

AeenBon:  the  controlled  loop  could  get  unstable  !  

Author’s name | Place, Month xx, 2007 | Event 27 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Real-Time Diagnostics

Robust Density control

ne* Controller

C(s)e u Plant

P(s)ne

DCN interferometer

-

reference error Outputff

F

feedfoward

Bremstrahlung

Coton MoutonEffect

Reconstructor:Compute

best estimate

Command

Requirement • DCN signals can be compromised by fringe jumps. • Density measurement from a single central DCN line-of-sight (LOS) is unsecure. • Density from Bremsstrahlung has drifts. • A valid density value is required for control and monitoring (NBI interlocks)

RealisaBon:  Compute  a  validated  density  from  several  diagnosBc  sources          o  detect  sensor  failures          o  replace  with  other  inputs  

Author’s name | Place, Month xx, 2007 | Event 28 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

ITER CODAC is the primary tool for operation

Author’s name | Place, Month xx, 2007 | Event 29 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

ITER CODAC is a challenging endeavour

ITER will require a far higher level of availability and reliability than previous/

existing Tokamaks .

•  ITER will generate a huge quantity of

experimental data

–  150 plant systems –  1 000 000 diagnostic channels –  300 000 slow control channels –  5 000 fast control channels –  40 CODAC systems –  5 Gb/s data –  3Pb/year data (e.g. 12 IR cameras in a 10 minutes discharge: 1.728

Tbytes) In addition...

Author’s name | Place, Month xx, 2007 | Event 30 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

International ITER Agreement

140 slices

Procurement “IN KIND”

Need for Standards in HW & SW Architecture

IO Team in charge of the integration on site and the operation

Author’s name | Place, Month xx, 2007 | Event 31 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

ITER Subsystem is a set of related plant system I&C

ITER Instrumentation & Control System physical architecture

Author’s name | Place, Month xx, 2007 | Event 32 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

ITER subsystem # of PS I&C # of PSH+controllers # of servers+terminals

Tokamak 6 55 6

Cryo and cooling water 5 40 3

Magnets and coil power supply 8 30 3

Building and power 37 66 3

Fuelling and vacuum 6 45 3

Heating 8 55 4

Remote handling 2 15 2

Hot cell and environment 3 20 2

Test blanket 6 24 7

Diagnostics 89 400 20

Central 0 0 170

TOTAL 167 750 220

Estimate of ITER CODAC system size

~1000 computers connected to CODAC

Author’s name | Place, Month xx, 2007 | Event 33 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

Plant System I&C Is a deliverable by ITER member state. Set of standard components selected from catalogue. One and only one plant system host.

ITER Instrumentation & Control System physical architecture

Author’s name | Place, Month xx, 2007 | Event 34 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

CODAC Servers and Terminals are servers running Red Hat Enterprise Linux (RHEL) and EPICS/CSS/???. These servers implements supervision, monitoring, coordination, configuration, automation, data handling, archiving, visualization, HMI…

Author’s name | Place, Month xx, 2007 | Event 35 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

Plant Operation Network is the work horse general purpose flat network utilizing industrial managed switches and mainstream IT technology

Author’s name | Place, Month xx, 2007 | Event 36 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

High Performance Networks are physically dedicated networks to implement functions not achievable by the conventional Plant Operation Network. These functions are distributed real-time feedback control, high accuracy time synchronization and bulk video distribution.

Author’s name | Place, Month xx, 2007 | Event 37 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

Slow Controller is a Siemens Simatic S7 industrial automation Programmable Logic Controller (PLC A Slow Controller runs software and plant specific logic programmed on STEP 7. A Slow Controller has normally I/O and IO supports a set of standard I/O modules.

Author’s name | Place, Month xx, 2007 | Event 38 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

Fast Controller is a dedicated industrial controller implemented in PCI family form factor and There may be zero, one or many Fast Controllers in a Plant System I&C. A Fast Controller runs LINUX RHEL and EPICS IOC. A Fast Controller has normally I/O and IO supports a set of standard I/O modules with associated EPICS drivers. A Fast Controller may have interface to High Performance Networks (HPN),

Author’s name | Place, Month xx, 2007 | Event 39 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

High Performance Networks are physically dedicated networks to implement functions not achievable by the conventional Plant Operation Network..

Author’s name | Place, Month xx, 2007 | Event 40 B. Carvalho| EIROforum School on Instrumentation, ESI 2011 | Grenoble

High Performance Computer are dedicated computers (multi core, GPU) running plasma control algorithms.

Author’s name | Place, Month xx, 2007 | Event 41 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Fast  Controllers  for  Fusion  Devices  

Actuators

Plasma

SensorsHeating  systems

Fueling  systems

Corrective  systems

Diagnostics

Analysis  codes

Magnetic  coils

ControllersPlasma  Shaping

&Current  Control  

Machine  protection

Profiles  control

High  performance  communication  networks

Supporting InfrastructureSimulation  environment

Scheduler

R-­‐T  signal  servers

Instabilities  control

Author’s name | Place, Month xx, 2007 | Event 42 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Vertical Stabilization | an example

Elongated plasmas are vertically unstable MIMO systems designed to make plasma vertically stable while other controllers control plasma position and shape

Growth Rate

Author’s name | Place, Month xx, 2007 | Event 43 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

ITER Vertical Position Control How important are control systems?

•  Loss of vertical plasma position control in ITER will cause thermal loads on Plasma Facing Components of 30-60 MJ/m2 for ~0.1s.

–  PFCs cannot be designed to sustain such (repetitive) thermal loads

•  Vertical Displacement Events also generates the highest electromagnetic loads –  A phenomenological extrapolation of horizontal forces estimates loads

~45MN on ITER vacuum vessel. –  Simulations of MHD predicts ~20MN –  Vertical loads ~90MN

Plasma vertical position in ITER must be robust & reliable to ensure a vertical plasma position control

loss is a very unlikely event

Author’s name | Place, Month xx, 2007 | Event 44 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

•  192 signals acquired by ADCs and transferred at each cycle

•  50 µs control loop cycle time with jitter < 1 µs archieved by MARTe.

• Always in real-time (24 hours per day)

• 1.728 x 109 50 µs cycles/day

• Crucial for ITER very long pulses

Example: JET Vertical Stabilization system

192 input signals

Front view

Author’s name | Place, Month xx, 2007 | Event 45 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

ATCA  @  JET  Ver6cal  Stabilisa6on  Controller  

•  x86-based ATCA controller

•  Up to 12 DGP cards (PCIe links through the ATCA full mesh backplane)

•  32 18 bit ADC channels / board , separately isolated (1 kV) •  Parallel execution on FPGAs for MIMO signal processing (Control loop delay < 50 µs, aim < 10 µs)

•  Linux RT operating system (RTAI)

•  Aurora and PCI Express communication protocols allow data transport, between modules - expected latencies below 2 µs.

Author’s name | Place, Month xx, 2007 | Event 46 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

IPFN’s ATCA-MIMO-ISOL I/O Processing Boards

RTM ADC module

Author’s name | Place, Month xx, 2007 | Event 47 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

ATCA JET Gamma ray Spectroscopy

•  19 lines of sight 10 Horizontal + 9 Vertical Channels

•  2 FPGA ( Virtex II-Pro) ATCA Boards Digitizing at 200 MSPS, 13bit, 8 channels

Author’s name | Place, Month xx, 2007 | Event 48 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Gamma and X-ray Diagnostics Real time Processing

Analog-to-Digital

Converter Block

Analog-to-Digital Converter BlockAnalog-to-Digital Converter Block

DDR SODIMM 1 GBYTES

XilinxTMFPGA

VirtexII-ProXC2VP30FF1152 -6

Clock Synthesis

SYSTEM ACE COMPACT

FLASH

Analog-to-Digital Converter Block 4x 12 bits

Sync

Ref CLK

Analog Inputs

Analog-to-Digital

Converter Block

Analog-to-Digital Converter BlockAnalog-to-Digital Converter Block

DDR SODIMM 1 GBYTES

XilinxTMFPGA

VirtexII-ProXC2VP30FF1152 -6

Clock Synthesis

PCI Express x4 link

Analog-to-Digital Converter Block 4x 12 bitsAnalog Inputs

PCI EXPRESS SWITCHPex 8516

4X Rocket IO

4X Rocket IO

PCI Express x4 link

Channel 11

Channel 12

•  Parallel DPP in FPGA •  Real-Time PHA at 1MHz average pulse

rate. •  20 ns resolution timestamp •  Data reduction rate of at least 80%

attainable 95% of total pulses resolved

Author’s name | Place, Month xx, 2007 | Event 49 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Why ATCA?

ATCA platform is gaining traction in the physics community because of •  Advanced communication bus architecture (serial gigabit replacing parallel buses) •  very high data throughput options and its suitability for real-time applications •  Scalable shelf capacity to 2.5Tb/s •  Scalable system availability to 99.999% •  Robust power infrastructure (distributed 48V power system) and large cooling

capacity (cooling for 200W per board) •  Ease of integration of multiple functions and new features •  The ability to host large pools of DSPs, NPs, processors and storage •  Full redundancy support •  Reliable mechanics (serviceability, shock and vibration) •  Hardware management interface (IPMI Bus)

Author’s name | Place, Month xx, 2007 | Event 50 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Who else is using ATCA?

The group of experimenters includes several major laboratories representing different fields of use and a range of applications.

•  Active programs are showing up most notably at –  DESY for XFEL and JET

•  Other laboratories –  ILC, IHEP, KEK, SLAC, FNAL, ANL, BNL, FAIR, ATLAS at CERN, AGATA, large telescopes,

Ocean Observatories

•  Investigating ATCA solutions for future upgrades –  Both the CMS and ATLAS detectors

•  Setting up prototype experiments to test its potential –  ILC and ITER

ATCA is being adapted without significant change as a platform for generic data acquisition processors requiring high throughput and bandwidth.

Most of these programmes put the emphasis on High Availability

Author’s name | Place, Month xx, 2007 | Event 51 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

SOFTWARE TOOLS FOR CONTROL: EPICS and ITER

In February 2009 ITER Organization decided to use EPICS for the control system. This decision was based on three independent studies In February 2010 ITER-IO released the first version (V1.0) of CODAC Core System, which basically is a package of selected EPICS products

Author’s name | Place, Month xx, 2007 | Event 52 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

What is EPICS?

EPICS is: •  A collaboration •  A tool kit •  A control system architecture

EPICS is an abbreviation for: Experimental Physics and Industrial Control System

Author’s name | Place, Month xx, 2007 | Event 53 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

The History – In1989 started a collaboration between Los Alamos

National Laboratory (GTA) and Argonne National Laboratory (APS)

(Bob Dalesio & Marty Kraimer)

– More than 150 licenses agreements were signed, before EPICS became Open Source in 2004

– Team work on problems, for example over “Tech Talk” mailing list

– Database and network protocol (CA) basically unchanged since 1990.

– Collaborative efforts vary •  Assistance in finding bugs •  Share tools, schemes, and advice

GTA: Ground Test Accelerator APS: Advanced Photon Source

http://www.aps.anl.gov/epics

Author’s name | Place, Month xx, 2007 | Event 54 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

EPICS – who is using it?

Some members of the collaboration (very short List!):

– ANL (APS Accelerator, APS Beamlines, IPNS) in Chicago, USA – LANL in Los Alamos, USA – ORNL (SNS) in Oak Ridge, USA – SLAC (SSRL, LCLS) in Standford, USA – DESY in Hamburg, Germany – BESSY in Berlin, Germany – PSI (SLS) in Villigen, Switzerland – KEK in Tsukuba, Japan – DIAMOND Light Source (Rutherford Appleton Laboratory) in

Oxfordshire, England – In FUSION: NTSX, KSTAR, ITER and ISTTOK

Author’s name | Place, Month xx, 2007 | Event 55 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Parts of EPICS

Commercial Instruments

IOC IOC

IOC

IOC CAS

CAS

Custom hardware

Technical Equipment

Out

put

Input

Client Software MEDM

ALH StripTool TCL/TK

Perl Scripts

OAG Apps

Many, many others …

Channel Access

CA Server Software EPICS Database

consists of Process Variables Custom Programs

Realtime control

Sequence Programs

Records

Author’s name | Place, Month xx, 2007 | Event 56 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

How does it do it?

Power Supply

Beam Position Monitor

Vacuum Gauge

Computer Interface

Computer Interface

Computer Interface

Process Variables:

Channel Access Server

S1A:H1:CurrentAO

S1:P1:x

S1:P1:y

S1:G1:vacuum

Channel Access Client

Channel Access Client

Channel Access Client

Network (Channel Access Protocol)

Machine

Operator

IOC

Author’s name | Place, Month xx, 2007 | Event 57 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

What is an IOC? •  A special CA Server and CA Client •  A computer running “IOC Core” •  This computer may be:

-  VME based, operating system vxWorks or RTEMS -  PC, operating system Windows, Linux, RTEMS -  Apple, operating system OSX -  UNIX Workstation, operating system Solaris

•  An IOC normally is connected to input and/or output hardware •  An EPICS control system is based on at least one Channel Access Server (normally an IOC) •  An IOC runs a record database, which defines what this IOC is doing

IOC means Input Output Controller

Author’s name | Place, Month xx, 2007 | Event 58 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Sequencer

Inside an IOC

LAN (Network)

Device Support

I/O Hardware

IOC

The major software components of an IOC (IOC Core)

Database

Channel Access

Author’s name | Place, Month xx, 2007 | Event 59 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Control and Data Acquisition for Next Generation Fusion Experiments

Challenges  •   Increasing  number  of  interdependent  parameters  to  be  controlled    

•   Increasingly  faster  real-­‐Bme  loop-­‐cycle  response  

• Stricter  OperaBng    Safety  Margins  

•   ConBnuous  OperaBon  generaBon  huge  data  quanBBes    

 

 

 

Implica6ons  •   Massive  processing  power  (parallel,  mulB-­‐processing  support)    

•   High  bandwidth  for  data-­‐transfer  

•   Real-­‐Bme  mulB-­‐input-­‐mulB-­‐output  (MIMO)  control  

•   Advanced,  intelligent,  flexible  Bming  &  syncronizaBon    

Author’s name | Place, Month xx, 2007 | Event 60 B. Carvalho | EIROforum School on Instrumentation, ESI 2011 | Grenoble

Concluding remarks

•  High performance of fusion depends on real-time MIMO control systems

•  Control systems are critical for safe operation and reliability of Fusion Devices

•  ITER is a big challenge for its higher complexity and stricter safety margins

•  Likely there were will be a grater convergence between Neutron/High energy physics and Fusion on hardware technologies in hardware (ATCA) and software (EPICS)

Her